Philippe de Forcrand
Download all documents (zip, 6.1 MB).
Assignment of topics (View with Firefox, not Explorer)  
Topic 
References 
Talk Date 
Student 
Supervisor 
Euclidean path integral formalism: from quantum mechanics to quantum field theory. 
Euclidean path integral formalism: from quantum mechanics to quantum field theory. Introduce the path integral formalism: 1particle quantum mechanics; Euclidean rotation; bosonic field theory; connection with perturbative expansion. MM Ch.1.2 – 1.4; R Ch.2. 
March 30, 2009 
Enea Di Dio 
Marco Panero 
YangMills theory and the QCD Lagrangian 
YangMills theory and the QCD Lagrangian. Explain nonAbelian gauge symmetry, YangMills Lagrangian, Wilson loop; introduce quarks. Ryder Ch.4.4 (beginning); PS Ch.15.1 – 15.3 + 17.1. 
April 6, 2009 
Christopher Cedzich 
Ph. de Forcrand M. Fromm 
Asymptotic freedom and the betafunction: 4, 2d model, QCD 
Asymptotic freedom and the betafunction: 4, 2d model, QCD. Introduce renormalization, and explain betafunction calculation for 4 and model; explain consequences for QCD. KG Ch.4.1 – 4.2; Ryder Ch. 9.3; PS Ch.13.3, Sec.1. 
April 20, 2009 
David Oehri 

Lattice formulation of YangMills theory and confinement at strong coupling 
Lattice formulation of YangMills theory and confinement at strong coupling. Discretize YangMills theory; explain continuum limit via asymptotic freedom; reproduce Wilson’s proof of confinement at strong coupling. MM Ch. 3.2; R Ch. 9; Wilson. 
April 27, 2009 
Basil Schneider 
Marco Panero 
Goldstone’s theorem and chiral symmetry breaking 
Goldstone’s theorem and chiral symmetry breaking. Review the chiral symmetry of QCD, its explicit and its spontaneous breaking. Explain Goldstone’s theorem and apply it to QCD. Ryder Ch. 8.1 – 8.2; Scherer Ch. 2. 
May 4,2009 
Felix Traub, 
Marco Panero 
Finite temperature QCD: formulation and symmetries 
Finite temperature QCD: formulation and symmetries. Finite temperature in the Euclidean path integral; bosons and fermions; Polyakov loop and center symmetry. KG Ch.2; R Ch. 20.1 – 20.4. 
May 11, 2009 
Roman Mani 
Aleksi Kurkela 
The finitetemperature transition in QCD 
The finitetemperature transition in QCD. Explain symmetries and expected thermal behaviour of QCD with infinitely heavy and with massless quarks (Columbia plot). KG Ch. 10.4 – 10.5; KS Ch. 7 MM: I. Montvay and G. M¨unster, “Quantum fields on a lattice,” Cambridge, UK: Univ. Pr. (1994) 491 p. (Cambridge monographs on mathematical physics) • R: H. J. Rothe, “Lattice gauge theories: An Introduction,” World Sci. Lect. Notes Phys. 74 (2005) 1. • PS: M. E. Peskin and D. V. Schroeder, “An Introduction To Quantum Field Theory,” Reading, USA: AddisonWesley (1995) 842 p • KG: J. I. Kapusta and C. Gale, “Finitetemperature field theory: Principles and applications,” Cambridge, UK: Univ. Pr. (2006) 428 p • Ryder: L. H. Ryder, “Quantum Field Theory,” Cambridge, Uk: Univ. Pr. ( 1985) 443p • KS: J. B. Kogut and M. A. Stephanov, “The phases of quantum chromodynamics: From confinement to extreme environments,” Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 21 (2004) 1. • Wilson: K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10 (1974) 2445. • Scherer: S. Scherer and M. R. Schindler, “A chiral perturbation theory primer,” arXiv:hepph/ 0505265. 
May 18, 2009 
Raffaele Solcà 
Aleksi Kurkela 