
Proseminar FS09 in Theoretical

Physics - Perturbative and

non-perturbative methods for strong

interactions

Euclidean path integral formalism:

from quantum mechanics to quantum

field theory

Enea Di Dio
ETH Zürich
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1 Introduction

In this first topic I will introduce the Euclidean path integral formalism,
because this is a fundamental instrument for a non-perturbative approach to
quantum field theory. We will start with the Feynman path integrals for a
single particle in quantum mechanics and then we will extend to imaginary
time. Later we will deal with the Euclidean path integrals for a real scalar
field, this means for a bosonic field, and we will show the analogy between this
formalism and statistical mechanics. At the end we will see the connection
with the perturbative theory.

We first introduce the Euclidean path integrals in quantum mechanics for
completeness, but this formalism becomes relevant for quantum field theory.
In fact in quantum mechanics we have already other methods that are more
efficient and convenient to solve the typical problems, for example scattering
amplitudes, bound state energies or eigenfunctions of the hydrogen atom.
Moreover the only non-trivial example, that we can solve analytically with
the Feynman path integrals, is the harmonic oscillator. For this reason we
can see the Euclidean path integral formalism simply like another elegant way
to describe the time evolution of a quantum system. Instead in quantum field
theory it has become the fundamental instrument to study particle physics. It
has been essential to build the gauge theories, like quantum electrodynamics
or quantum chromodynamics.

Now, before beginning with the path integral formalism, I would remem-
ber some fundamental ideas of classical mechanics and in this way I think
that it is possible to understand the Feynman’s motivations to introduce
a new quantum formalism in which the action of each possible trajectory
plays a crucial role. We know that there are, besides the Newton framework,
two equivalent formalisms in classical mechanics: the Lagrangian and the
Hamiltonian formalisms. In the first we define the Lagrangian as

L(qi, q̇i, t) = T − V, (1)

where T is the kinetic term and V the potential term. At this point the
equations of motion are given by the principle of least action1

δS[L] = 0. (2)

Instead for the Hamiltonian formalism, dynamics is founded on the Hamil-

1The action is defined by S[L] =
∫

Ldt and we know that the variational principle
is equivalent, for variations that vanish at the initial and end points, to Euler-Lagrange
equations.
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tonian2 and in particular on the Hamilton’s canonical equations

q̇ =
∂H(q, p)

∂p
, (3)

ṗ = −
∂H(q, p)

∂q
. (4)

The Hamiltonian formalism is the natural framework to move from the clas-
sical mechanics to quantum mechanics. Indeed in the canonical quantization
of a system we take the Hamiltonian and we have to substitute the classical
variables, which satisfy the commutation’s rule with the Poisson brackets3,
with the quantum operators, which have to satisfy the commutation’s rule
with the Lie brackets. In this way we move away from the principle of least
action, for this reason, introducing the Feynman path integral formalism,
we can again found all dynamics of the system on this fundamental prin-
ciple that leads physics and hence, the Lagrangian being the fundamental
quantity, this approach preserves the symmetries of a theory. We will see
that in quantum mechanics the possible paths are not only those such that
δS[L] = 0, but we can say that in a classical limit these paths are simply the
most probable.

2 Path integral formalisms in quantum me-

chanics

We will start with the Feynman path integrals, this means that we will use
the real time, and then, in a second step, we will replace it with the imaginary
time. We will show that this method will allow us to move from a space-time
described by the Minkowski metric to a Euclidean space-time. Moreover we
will see that the Euclidean formalism has some other convenient advantages.

2.1 Real time

In quantum mechanics we can use more equivalent pictures to describe the
time evolution. In Schrödinger picture we have that the operators are time
independent and all the time dependence is stored in the state of the system.

2In a rigorous way the Hamiltonian H(q, p) is defined by the Legendre transformation
of the Lagrangian L(q, q̇, t) with respect to canonical conjugate momentum, defined as

p = ∂L(q,q̇)
∂q̇

.
3This means that generalized coordinates and the canonical conjugate momenta satisfy

{qi, pj} = δij .
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Instead in the Heisenberg picture we put the time evolution in the operators
and we have the state that is time independent. Another possibility is to
use the interaction picture, where we put the trivial time evolution in the
operators and the state evolution depends on the interaction.

Now we use the Schrödinger picture such that the time evolution of the
state4 is given by the Schrödinger equation

i
∂ψ(x, t)

∂t
= Hψ(x, t), (5)

and we find5

|ψ(t)〉 = e−iH(t−t0) |ψ(t0)〉 . (6)

Now, using the eigenstate |y〉 of the position operator, we can find that the
probability amplitude for a particle to move from y to x within time interval
t is given by

〈x| e−iHt |y〉 . (7)

For a free particle we have

H ≡ H0 =
~p2

2m
(8)

and we can find6 explicitly the amplitude probability

〈x| e−iH0t |y〉 =
( m

2πit

)
1

2

exp
(

i
m

2t
(x− y)2

)

. (9)

Instead for a particle in a potential we have

H = H0 + V (x) (10)

and in general we can not write explicitly the probability amplitude, but it
is possible to define the time evolution operator for small times ǫ as

Uǫ ≡ exp (−iHǫ) . (11)

Using the Baker-Campbell-Hausdorff formula, this means eAeB = eA+B+ 1

2
[A,B]+...,

we can approximate the time evolution operator Uǫ with

Wǫ = exp
(

−iV
ǫ

2

)

exp (−iH0ǫ) exp
(

−iV
ǫ

2

)

(12)

4We remember that the state is described by a vector in the Hilbert space H and the
observables by Hermitian operators acting on the Hilbert space H.

5We use ~ = 1 and we restrict to a time independent Hamiltonian.
6We have to use

∫

dp |p〉 〈p| = 1 and
∫

dp
2π

eip(x−y) exp
(

−i p2

2m
t
)

=
(

m
2πit

)
1

2 exp
(

im
2t

(x − y)
2
)

.
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and we find its matrix elements, that are given by

〈x|Wǫ |y〉 =
( m

2πiǫ

)
1

2

exp
(

i
m

2ǫ
(x− y)2 − i

ǫ

2
(V (x) + V (y))

)

. (13)

We can show7 that

exp (−i (H0 + V ) t) = lim
N→∞

Wǫ
N (14)

and this means that we can use the approximated time evolution operator
Wǫ if the time interval t is divided into small elements

ǫ =
t

N
. (15)

At this point, we know an approximated time evolution operator Wǫ, which
becomes exact in the limit ǫ → 0 or equivalently N → ∞. For this reason,
inserting N − 1 complete sets of position eigenstates we find

〈

x
∣

∣e−iHt
∣

∣ y
〉

= lim
N→∞

∫

dx1 · · · dxN−1 〈x|Wǫ |x1〉 · · · 〈xN−1|Wǫ |y〉. (16)

Knowing the matrix elements we can rewrite this expression as

〈

x
∣

∣e−iHt
∣

∣ y
〉

=

∫

Dx eiSǫ , (17)

where

Sǫ =
m

2ǫ

(

(x− x1)
2 + . . .+ (xN−1 − y)2)

−ǫ

(

1

2
V (x) + V (x1) + . . .+ V (xN−1) +

1

2
V (y)

)

(18)

and

Dx = lim
N→∞

( m

2πiǫ

)
N

2

dx1 · · · dxN−1. (19)

This expression Sǫ is an approximation to the action S of a particle moving
from point y to another point x along a path x (t) with xk = x (kǫ)

S =

∫ t

0

dt′
(m

2
ẋ2 − V (x)

)

. (20)

7Starting from Uǫ
N−Wǫ

N =
∑N−1

k=0 Uǫ
k (Uǫ − Wǫ) Wǫ

N−1−k and using the matrix norm

(‖F · G‖ ≤ ‖F‖ · ‖G‖ , ‖F + G‖ ≤ ‖F‖ + ‖G‖) we can find limN→∞

∥

∥Uǫ
N − Wǫ

N
∥

∥ = 0.
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Equation (17) describes the quantum mechanical probability amplitude and
we can interpret8 it as an integral over all paths weighted by eiS. We see that
in this new formalism we have eliminated the quantum mechanical operators
in favour of an infinite-dimensional integral. In the next section we will
introduce the imaginary time, and then we will see a better interpretation of
this integration over all possible paths.

We can find another approach if we interpret this probability amplitude
as the Green function that describes the time evolution of the state. Indeed,
using

∫

dq |q〉 〈q| = 1, we can write

ψ(q′, t′) =

∫

dqG(q′, t′; q, t)ψ(q, t), (21)

where G(q′, t′; q, t) = 〈q′| e−iH(t′−t) |q〉. In this framework the path integral
formalism is founded directly on the following convolution rule,

G(q′, t′; q, t) =

∫

dq′′G(q′, t′; q′′, t′′)G(q′′, t′′; q, t). (22)

2.2 Euclidean time

Now we introduce the imaginary time and then, we will show that this choice
implies that the space-time is described by a Euclidean metric.

We define the imaginary (or Euclidean) time τ as

t = −iτ, τ > 0. (23)

Using the imaginary time τ the time evolution operator9 becomes

exp (−Hτ) . (24)

If we do the same steps as for real time, this means we have to define an ap-
proximated time evolution operator Wǫ such that we can compute its matrix

8 The right-hand of the equation (17) can also be written as

∑

all paths

ei(phase),

where
∫

Dx (t) is another way to write ”sum over all paths”. Moreover we see from
equation (19) that in the limit N → ∞ we have an integration over a continuous space of
functions, hence the integrand of right-hand of the equation (17) is a functional, in fact it
associates any path x (t) with a complex phase. For this reason it is also called functional
integral formalism. However this is only a theoretical remark, because we need to write
the action over a discrete representation of the smooth path x (t).

9We see directly that it is well defined if the potential term V is bounded from below.
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elements, and then compute explicitly the probability amplitude, we find

〈x| e−Hτ |y〉 =

∫

Dx e−SE , (25)

where

SE =

∫ t

0

dτ ′
(m

2
ẋ2 + V (x)

)

(26)

is the Euclidean action10 and

Dx = lim
N→∞

( m

2πǫ

)
N

2

dx1 · · · dxN−1. (27)

We can show that the classical action and the Euclidean action are related
by

S|t=−iτ = iSE. (28)

In fact it is enough to replace d
dt

= i d
dτ

and dt′ = −idτ ′ in the action S.
Now we see that the equation (25) is real and every path is weighted by

e−SE . This approach is advantageous with respect to the complex Feynman
path integrals, because we haven’t an oscillating function. In this formalism
the connection with the classical principle of least action is manifest, but
there is a fundamental difference between the classical and the quantum
approaches. Indeed we see that in the Euclidean path integrals all paths
are possible and those with SE extremal, this means near δSE = 0, are
simply more likely. So far we have always used Natural units, in which
~ = c = 1. If we use physical units and reinstate ~ explicitly, then the
weight of every path should read: exp(−SE/~) (so that ~ would play a role
similar to the temperature in a Statistical Mechanics system). The classical
limit is obtained when ~ → 0; in fact, in that limit, only the configurations
of least action contribute, while all configurations corresponding to larger
action values are suppressed.

As we see from equation (27) we have the Euclidean action (26) only in
limit N → ∞, but without this limit we have a discretization of the quantum
mechanical amplitude on a Euclidean time-lattice with spacing ǫ. On this
time-lattice we define the time evolution operator11 as the transfer matrix12

T = exp
(

−V
ǫ

2

)

exp (−H0ǫ) exp
(

−V
ǫ

2

)

. (29)

10Notice the positive sign, that is consistent with equation (28).
11Analogous to (12).
12The matrix elements are given by

〈x|T |y〉 =
(

m
2πǫ

)
1

2 exp
(

−m
2ǫ

(x − y)
2
− ǫ

2 (V (x) + V (y))
)

.
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We can define the Hamiltonian Hǫ corresponding to transfer matrix T as

T = exp (−ǫHǫ) , (30)

and Hǫ becomes the Hamiltonian H in the limit ǫ→ 0.
Now, we search a convenient way to express the expectation values 〈0|A |0〉

of an operator A in the energy ground state13 as Euclidean path integrals.
This approach becomes important also for the next section, when we deal
with the bosonic field and the expectation values on the vacuum. We start
from

Tr
(

e−HτA
)

=
∞
∑

n=0

e−Enτ 〈n|A |n〉 (31)

and

Z (τ) = Tr
(

e−Hτ
)

=
∞
∑

n=0

e−Enτ . (32)

We see that for τ → ∞ the ground state term E0 dominates the sums and
therefore it follows directly that

〈0|A |0〉 = lim
τ→∞

Tr
(

e−HτA
)

Z (τ)
. (33)

We notice that the equation (33) has the same form of the mean in a canonical
statistical ensemble. This will be important in quantum field theory, because
it will allow us to use the same methods of statistical physics. A special case
of equation (33) are the correlation functions14

〈x(t1) · · · x(tn)〉 ≡ 〈0|x(t1) · · ·x(tn) |0〉 (34)

continued analytically to Euclidean times τk = itk, where we find15

〈x(t1) · · ·x(tn)〉 = lim
τ→∞

1

Z (τ)

∫

Dx x (τ1) · · · x (τn) exp (−SE [x (τ)]), (35)

with

Z (τ) =

∫

Dx exp (−SE [x (τ)]). (36)

13Let |i〉 be the eigenstate with eigenvalue Ei, in ascending order, of the Hamiltonian
Hǫ. This means that E0 is the energy ground state.

14We can see these correlation functions as the probability for a particle to pass through
x (t1) . . . x (tn).

15We use SE [x (τ)] to denote a functional.
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To end this section we show that using the imaginary time it follows
directly that the metric of space-time becomes Euclidean. Indeed we set the
coordinate time

x0 = −ix4, x4 ∈ R. (37)

Now, if the metric for the coordinates (x0, x1, x2, x3) was the Minkowski
metric, then the metric write with respect to the coordinates (x1, x2, x3, x4)
is a Euclidean metric. In fact, if we use the following signature (−1, 1, 1, 1)
for the Minkowski metric, we have g44 = g (x4, x4) = g (ix0, ix0) = −g00 = 1.

3 Euclidean rotation

For the moment we have seen the Euclidean path integral formalism in quan-
tum mechanics. But we know that we can not bound our analysis to quantum
mechanics, because if we want to make it compatible with the special rela-
tivity we find some problems. In fact if we use the following relation between
energy and momentum, E2 = p2 + m2, we find that some particles could
have also negative energy states. This problem can be solved assuming the
existence of some particles, which move back in the time and which have the
opposite quantum numbers. These are named antiparticles and they emerge
naturally combining quantum mechanics and special relativity. Quantum
mechanics is not a convenient way to work with many particles, but it is
better to use quantum field theory, that can describe system with an infinite
number of particles. In fact, moving from quantum mechanics to quantum
field theory, we replace the wave functions with the field operators, that can
create and destroy an infinite number of particles.

Now, before starting with the Euclidean path integral formalism in quan-
tum field theory, we have to study the way to move from a field theory in
space-time with the Minkowski metric to a Euclidean space-time, as in the
previous section we have continued the real time to imaginary time.

We start to define the Wightman functions as the n-point correlation
functions of the scalar field φ,

W (x1, . . . , xn) = 〈0|φ (x1) · · ·φ (xn) |0〉 . (38)

These Wightman functions become important in quantum field theory, be-
cause we will find a connection between them and the time-ordered Green
functions, that contain all physical information16. Now, if we write the field

16In the first part of this topic we don’t use a formalism founded on the Green functions,
but if we see the end of the chapter (2.1), we notice that the information was already stored
in the Green functions.
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operator as17

φ (x) = eiP ·xφ (0) e−iP ·x, (39)

where P is generator of translations and if we continue xk as

xk = uk − iyk, (40)

we find, using the spectrum condition18, that for yk−yk+1 ∈ V +, this means in
the forward light cone, the Wightman functions can be continued analytically
into this region. Hence we define the Schwinger functions (or Euclidean Green
functions) as

S
(

. . . ; ~xk, x
4
k; . . .

)

≡ W
(

. . . ;−ix4
k, ~xk; . . .

)

, (41)

for19 x4
1 > x4

2 > . . . > x4
n.

Now we show that the Wightman functions can be analytically extended
into whole complex x0-plane, without the real line where |x0| > |~x|. Hence we
can deal with Schwinger functions, that obey simpler properties, and however
we can reconstruct the Wightman functions in Minkowski space from the
Schwinger functions in the Euclidean space. The symmetry properties of
these functions will allow us to find a representation in terms of functional
integrals20. For simplicity we restrict to the 2-point function. From the
definition of the Wightman functions and from A2 we can define the 2-point
function as

W (x1, x2) ≡ W (x1 − x2) . (42)

We note that21 W (x) is analytic in the lower half complex plane and anal-
ogously for Wπ (x) ≡ W (−x) in the upper half plane. At this point it is
important to remember that the real space is described by the Minkowski
space, this means by the real x0 axis. Since W (x1, x2) = W (x2, x1) we have
that W and Wπ are equal for a space-like coordinate x = x1 − x2. Hence
they are equal on an open region and this implies that they form a sin-
gle analytic function in the union of their domains of definition. Extending
to n-point functions we see that the Schwinger functions are defined on all
non-coinciding Euclidean points xj 6= xk for j 6= k.

17We write · for the scalar product with respect to the Minkowski metric.
18See A3 in Appendix (A.1).
19We can show that the Euclidean points xk =

(

−ix4
k, ~xk

)

, with x4
k ∈ R, ~xk ∈ R3 and

x4
k − x4

k+1 > 0 are in the analytical region.
20If we see the footnote (8), we understand that this representation corresponds to the

path integral formulation.
21See definition (37).
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In the 2-point function example we have seen that we get the Wightman
functions from the Schwinger functions if they approach the x0 real axis.
Hence, if we generalize this behaviour to the n-point functions, we find

W (x1, . . . , xn) = lim
ǫk→0,ǫk−ǫk+1>0

S
(

. . . ; ~xk, ix
0
k + ǫk; . . .

)

, (43)

for xk ∈ R4.
Now we introduce the time-ordered Green functions, which will play a

fundamental role in quantum field theory, as

τ (x1, . . . , xn) = 〈0|Tφ (x1) · · ·φ (xn) |0〉 , (44)

where22 T is the time ordering operator. We see that τ is symmetric in its
arguments and that for the 2-point function we have

τ (x) =

{

W (x) , x0 > 0

W (−x) , x0 < 0.
(45)

Hence, knowing that W (x) is analytic in the lower half complex plane and
the opposite for W (−x), we obtain the τ functions by approaching the x0

real axis in the complex plane through a counter-clockwise rotation. If we
generalize this behaviour we find the Wick rotation

τ (x1, . . . , xn) = lim
φ→π

2

S
(

. . . ; ~xk, e
iφx0

k; . . .
)

. (46)

22We define the time ordering operator as

Tφ (x1) φ (x2) = θ
(

x0
1 − x0

2

)

φ (x1) φ (x2) + θ
(

x0
2 − x0

1

)

φ (x2) φ (x1) ,

where θ is the Heaviside step function.
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4 Path integral formalism in quantum field

theory

In the previous chapter we have dealt with the Euclidean correlation func-
tions and now we can conclude that symmetry property E2 in the appendix
(A.2) implies that the Euclidean fields commute, this means that they have
the same behaviour like the classical fields. Hence, we start this section con-
sidering the Euclidean fields not as operators but as random variables, whose
expectation is given by

〈F [φ]〉 =

∫

dµF [φ]. (47)

We note that the Schwinger functions can fix the measure dµ uniquely, up to
an overall normalization, and then they are called moments of the measure
dµ.

The Euclidean functional integral23 is given by the measure

dµ =
1

Z
e−S[φ]

∏

x

dφ (x), (48)

where Z =
∫

Πxdφ(x)e−S[φ], and S[φ] is the Euclidean action. We notice
that combining these two equations we get

〈F [φ]〉 =
1

Z

∫

∏

x

dφ (x)F [φ] e−S[φ], (49)

and this is the analogous formula of the equation (33) in the Euclidean path
integral formalism. In this way it is not necessary to use the operators in
the Hilbert space, also for an interacting field. We see that in analogy with
statistical mechanics the term e−S[φ] can be interpreted as the Boltzmann
factor.

4.1 Bosonic field theory

In this section we try to find the expression (47) for the Euclidean correlation
functions 〈φ (x1) · · ·φ (xn)〉 for a real scalar field, which is an example of
a bosonic field. We start from the Gaussian integral formalism, using a
discretization of the field operator to finite-dimensional vectors and matrices.

23This means the Euclidean path integral formalism in quantum field theory.
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Using the results shown in Appendix (A.4), we can define the moments of
the Gaussian weight function24 exp

(

−1
2
(φ,Aφ)

)

as

〈φi1 · · ·φin〉 ≡
1

Z0

∫

dkφ φi1 · · ·φin exp

(

−
1

2
(φ,Aφ)

)

. (50)

Hence, with the properties of the Gaussian integrals, we can find these mo-
ments by differentiating Z0 (J),

〈φi1 · · ·φin〉 =
∂

∂Ji1

· · ·
∂

∂Jin

Z0 (J)

∣

∣

∣

∣

J=0

=

=
∂

∂Ji1

· · ·
∂

∂Jin

exp

(

1

2

(

J,A−1J
)

)∣

∣

∣

∣

J=0

, (51)

where25

Z0 =

∫

dkφ exp

(

−
1

2
(φ,Aφ)

)

(52)

and

Z0(J) =

∫

dkφ exp

(

−
1

2
(φ,Aφ) + (J, φ)

)

. (53)

In general we find 0 for the odd moments and for the even moments

〈φi1 · · ·φi2n
〉 =

∑

pairings

A−1
j1k1

A−1
j2k2

· · ·A−1
jnkn

. (54)

Now, before extending this analysis to infinite dimension, we shortly dis-
cuss the Euclidean free field. The Euclidean action is given by26

S0 [φ] =

∫

d4x

(

1

2
(∂µφ)2 +

m2

2
φ2

)

=

∫

d4x
1

2
φ (x)

(

� +m2
)

φ (x), (55)

24Notice that this function can be interpreted as the exponential of an action with only
the quadratic term.

25See the appendix (A.4).
26If we move from quantum mechanics to quantum field theory we have to use a rel-

ativistic approach. This means that we have the following relation between energy and
momentum,

E2 = p2 + m2.

Using this relation we will not find the Schrödinger equation, but the Klein-Gordon equa-
tion

(

� + m2
)

φ = 0.

We remember that this equation can be found with the principle of least action and hence
from the Lagrangian density

L =
1

2
φ (x)

(

� − m2
)

φ (x) ,
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where we define � = −∂µ∂
µ. The propagator

G (x, y) = 〈φ (x)φ (y)〉 (56)

satisfies27

(

� +m2
)

G (x, y) = δ (x− y) , (57)

then we find

G (x, y) =

∫

d4p

(2π)4 e
ip(x−y) 1

p2 +m2
. (58)

From Wick’s Theorem28 we have

G (x1, . . . , x2n) ≡ 〈φ (x1) · · ·φ (x2n)〉 =
∑

pairings

G (xj1 , xk1
) · · ·G (xjn

, xkn
).(59)

Now let J (x) be a classical source, then we have

(J, φ) =

∫

d4xJ (x)φ (x), (60)

and we can define the generating functional of Green’s functions as

Z [J ] ≡
〈

e(J,φ)
〉

=
∞
∑

n=0

1

n!

∫

d4x1 . . . d
4xnJ (x1) · · · J (xn)G (x1, . . . , xn),

(61)
that is normalized to Z [0] = 1. Then it follows29

G (x1, . . . , xn) =
δnZ [J ]

δJ (x1) · · · δJ (xn)

∣

∣

∣

∣

J=0

. (62)

and the action

S =

∫

Ldt =

∫
(
∫

Ld3x

)

dt,

we find, through δL = 0, the Klein-Gordon equation.
Then, in the Euclidean space-time, we have the action

SE =

∫

d4x
1

2
φ (x)

(

� + m2
)

φ (x).

27We see that, if the mass term m vanishes, we have a propagation like a wave. This is
the case of the electromagnetic field.

28See the Appendix (A.3).
29We have to introduce the functional derivative δ

δJ(y)F [J ] through

lim
ǫ→∞

1

ǫ
(F [J + ǫh] − F [J ]) =

∫

d4x h (x)
δ

δJ (x)
F [x].
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We note that for free field we have

Z [J ] ≡ Z0 [J ] = exp

(

1

2

∫

d4xd4yJ (x)G (x, y) J (y)

)

=

= exp

(

1

2
(J,G0J)

)

. (63)

At this point we can return to Euclidean formalism. If we compare the
generating functional Z0 [J ] between the Gaussian integrals and the Green
functions we see that we go from a discrete to a continuous representation,
this means

φi → φ (x) , (64)

∂

∂Ji

→
δ

δJ (x)
. (65)

Then if we rewrite the equation (63) as Z0 [J ] = exp
(

1
2
(J,GJ)

)

, and compare
with the Gaussian integral formalism30, we find

A−1 → G, (66)

and conversely
A→ G−1. (67)

From equation (57) we find G−1 = � +m2, and then it follows

1

2
(φ,Aφ) →

1

2

(

φ,G−1φ
)

=
1

2

(

φ,
(

� +m2
)

φ
)

=

=
1

2

∫

d4xφ (x)
(

� +m2
)

φ (x) = S0 [φ] . (68)

Now, using the results shown in the Appendix (A.4) and the last equation,
we find

Z0 [J ] =
1

Z0

∫

∏

x

dφ (x) exp

(

−
1

2

(

φ,
(

� +m2
)

φ
)

+ (J, φ)

)

=

=
1

Z0

∫

∏

x

dφ (x) exp (−S0 + (J, φ)), (69)

where

Z0 =

∫

∏

x

dφ (x) exp

(

−
1

2

(

φ,
(

� +m2
)

φ
)

)

. (70)

30See the Appendix (A.4).
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The difference between this infinite-dimensional integral and the Gaussian
integral is that the first is not well-defined, but we can solve this problem
defining the measure

dµ0 (φ) =
1

Z0

D [φ] e−S0(φ), (71)

where
D [φ] ≡

∏

x

dφ (x). (72)

We notice that we have found exactly the equation (48), this means the
measure for the Euclidean path integral formalism.

We remember that the generating functional Z0 [J ] is connected to the
Green functions, so we can conclude that for a free field we have

〈φ (x1) · · ·φ (xn)〉 =

∫

dµ0 (φ)φ (x1) · · ·φ (xn) =

=
1

Z0

∫

∏

x

dφ (x) e−S0[φ]φ (x1) · · ·φ (xn). (73)

4.2 Interacting field

Before showing the connection with the perturbation theory, it is interest-
ing to see the behaviour of the functional integrals for an interacting field.
In our approach we neglect the problems associated with divergences and
renormalization. We use the following Euclidean action

S [φ] = S0 [φ] + SI [φ] , (74)

where SI describes the interaction part. Rewriting Dyson’s Formula31 in
terms of the generating functionals we find

Z [J ] =
〈0| exp (−SI [φin] + (J, φin)) |0〉

〈0| exp (−SI [φin]) |0〉
, (75)

where φin is the free field, this means without interaction. Comparing to the
Gauss functional integral we find

Z [J ] =
1

Z

∫

∏

x

dφin (x) e−S[φ]+(J,φ) (76)

31Dyson’s formula for the correlation functions in Euclidean space is given by

〈φ (x1) · · ·φ (xn)〉 =
〈0|φin (x1) · · ·φin (xn) exp (−SI [φin]) |0〉

〈0| exp (−SI [φin]) |0〉
.
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where

Z =

∫

∏

x

dφin (x) e−S[φ], (77)

and the correlation functions are given by

〈φ (x1) · · ·φ (xn)〉 =
1

Z

∫

∏

x

dφin (x) e−S[φ]φin (x1) · · ·φin (xn). (78)

5 Connection with perturbative expansion

In this last chapter we will see that the rules of perturbation theory, this
means the Feynman rules, are deduced from the functional integrals. We
begin by considering a scalar field with a quartic self-interaction given by

SI [φ] =
g

4!

∫

d4xφ (x)4. (79)

Then, from equation (78) and expanding the exponential of the interaction
we find the following n-point function

G (x1, . . . , xn) =
1

Z

∫

∏

x

dφ (x) e−S0[φ]

∞
∑

n=0

1

n!

(

−
g

4!

∫

d4xφ (x)4

)n

φ (x1) · · ·φ (xn).

(80)
Now, using the equation (76), we can write the generating functional as

Z [J ] =
1

Z

∞
∑

n=0

1

n!

∫

∏

x

dφ (x)

(

−
g

4!

∫

d4xφ (x)4

)n

e−S0[φ]+(J,φ) =

=
1

Z

∞
∑

n=0

1

n!

(

−
g

4!

∫

d4x

(

δ

δJ (x)

)4
)n
∫

∏

x

dφ (x) e−S0[φ]+(J,φ) =

=
1

Z
exp

(

−
g

4!

∫

d4x

(

δ

δJ (x)

)4
)

Z0Z0 [J ] =

=
Z0

Z
exp

(

SI

[

δ

δJ (x)

])

exp

(

1

2
(J,G0J)

)

. (81)

In the same way we can find that the Green functions are given by

G (x1, . . . , xn) =
Z0

Z

δ

δJ (x1)
. . .

δ

δJ (xn)
exp

(

SI

[

δ

δJ (x)

])

exp

(

1

2
(J,G0J)

)∣

∣

∣

∣

J=0

.

(82)
We can interpret graphically these Green functions. We begin by expanding

the exponential of SI

[

δ
δJ(x)

]

, then:
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• each derivative δ
δJ(xi)

is indicated by an external point from which a

line emerges (external scalar term)

• each factor −g
∫

d4x
(

δ
δJ(xi)

)4

is indicated by an internal vertex, from

which four lines emerges. (vertex term)

We can also expand exp
(

1
2
(J,G0J)

)

, and this term is indicated by the in-
ternal lines. (propagator term)

Till now we haven’t regarded the term Z0

Z
in the Green functions, but this

allows us to normalize the generating functional to Z (0) = 1, using

Z

Z0

= exp

(

−SI

[

δ

δJ (x)

])

exp

(

1

2
(J,G0J)

)
∣

∣

∣

∣

J=0

. (83)

In a graphical representation of this equation, we haven’t external points and
these graphs are called vacuum graphs. Using this normalization these terms
cancel out in the graphical representation of Green’s functions. Even though
we are using this normalization we can find divergences, that come from the
integrals over internal loops. In fact we cancel out only the vacuum graphs
and not all the internal loops. This means that the Z [J ] functional is not
well-defined. For example, we have some terms proportional to

g

∫

d4p
1

p2 +m2
, (84)

which diverge. We need to find a method to evaluate this integral, separating
the divergent part and in perturbation theory it is possible to find different
regularizations. For example we can use dimensional regularization, where
we evaluate the integral (84) in other dimensions, or a lattice space, which
implies that the momenta are periodic and hence bounded. These regular-
ization methods allow one to identify the divergent contributions in the loop
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integrals; then, such divergences can be formally “reabsorbed” by a redefi-
nition of the parameters of the theory: this is called “renormalization”, and
the “renormalized” values of the parameters are considered as the physical
ones (to be compared with the experiments). The field theories for which, at
every order in perturbation theory, only a finite number of parameters needs
to be renormalized are called “renormalizable theories”.
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A Appendix

A.1 Main ingredients of quantum field theory for a

real scalar field in Minkowski space

• A1: There is a Hilbert space H of physical states, containing a vacuum
state |0〉.

• A2: On H we have aunitary representation U(a,Λ) of the Poincaré
group, where a and Λ denote a spacetime translation and a rota-
tion/boost, respectively. The vacuum is invariant under these trans-
formations.

• A3 (Spectrum condition): The generators P µ of translations,

U(a, 1) = exp (iPµa
µ) ,

have a spectrum, which is contained in the forward light cone

V + =
{

q ∈ R
4 : q0 ≥ 0, qµqµ ≥ 0

}

.

P 0 ≡ H is the Hamiltonian.

• A4: The vacuum is the only vector invariant under U(a,Λ).

• F1: We have a field φ(x) acting as an operator on H.

• F2: The field transforms covariantly:

U(a,Λ)φ(x)U−1(a,Λ) = φ(Λx+ a)

• F3 (locality): The field commutes for space-like separations:

[φ(x), φ(y)] = 0,

for (x− y)2 ≤ 0.

A.2 Properties of the Schwinger functions

• E1 (Euclidean covariance): The Schwinger functions are covariant un-
der Euclidean transformations

S (x1, . . . , xn) = S (Λx1 + a, . . . ,Λxn + a) ,

where Λ ∈ SO(4).
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• E2 (reflection positivity): Let be

θ
(

~x, x4
)

=
(

~x,−x4
)

,

Θφ (x) = φ (θx)

the Euclidean time reflection32, where φ (θx) is the complex conjugation
of φ (θx), and F a function of the fields at positive times, then

〈(ΘF )F 〉 ≥ 0.

• E3 (symmetry): Schwinger functions are symmetric in their arguments.

A.3 Wick’s Theorem

This section has not the purpose to show the Wick’s Theorem, but we
want only to explain how we can find equation (59). We start to evalu-
ate 〈0|Tφ (x1)φ (x2) |0〉 and then we will generalize to more field operators.
The field operator φ (x) can be decompose in two terms in the following way,

φ (x) = φ+ (x) + φ− (x) ,

where
φ+ (x) |0〉 = 0, 〈0|φ− (x) = 0.

If we set x0 > y0, we find

Tφ (x)φ (y) = φ+ (x)φ+ (y) + φ+ (x)φ− (y) + φ− (x)φ+ (y) + φ− (x)φ− (y) =

= φ+ (x)φ+ (y) + φ− (y)φ+ (x) + φ− (x)φ+ (y) + φ− (x)φ− (y) +
[

φ+ (x) , φ− (y)
]

,

where we have rewritten the terms in the normal order, in this way these will
vanish for the vacuum expectation value. Now, if we extend to x0 < y0, we
have to replace the commutator with the following contraction,

̂φ (x)φ (y) ≡

{

[φ+ (x) , φ− (y)] , x0 > y0

[φ+ (y) , φ− (x)] , y0 > x0
.

32Θ is the Euclidean equivalent of Hermitian conjugation in Minkowski space. We need
a time reflection, because we have a change in the sign of t for the Hermitian conjugation
of the time evolution operator exp (−iHt).
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If we use the explicit definitions

φ+ (x) =

∫

d3p

(2π)3

1
√

2Ep

ape
−ip·x,

φ− (x) =

∫

d3p

(2π)3

1
√

2Ep

ap
†e+ip·x,

we can find the following relation between this contraction and the Feynman
propagator

G (x, y) = ̂φ (x)φ (y).

We generalize these relations writing

Tφ (x1) · · ·φ (xn) = N {φ (x1) · · ·φ (xn) + all possible contractions} .

Evaluating this chain of operators in the vacuum we find that the only non
vanishing terms are those with the maximal number of contractions and
knowing the relation between a contraction and the Feynman propagator we
have

G (x1, . . . , x2n) =
∑

pairings

G (xj1 , xk1
) · · ·G (xjn

, xkn
).

A.4 Properties of the Gaussian integrals

•
∫ ∞

−∞

dφ exp

(

−
1

2
Aφ2

)

=

(

2π

A

)
1

2

,

for Re (A) > 0.

•

Z0 ≡

∫

dkφ exp

(

−
1

2
(φ,Aφ)

)

= (2π)
k

2 (detA)−
1

2 ,

whereA = (Aij) is a real, symmetric positive matrix and with (φ,Aφ) =
φiAijφj.

•

Z0 (J) ≡
1

Z0

∫

dkφ exp

(

−
1

2
(φ,Aφ) + (J, φ)

)

= exp

(

1

2

(

J,A−1J
)

)

,

where J is an arbitrary vector. This equation can be obtained by
completing the square in the Gaussian integral, and by a shift in the
integration variables.
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