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1 Introduction

This talk aims at introducing the main concepts that can be derived from sym-
metry properties of a physical theory.
In the first part we reconsider the definition of symmetry. We then derive
Noether’s theorem in a classical theory, which relates symmetries and conserved
quantities, the so called Noether currents and Noether charges. We then trans-
fer our results from classical mechanics to quantum mechanics.
The results are applied to QCD where we discuss chiral symmetry in the mass-
less limit. We introduce vector and axial currents.
The second part of the talk deals with spontaneous symmetry breaking. We
first discuss spontaneous symmetry breaking in the classical theory where it has
a very intuitive meaning as a shift of the origin of the fields to the minimum of
the potential. We already see the emergence of massless particles in the process
- the Goldstone bosons. This will facilitate the transfer to quantum mechanics,
where we will get a new interpretation of spontaneous symmetry breaking: It
occurs when the vacuum is charged. We prove Goldstone’s theorem which pre-
dicts the emergence of a massless scalar boson - a so called Goldstone boson -
for each broken charge.
The results are again applied to QCD. We motivate why we expect the chiral
symmetry to be spontaneously broken and we identify the emerging Goldstone
bosons with the pions.

2 Symmetries and Conservation Laws

2.1 Noether’s theorem in classical field theory

Consider a classical field theory, described by an n-component, real field φ,
which is governed by Lagrangian dynamics, i.e. there is a Lagrange density

L = L(φ, ∂µφ) (1)

from which that the equations of motion can be obtained using the principle
of minimal action. This process eventually yields the Euler-Lagrange equations

∂µ
∂L

∂(∂µφi)
− ∂L
∂φi

= 0 i = 1, · · · , n (2)

For later purpose, we introduce the momentum variables canonically conju-
gate to the field variables

πi(x) =
∂L

∂(∂0φi(x))
. (3)

Now consider transformations of the fields. We will restrict ourselves to
transformations under the fundamental representation of a matrix Lie group,
i.e. which are (1) linear in the fields and (2) smoothly parametrised by k inde-
pendent, real parameters θ1, · · · , θk satisfying R(θ = 0) = id:

φ(x)→ φ̃(x) = (R(θ1, · · · , θk))φ(x) (4)

We can express the elements of the transformation group in terms of basis
vectors {λa a = 1, · · · , k} of the Lie algebra using the exponential map:
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R(θ1, · · · , θk) = e−iθaλa = 1− iθaλa + 0(θ2). (5)

The basis vectors λa of the Lie algebra satisfy the commutation relations

[λa, λb] = ifabcλc. (6)

where the complex numbers fabc are called the structure constants.
If we are only interested in the behaviour under transformations close to the
identity transformation, we can do a Taylor expansion to linear order:

φ(x)→ φ̃(x) = φ(x)− iθaλaφ(x). (7)

Having completed these elementary remarks, we can now go on to discuss
the variation of the Lagrange density under a transformation of the fields. We
find:

δL(φ(x), ∂µφ(x)) = L(φ̃(x), ∂µφ̃(x))−L(φ(x), ∂µφ(x)) = θa∂µ

(
−i ∂L
∂(∂µφ)

λaφ

)
(8)

Having come so far, we easily arrive at Noether’s theorem. Assume, that
there is a group of global transformations (i.e. transformations that are space-
time independent, θa 6= θa(x)) which do not change the Lagrange density (i.e.
δL = 0). We then find:

0 = δL = θa∂µ

(
−i ∂L
∂(∂µφ)

λaφ

)
(9)

Since the θ-parameters are all independent, we find k Noether-currents

Jµa (x) = −i ∂L
∂(∂µφ(x))

λaφ(x) (10)

that satisfy the continuity equation

∂µJ
µ
a = 0. (11)

To each Noether current we have an associated charge

Qa(t) =
∫
J0
a(x)d3x = −i

∫
π(x)λaφ(x)d3x (12)

Using the continuity equation and Gauss’ law, we can easily convince our-
selves that

d
dt
Qa(t) =

∫
∂J0

a(x)
∂t

d3x = −
∫
div ~Ja(x)d3x = 0. (13)

The charges Qa are therefore called conserved Noether charges.
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2.2 Symmetries in a quantized theory

In the process of canonical quantization, the fields φi(x) and the momenta πi(x)
are promoted to linear operators φ̂i(x) and π̂i(x) acting on a Hilbert space H
and satisfying canonical equal-time commutation relations.

[φ̂i(t, ~x), φ̂j(t, ~y)] = [π̂i(t, ~x), π̂j(t, ~y)] = 0

[φ̂i(t, ~x), φ̂j(t, ~y)] = iδijδ
(3)(~x− ~y)

(14)

By analogy to the classical case, we can define charge and current operators
acting on the underlying Hilbert space by replacing the field and momentum
variables in equations 10 and 12 by the corresponding field variables, i.e.

Jµa (x) = −i ∂L
∂(∂µφ(x)) (φ̂(x), π̂(x))λaφ̂(x)

Q̂a(t) = −i
∫
π̂(t, ~x)λaφ̂(t, ~x)d3x

(15)

where the λa span the Lie algebra of some group describing field transfor-
mations.
Computing the commutators between charge operators, we find an interesting
new feature of quantum theory:

[Q̂a(t), Q̂b(t)] = i

∫
π̂(t, ~x)[λa, λb]φ̂(t, ~x)d3x = ifabcQ̂c(t) (16)

i.e. the charges form a Lie algebra with the same structure constants as the
Lie algebra of the underlying transformation group. This implies in particular
that the charges can take quantized values only.
Next, let us compute the commutators between the charge operators and the
field operator. We easily find:

[Qa(t), φi(t, ~x)] =
∫

[π̂(t, ~y)λaφ̂(t, ~y), φi(t, ~x)]d3y = −λaφ(x) (17)

This relation is helpful to consider the action of a field transformation on
the underlying Hilbert space. Let |α〉 be an element of this Hilbert space. Each
transformation

φ→ φ̃ = R(θ)φ (18)

of the field operators will of course also affect the states, mapping

|α〉 → |α̃〉 = U(θ) |α〉 . (19)

Requiring that

φ̃ |α̃〉 = R(θ)φU(θ) |α〉 = U(θ)(φ |α〉) = ˜(φ |α〉) (20)

we find the remarkable result

U(θ) = eiθ
aQa . (21)

We have thus found an interpretation of the charge operators as being the
infinitesimal generators of the representation of the transformation Lie group
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on the underlying Hilbert space.
Note that the previous definitions and relations hold for completely arbitrary
transformation groups. There is of course a subgroup of particular importance,
namely those transformations which are symmetries of the Lagrangian in the
sense discussed in the previous section.In this case, the current operators satisfy
the continuity equation

∂µĵ
µ
a (x) = 0 (22)

and the corresponding charge operators are time independent:

d
dt
Q̂a(t) = 0 ⇒ [Q̂a, Ĥ] = 0 (23)

where Ĥ is the Hamilton operator of the quantum field theory.
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3 Chiral Symmetry of QCD

3.1 The QCD Lagrangian

In Quantum Chromodynamics (QCD) we have six different quarks: up, down,
strange, charm, top and bottom. They are commonly called quark flavours.
The masses of the six quarks are strikingly different, thus it often makes sense
to divide them into the light quark sector and the heavy quark sector

 mu = 0.005 GeV
md = 0.009 GeV
ms = 0.175 GeV

 � 1 GeV <

 mc ≈ 1.2 GeV
mb ≈ 4.2 GeV
mt ≈ 174 GeV

 (24)

Additionally, each quark flavour appears in three different colours (red,
green, blue) such that the full quark wavefunctions read

qf =

 qf,r
qf,g
qf,b

 . (25)

Note that qf,c are Dirac 4-spinor valued fields on Minkowski space.
The Lagrange function of QCD is given by

LQCD =
∑
f

qf (iγµDµ −mf )qf −
1
4
Ga,µνGµνa . (26)

where

Dµ = ∂µ − igAµ Aµ = Aa,µ
λCa
2

(27)

is the covariant derivative. The matrices λCa , a=1,...,8 are the Gell-Mann
matrices - i.e. twice the generators of SU(3), the Lie group of the underlying
colour gauge symmetry.
The dynamics of the gauge fields is governed by the field strength tensor

Gµν = Ga,µν
λCa
2

=
1
ig

[Dµ, Dν ] Ga,µν = ∂µAa,ν − ∂νAa,µ + gfabcAb,µAc,ν

(28)
For many applications in low energy QCD, we can ignore the quantum cor-

rections that come from virtual quark-antiquark pairs hh of the heavy quarks.
We may thus restrict ourselves to a reduced Lagrange function that contains
only the light up, down and strange quarks:

L =
∑

f=u,d,s

qf (iγµDµ −mf )qf −
1
4
Ga,µνGµνa . (29)
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3.2 Colour Symmetry

QCD has been constructed as a gauge field theory with an underlying exact
SU(3)colour gauge symmetry, meaning that the Lagrangian is invariant under
local gauge transformations

qf (x)→ G(x)qf (x) Aµ(x)→ G(x)Aµ(x)G†(x) +
i

g
(∂µG(x))G†(x) (30)

where G(x) ∈ SU(3). We are however not going to discuss this symmetry.

3.3 Chiral Symmetry

Before we can continue with discussing chiral symmetry, we first have to clarify,
what chirality is. To that end, introduce the chirality matrix

γ5 = iγ0γ1γ2γ3 (31)

satisfying the following very important properties

γ5 = γ5 = γ†5 (γ5)2 = 1 {γ5, γµ} = 0 (32)

Using the chirality matrix, we can next define the projection operators to
the left- and right-handed components of a Dirac-field

PL =
1
2

(1− γ5) PR =
1
2

(1 + γ5) (33)

These operators indeed have the idempotence property

P 2
L = PL P 2

R = PR (34)

and further satisfy completeness and orthogonality relations

PL + PR = 1 PLPR = PRPL = 0. (35)

From the first equation in 35 we see that every Dirac field can be expanded
in terms of its left- and right-handed components. We can therefore rewrite the
Lagrange density of the light-quark sector as

L =
∑
f=u,d,s qf (iγµDµ−mf )qf − 1

4Ga,µνG
µν
a

=
∑
f=u,d,s{qf,L(iγµDµ)qf,L + qf,R(iγµDµ)qf,R

−mfqf,Lqf,R −mfqf,Rqf,L} − 1
4Ga,µνG

µν
a

(36)

where the left- and right-handed components are shown explicitly. In the
course of the calculation, we have made use of

qf,Lγ
0(iγµDµ)qf,R = q†fP

†
Lγ

0(iγµDµ)PRqf = qf (iγµDµ)PLPRqf = 0

qf,Lγ
0(iγµDµ)qf,R = · · · = 0.

(37)
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3.3.1 Phase Invariance of QCD with Massless Quarks

Let us in a first step review the Lagrangian of QCD in the light quark sector
and set all masses to zero. The Lagrange density in this limit reads

L0 =
∑

f=u,d,s

{qf,L(iγµDµ)qf,L + qf,R(iγµDµ)qf,R} −
1
4
Ga,µνGµνa . (38)

This Lagrangian describes fields with independent left- and right-handed
components.
We easily verify, that it is invariant under global phase shifts

qf,L → e−iθLqf,L qf,R → e−iθRqf,R (39)

forming the symmetry group U(1)L × U(1)R. For future convenience, we
write these transformations in a different form. Let us define vector and axial
transformations by

Vec :
(
qf,L
qf,R

)
→ e−iθV

(
qf,L
qf,R

)
Ax :

(
qf,L
qf,R

)
→
(

eiθAqf,L
e−iθAqf,R

)
(40)

Obviously equations (39) and (40) are equivalent in the sense that they
describe the same group of transformations

U(1)L × U(1)R = U(1)V × U(1)A. (41)

Further noting that

eiθAPL + e−iθAPR =
∞∑
k=0

(iθA)k

k!
{PL + (−1)kPR}︸ ︷︷ ︸

=(−γ5)k

= e−iθAγ
5

(42)

We can rewrite the symmetry transformations in equation (40) in a very
elegant way:

Vec :qf → e−iθV qf Ax :qf → e−iθAγ
5
qf (43)

The generators of the Lie-groups U(1)V and U(1)A are given by

λV = 1 λA = γ5. (44)

We are now really in a position to apply Noether’s theorem to obtain the
following conserved Noether currents V and A associated to the vector and axial
symmetry transformations.

V µ(x) = −i ∂L
∂(∂µqf (x))

λV qf (x) = qf (x)γµqf (x) (45)

Aµ(x) = −i ∂L
∂(∂µqf (x))

λAqf (x) = qf (x)γµγ5qf (x) (46)
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3.3.2 Chiral Symmetry of QCD with massless quarks

The symmetry with respect to phase shifts is not everything we have. In fact -
noting that the covariant derivative is independent of flavour - we immediately
see that rotating the left- and right-handed components independently in flavour
space  uL,R

dL,R
sL,R

→ FL,R

 uL,R
dL,R
sL,R

 = e−iθ
b
L,R

λF
b
2

 uL,R
dL,R
sL,R

 (47)

with FL,R ∈ SU(3) also leaves the Lagrangian invariant (the superscript F
indicates, that the Gell-Mann λ-matrices act in flavour space). These symme-
tries form the chiral symmetry group SU(3)L × SU(3)R. Performing the same
steps as in the previous section, we can replace

SU(3)L × SU(3)R → SU(3)V × SU(3)A (48)

and the vector and axial transformations are defined as

Vec :

 u
d
s

→ e−iθ
b
V
λFb
2

 u
d
s

 Ax :

 u
d
s

→ e−iθ
b
A

λF
b
2 γ5

 u
d
s

 .

(49)
The generators of these symmetry transformations given by

λV,b =
λFb
2

λA,b =
λFb
2
γ5 (50)

we can directly write down the corresponding conserved Noether currents Vb
and Ab

V µb (x) = q(x)γµ
λFb
2
q(x) (51)

Aµb (x) = q(x)γµγ5λ
F
b

2
q(x) (52)

The total symmetry group in the massless limit is SU(3)V × SU(3)A ×
U(1)V × U(1)A.

3.4 Chiral Symmetry Breaking by Quark Masses

Recall that we have only considered the extremely simplified Lagrangian L0 in
(38) where we have ignored the heavy quarks and set the remaining masses to
zero. What happens, if we now put the mass terms

LM = (qL + qR)M(qf + qR)

=
(
uL + uR dL + dR sL + sR

) mu 0 0
0 md 0
0 0 ms

 uL + uR
dL + dR
sL + sR


(53)
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back in such that L = L0 − LM?
This mass term will not in general be invariant under the transformations de-
fined in (40) and (49) and neither will the Lagrangian L be. The divergences
of the Noether currents that are associated with the symmetries of L0 will then
obtain a non-vanishing contribution from the mass terms.
We will carry out the computation in full detail for the Noether current Aµb .
The computations for the other currents are completely analogous.

The Noether current

Aµb (x) = q(x)γµγ5λb
2
q(x) (54)

has been derived from the transformation u
d
s

→ e−iθλ
F
b γ

5

 u
d
s

 (55)

with infinitesimal generator

λA,b =
λFb
2
γ5 (56)

From (8), we see that the divergences of the currents defined in (10) are
exactly the first order variations of the Lagrangian, i.e.

∂µV
µ
b = ∂(δL)

∂θ |θ=0= ∂
∂θ δL

0︸︷︷︸
=0

|θ=0 − ∂
∂θ δL

M |θ=0

= − ∂
∂θ{qγ

0 (1 + iθλV,b) γ0M (1− iθλV,b)− qMq} |θ=0

= −iqγ0[λV,b, γ0M ]q = iqγ0[Mγ0,
λFb
2 γ

5]

= iq{M,
λFb
2 }γ

5q

. (57)

We obtain the following divergences for the vector and axial currents:

∂µV
µ = 0 (58)

∂µA
µ = 2iqMγ5q (59)

∂µV
µ
b = iq[M,

λFb
2

]q (60)

∂µA
µ
b = iq{M,

λFb
2
}γ5q (61)

Note that λ3 and λ8 commute with diagonal matrices. Thus there are three
conserved currents that survive

V µ = qγµq = uγµu+ dγµd+ sγµs

V µ3 = qγµ
λF3
2 q = 1

2{uγ
µu− dγµd}

V µ8 = qγµ
λF8
2 q = 1

2
√

3
{uγµu+ dγµd − 2sγµs}

(62)
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The sum of conserved currents being a conserved current itself, we use linear
combinations of (62) to rewrite the conserved currents in a very intuitive way:

V µu = uγµu

V µd = dγµd
V µs = sγµs

(63)

Note that if all quark masses were equal, i.e. if the mass matrix was pro-
portional to the identity matrix, all the vector currents V µb would remain to be
conserved. This is the origin of the SU(3)flavour symmetry of strong interac-
tions proposed by Gell-Mann and Ne’eman.
We have seen that the mass term does not have the full chiral symmetry of the
kinetic term. The chiral symmetry is therefore called an approximate symmetry.
It becomes exact in the massless limit (or in the limit of high energies accord-
ingly). As the symmetry is broken by terms which are part of the Lagrangian,
it is called explicitly broken.

3.5 Summary

Let us summarize what we have learned about chiral symmetry:

1. Ignoring the quark masses, the Lagrangian has a SU(3)V × SU(3)A ×
U(1)V × U(1)A symmetry in the fields. This is the joint symmetry group
of chiral symmetry and phase invariance. Using Noether’s Theorem we
can construct 8+8+1+1=18 currents V µb , A

µ
b , V

µ, Aµ which are conserved
in the massless limit.

2. The chiral symmetry group SU(3)V×SU(3)A is explicitly broken to U(1)u×
U(1)d × U(1)s by the mass terms in the Lagrangian. Only the individ-
ual flavour currents uγµu, dγµd, sγµs remain to be conserved. This is a
consequence of the flavour independence of the covariant derivative and
the diagonality of the mass matrix, i.e. the Lagrangian is a sum of the
contributions from different flavours with no terms that contain quarks
with different flavours.

3. The currents associated to explicitly broken symmetries obtain a non-
vanishing divergence. This divergence essentially is the variation of the
Lagrange function under the transformation in question.
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4 Spontaneous Symmetry Breaking and Gold-
stone’s Theorem

4.1 Classical Version of Goldstone’s Theorem

4.1.1 An Instructive Example

As a warm-up, let us consider a field theory with a two-component real field
φ̃ = (φ̃1, φ̃2) which is described by a Lagrange density

L(∂µφ̃, φ̃) =
1
2
∂ν φ̃1∂

ν φ̃1 +
1
2
∂ν φ̃2∂

ν φ̃2 −
µ2

2
(φ̃2

1 + φ̃2
2)− λ

4!
(φ̃2

1 + φ̃2
2)2 (64)

Apparently, this Lagrangian has a SO(2) symmetry of the fields

φ̃(x)→ R(θ)φ̃(x) R(θ) ∈ SO(2). (65)

For µ2 > 0 this Lagrangian has a simple interpretation as describing two
fields with mass µ each and interactions described by a coupling constant λ.
This interpretation obviously fails for µ2 < 0 in which case we would have to
deal with a negative mass. Looking at the full potential term

V (φ) =
µ2

2
φ̃1(x)2 +

µ2

2
φ̃2(x)2 +

λ

4!
(φ̃1(x)2 + φ̃2(x)2)2 (66)

we further note that the minimum of the potential energy has been shifted

from φ̃(x) = 0 to a ring of minima at |φ̃(x)| = v =
√
− 6µ2

λ . It is much
more natural to think of the fields as perturbations around the minimum of the
potential energy term. Writing

φ̃(x) =
(
v + φ1(x)
φ2(x)

)
(67)

we find the Lagrangian expressed in terms of the physical fields φ1 and φ2:

L(∂νφ1(x), ∂νφ2(x), φ1(x), φ2(x)) =
(
∂νφ1(x)∂νφ1(x) + 3µ2

2 φ1(x)2
)

+ (∂νφ2(x)∂νφ2(x))
+ (cubic + quartic)

(68)
The interpretation is straightforward: The variable φ1 describes a field with

mass
√
−3µ2

2 > 0, the variable φ2 describes a massless field - a so called Gold-
stone boson. The terms in the fourth line which have not been written explicitly,
are cubic and quartic in the fields. They describe self-interactions and interac-
tions between the φ1 and the φ2 field.

4.1.2 The General Case

Let us generalize the considerations from the above subsection to a classical
field theory with an n-component real field φ̃(x) = (φ̃1, · · · , φ̃n) described by a
Lagrangian of the usual form
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L̃(∂µφ̃, φ̃) =
n∑
i=1

∂µφ̃i(x)∂µφ̃i(x)− Ṽ (φ̃(x)). (69)

We further assume this Lagrangian to be invariant under the representation
of a symmetry group G. In the spirit of the above discussion, we require that
the potential be minimized not at φ̃(x) = 0, but that there be a manifold of
minima

M = {~v : V (φ̃(x) = ~v) = min.}. (70)

Analogously to the discussion above we then choose one particular ~v0 ∈ M
to be the ground state and assume the physical fields to be perturbations around
~v0 instead of around zero.
It is important to note that the manifold M is invariant under the full group G,
i.e. if ~v minimizes the potential, then g~v with g ∈ G also does. The breaking
of the symmetry occurs when we choose one particular vector ~v0 to be the
groundstate. This vector ~vo is usually not invariant under the full group G
anymore (hence the notion symmetry breaking) but only under a subgroup
H ⊂ G.
This symmetry property can be expressed in terms of the generators of G and H.
Let {λ1, · · · , λk} be the generators of G arranged in such a way that {λ1, · · · , λl}
are the generators of H and {λl+1, · · · , λk} is the completion to a full basis of
Lie(G). We then have

λa ~v0 = 0 a = 1, · · · , l
λa ~v0 6= 0 a = l + 1, · · · , k (71)

Let us now return to the Lagrangian of the theory. Introducing the physical
fields φ by

φ̃(x) = ~v0 + φ(x) (72)

we may rewrite the Lagrangian

L(∂µφ, φ) = L̃(∂µφ, φ+ ~v0)

= 1
2

∑n
i=1 ∂µφi(x)∂µφi(x)− ∂Ṽ

∂φ̃i
|(φ̃= ~vo)︸ ︷︷ ︸
=0

φi − 1
2

∂2Ṽ
∂φ̃i∂φ̃j

|(φ̃= ~vo)
φiφj +O(φ3)

→ 1
2

∑n
i=1 ∂µφi(x)∂µφi(x)− 1

2Mijφi(x)φj(x) +O(φ3)
(73)

As Mij =
(

∂2V
∂φ̃i∂φ̃j

)
is symmetric we may assume without loss of generality

that it is already diagonal. Furthermore it must be positive semidefinite since we
have expanded the potential term around its minimum. Putting things together
we find

L(∂µφ, φ) =
n∑
i=1

(
1
2
∂µφi(x)∂µφi(x)− 1

2
m2
iφi(x)2

)
+O(φ3) (74)
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from which it is apparent that the diagonal elements are in fact the masses
squared of the physical φ- fields.
We can now use the symmetries of the original Lagrangian and of the physical
groundstate ~v0 to gain further information about the masses. Recall from above
the definition

H = {h ∈ G : h~v0 = ~v0}. (75)

We thus get

L(∂µhφ, hφ) = L̃(∂µhφ, hφ+ ~v0) = L̃(∂µhφ, h(φ+ ~v0)) = L(∂µφ, φ) (76)

i.e. the Lagrangian describing the physical fields - and in particular its
potential term V (φ = Ṽ (φ + ~v0)) - is invariant under the action of the group
H. Recalling the generators {λa a = 1, · · · , l} of the broken symmetry group
H we have

0 = V ((1− iθλa)φ)− V (φ) = −iθ
(
∂V

∂φ

)
λaφ−

θ2

2
φTλTa

(
∂2V

∂φ2

)
λaφ+O(θ3).

(77)
In particular the underlined expression has to vanish for all possible field

configurations what can be equivalently stated as

λTa

(
∂2V

∂φ2

)
λa = λTaMλa = 0 a = 1, · · · , l. (78)

From this we can conclude that

dim ker(M) = n− dim(ker(λ1) ∩ · · · ∩ ker(λl)) = dim(G)− dim(H). (79)

But dim ker(M) is obviously the number of particles with zero mass in the
theory.
We summarize the results we have obtained in a theorem that was originally
stated by Goldstone: In a theory that is spontaneously broken, we have as many
massless particles in the spectrum as there are broken generators.

4.2 The Quantum Mechanical Version of Goldstone’s The-
orem

In the above section, we tried to understand the ideas behind Goldstone’s the-
orem. However our approach to the problem was purely classical. We will
therefore have to reformulate the ideas of the above section in quantum me-
chanical language.
In analogy to the classical case, for spontaneous symmetry breaking to occur
we require

〈0|φ(x) |0〉 6= 0. (80)

Let λa be a generator of the symmetry group G of the Lagrangian such that
〈0|λaφ |0〉 6= 0. From (19) and (21) we have with |α〉 = |0〉:
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〈0|φ |0〉 = 〈0| eiθQa(e−iθλaφ)e−iθQa |0〉

= 〈0|φ |0〉+ iθ(〈0|Qaφ− φQa |0〉 − λa 〈0|φ |0〉)︸ ︷︷ ︸
6=0

(81)

We therefore must necessarily have

Q̂a(t) |0〉 6= 0. (82)

It is worth stopping at this point for a second and carefully recalling what
the vacuum of a quantum field theory is: It is a vector in the spectrum of the
Hamilton operator that is Lorentz invariant. However |0〉 need not necessarily
be invariant under a symmetry group G of the fields, and a theory is called
spontaneously broken if this is indeed the case.
(82) is a remarkable result that gives rise to a new interpretation of spontaneous
symmetry breaking: A theory is spontaneously broken if the vacuum is charged.
The generators λa that do not leave 〈0|φ(x) |0〉 invariant are called sponta-
neously broken. Using (81) this can be reformulated: A generator is called
spontaneously broken if it is associated to a charge that does not annihilate the
vacuum.
Of course there might still be charges that annihilate the vacuum of the spon-
taneously broken theory. The generators associated to these charges are called
unbroken. They generate the symmetry group H as defined in the previous sec-
tion.
Having defined what the spontaneous symmetry breaking of a quantum field
theory means, we can reformulate Goldstone’s theorem: In a quantum field the-
ory that is explicitly broken, each broken generator generates a massless particle
in the spectrum.
The proof of Goldstone’s theorem will consist of two parts:

1. We show that there exist certain Green’s functions which have a pole at
zero momentum.

2. We show that the existence of these poles implies the existence of massless
particles.

In order to address the first point, let us consider the Green function

Gµa,i(x− y) = 〈0|T [Jµa (x)φi(y)] |0〉 . (83)

The divergence of this Green function is
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∂
∂xµG

µ
a,i(x− y)

= 〈0| ∂
∂xµ [θ(x0 − y0)Jµa (x)φi(y)− θ(y0 − x0)φi(y)Jµa (x)] |0〉

= 〈0| θ(x0 − y0)[
∂

∂xµ
Jµa (x)︸ ︷︷ ︸
=0

]φi(y)− θ(y0 − x0)φi(y)[
∂

∂xµ
Jµa (x)︸ ︷︷ ︸
=0

] |0〉

+∂θ(x0−y0)
∂x0 〈0| J0

a(x)φi(y) |0〉+ ∂θ(y0−x0)
∂x0 〈0|φi(y)J0

a(x) |0〉

= δ(x0 − y0) 〈0| [J0
a(x), φi(y)]︸ ︷︷ ︸

−δ(3)(~x−~y)(λa)ijφj(x)

|0〉

= −δ(4)(x− y)(λa)ij 〈0|φj(x) |0〉 = −δ(4)(x− y)(λa)ij 〈0|φj(0) |0〉

(84)

where we used 〈0|φ(x) |0〉 = 〈0|φ(0) |0〉) (from translational invariance of
the vacuum) in the last step.
Expressing this relation in Fourier space where

Gµa,i(p) =
∫

d4xGµa,i(x)eipx (85)

we find

ipµG
µ
a,i(p) = (λa)ij 〈0|φj(0) |0〉 (86)

what can be easily solved to give

Gµa,i(p) = −ip
µ

p2
(λa)ij 〈0|φj(0) |0〉 (87)

Thus we have shown that indeed there exist l (= number of broken genera-
tors) Green functions that have simple poles at p2 = 0 and Part 1 is proven.

Let us proceed to Part 2 of the proof. Recall that a free scalar field can al-
ways be written in terms of creation and annihilation operators

φi(x) =
1

(2π)
3
2

∫
d3p

2ωi(~p)
{a∗i (~p)ei(ωi(~p)t−~p~x) + ai(~p)e−i(ωi(~p)t−~p~x)} (88)

where ωi(~p) =
√
~p2 +m2

i depends on the mass of the field φi. From this
formula we get

a∗i (~p) = − i

(2π)
3
2

∫
e−i(ωi(~p)t−~p~x)(iωi(~p) +

∂

∂t
)φi(t, ~x)d3x (89)

We can then compute the matrix element

17



〈0| Jµa (y)a∗i (~p) |0〉

= − i

(2π)
3
2

∫
t=−∞ e−i(ωi(~p)t−~p~x)(iωi(~p) + ∂

∂t ) 〈0| J
0
a(y)φi(t, ~x) |0〉d3x

= 〈0| a∗i (~p)Jµa (y) |0〉︸ ︷︷ ︸
=0

+ i

(2π)
3
2

∫
∂
∂t{e

−i(ωi(~p)t−~p~x)(iωi(~p) + ∂
∂t ) 〈0|T [J0

a(y)φi(t, ~x)] |0〉}d3xdt

= i

(2π)
3
2

∫
e−i(ωi(~p)t−~p~x)(−4−m2

i ) 〈0|T [Jµa (y)φi(t, ~x)] |0〉d3xdt

= i

(2π)
3
2

∫
e−i(ωi(~p)t−~p~x)(~p2 −m2

i ) 〈0|T [Jµa (y)φi(t, ~x)] |0〉d3xdt

= i

(2π)
3
2

(p2 −m2
i )G

µ
a,i(p)e

−ipy

(90)
where we used the fundamental theorem of calculus in the second equality

and the fact that φi(x) satisfies the Klein-Gordon equation

(∂µ∂µ −m2
i )φi(x) = (

∂2

∂t2
−4−m2

i )φi(x) = 0 (91)

in the third equality. The last equality follows from comparison with (83).
We then have obtained two different equations for the Green function

Gµa,i = −ip
µ

p2
(λa)ij 〈0|φj(0) |0〉 = −i(2π)

3
2

eipy

p2 −m2
i

〈0| Jµa (y)a∗i (~p) |0〉 (92)

from which directly follows, that the mass of the φi field must vanish, mi = 0.
This completes the proof of Goldstone’s theorem.

5 Spontaneous Breaking of Chiral Symmetry

5.1 Spontaneous Symmetry Breaking in QCD

Before we can start to consider the consequences of chiral symmetry breaking,
let us shortly review why we expect spontaneous symmetry breaking to occur
in QCD at all.
In superconductivity, a small attractive interaction between electrons leads to
a condensate of Cooper pairs in the ground state. In QCD, we have strong
attractive interactions between quarks and antiquarks. By analogy, we assume
that there will be a condensate of quark-antiquark pairs in the ground state of
the theory:

〈0| qq |0〉 = 〈0| qLqR + qRqL |0〉 6= 0 q = u, d, s (93)

We know that qq is invariant under vector transformations, but not under
axial transformations, so we can at this early point already assume that the
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vector charges remain to be conserved while the axial charges are broken, giving
rise to Goldstone bosons.

5.2 The Pion

We introduce eighteen scalar operators

Φij = qjqi Πij = iqjγ
5qi i, j ∈ {u, d, s} (94)

Under parity (q(t, ~x)→ γ0q(t,−~x)) we find that

Φij(t, ~x)→ Φij(t,−~x) Πij(t, ~x)→ −Πij(t,−~x). (95)

Further note that

Φ†(x) = Φ(x) Π†(x) = Π(x). (96)

It is straightforward to verify that under chiral vector transformations

Φ(x)→ e−iθaλ
F
a Φ(x)eiθaλ

F
a Π(x)→ e−iθaλ

F
a Π(x)eiθaλ

F
a (97)

whereas under chiral axial transformations

Φ(x)→ e−iθaλ
F
a Φ(x)e−iθaλ

F
a Φ(x)→ e−iθaλ

F
a Φ(x)e−iθaλ

F
a . (98)

In the spirit of (93) we assume that

〈0|Φ |0〉 = v(3×3) 6= 0. (99)

where v is a (3× 3)-matrix. Using equation (95) we further have to require

〈0|Π |0〉 = 0 (100)

if we want the theory to preserve parity.
From the discussion in section 3.4 about chiral symmetry breaking by the quark
masses, we know that the chiral vector symmetry is realized approximately in
nature. We therefore want it to be preserved in the process of spontaneous
symmetry breaking, i.e. we want the full chiral group SU(3)V ector×SU(3)Axial
to be spontaneously broken to SU(3)V ector. This means we have to choose the
vacuum vector ~v from (99) such that is invariant under SU(3)V ector. There
remains only one possibility for spontaneous symmetry breaking:

〈0|Φ |0〉 = v(3×3) = v13×3 〈0|Π |0〉 = 0. (101)

Now define:

φa(x) =
1
2

Tr(Φ(x)λa) =
1
2
q(x)λaq(x) πa(x) =

1
2

Tr(Π(x)λa) =
1
2
q(x)λaγ5q(x).

(102)
The quark wavefunctions satisfy canonical equal-time anti-commutation re-

lations
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{qi,r(t, ~x), qj,s(t, ~y)} = {q†i,r(t, ~x), q†j,s(t, ~y)} = 0

{qi,r(t, ~x), q†j,s(t, ~y)} = δijδr,sδ
(3)(~x− ~y)

i, j ∈ {u, d, s}
r, s ∈ {1, 2, 3, 4} (103)

where i,j are the colour indices, r,s the spinor indices. In analogy to equation
(17) let us compute

[Aa(t), πb(x)] =
−i
4
q(x){λa, λb}q(x) =

−i
4

Tr[Φ(x){λa, λb}]. (104)

Consider a Green function

Gµab = 〈0|T [Aµa(x)πb(y)] |0〉 . (105)

Equation (104) and conservation of the axial current make it straightforward
to compute

∂

∂xµ
Gµab = δ(x0 − y0) 〈0| [Aµa(x), πb(y)] |0〉 = −3iδ(4)(x− y)δabv (106)

The details of the calculation are very similar to (84) and the result is, too.
Identities of this form are called Ward identities. This last Ward identity gives
us an explicit expression for the Green function:

Gµab(p) =
3vpµ

p2
δab (107)

What we have proven is the existence of Green functions that have a pole
a zero momentum. Thus we are now really in a position to apply Goldstone’s
theorem. However we would expect 8 Goldstone bosons to appear. This is not
what we can see in nature.
In fact we have been superoptimistic to apply Goldstone’s theorem to an approx-
imate symmetry. The existence of divergence-less currents, which are results of
exact symmetries only, is essential for the proof of Goldstone’s theorem. We
have considered the divergences after reinstalling the masses in (58). It can be
seen, that the error we make is proportional to the masses of the quarks.
Noting that ms ≈ 10mu,d, we can hope to improve our results if we consider the
chiral SU(2) × SU(2) symmetry group of the up- and down-quark only. And
indeed we are successful. Goldstone’s theorem gives three Goldstone bosons
resulting from the broken SU(2)Axial group:

Π =
(
uγ5u dγ5u

uγ5d dγ5d

)
⇒

 π1 = 1
2Tr(Πσ1) = 1

2 (dγ5u+ uγ5d)
π2 = 1

2Tr(Πσ2) = −i
2 (dγ5u− uγ5d)

π3 = 1
2Tr(Πσ3) = 1

2 (uγ5u− dγ5d)

 (108)

The physical pions are linear combinations of the fields π1, π2, π3:

π+ = dγ5u π− = uγ5d π0 =
1√
2

(uγ5u− dγ5d) (109)

We have very good agreement with experimental facts:
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1. The pions have negative parity as expected from (95).

2. They have small masses of about 140 Mev. In particular they are by far
the lightest mesons.

3. They have zero spins, i.e. they are indeed bosons.

4. They form a triplet under SU(2)Isospin as expected from (97).

5.3 Masses for the Pions

Note that Goldstone’s theorem - despite its elegance and its intuitive interpre-
tation - poses problems to physicists. Even though we have particles in nature
that seem to arise from spontaneous symmetry breaking - such as the pions in
QCD or the Z0,the W+ and the W− in electroweak theory - these particles can
be very heavy in contradiction to Goldstone’s theorem.
Let us sketch how the problem is solved in QCD: What we have ignored in
our treatment was the existence of mass terms that explicitly break the chi-
ral symmetry. Neither the axial nor the vector current survive this symmetry
breaking. Their divergences are listed in (58). The corresponding expressions
for the SU(2) instead of the SU(3) symmetry group are:

∂µV
µ
b = iq[M,

σFb
2

]q ∂µA
µ
b = iq{M,σFb }γ5q (110)

where

M =
(
mu 0
0 md

)
. (111)

For simplicity we assume that mu = md = m. We then find:

∂µV
µ
b = imq[1,

σFb
2

]q = 0 ∂µA
µ
b = imq{1, σ

F
b

2
}γ5q = 2mπb. (112)

From the calculations in (84) we see that we have to replace (106) by

∂

∂xµ
Gµab = −2iδ(4)(x− y)δabv + 2m 〈0|T [πa(x)πb(y)] |0〉 (113)

The new term is the Feynman propagator of the scalar pion fields πa,
a=1,2,3. We now require these fields to be independent and massive, thus
this propagator reads:

〈0|T [πa(x)πb(y)] |0〉 = Cδab

∫
i

p2 −m2
a

e−ip(x−y)d4p (114)

We have to introduce the parameter C with mass dimension 4, because the
π fields are not canonically normalized. Expressing the previous equation in
Fourier space we therefore find:

pµG
µ
ab(p) = 2vδab − C

2mδab
p2 −m2

a

(115)

Choosing the parameters v and C appropriately shifts the pole from p2 = 0
to p2 = m2

a, the mass of the pions. For this to happen, we need in particular
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(2v − C 2m
p2 −m2

a

)|(p2=0) = 0 ⇒ m2
a = C

m

v
(116)

Recall that ma is the mass of the a-th pion, m = mu = md is the mass of the
constituent quarks. Assuming that the pions are equally heavy, we can write:

m2
Pion = C

mQuark

v
(117)

Equation (116) is an interesting result: It shows that the mass squared of
the pions is essentially the mass of the constituent quarks divided by the scale
that describes the symmetry breaking.

The same procedure fails in the electroweak theory. The particles that arise
from spontaneous symmetry breaking are very heavy even though the broken
theory is exact. However there is one big difference: The broken symmetry is
a gauge symmetry, i.e. it has been promoted to a local symmetry. Goldstone’s
theorem then has to be replaced by the Higgs mechanism.
We do not have the time to discuss Higgs’ theorem in detail here. So let us
only consider a very simple example: Let φ be a massive, complex field. Let
the Lagrangian of the theory be invariant under U(1) rotations of this field.
Promoting this symmetry to a local symmetry, we have to introduce a massless,
scalar gauge field. Spontaneous breaking of this symmetry then gives

(
2 massive, scalar fields
1 massless gauge field

)
→

(
1 massive, scalar field
1 massive gauge field

)
(118)

5.4 Summary

Let us summarize what we learned about spontaneous symmetry breaking:

1. We defined spontaneous symmetry breaking. It means that the vacuum of
a theory is not invariant under the full symmetry group of the Lagrangian,
i.e. we have a field operator that has a nonvanishing vacuum-expectation
value. We saw a very intuitive consequence in quantum field theories,
namely that the vacuum is charged.

2. We introduced and proved Goldstone’s theorem. This theorem predicts
the emergence of massless Goldstone bosons in theories that are sponta-
neously broken.

3. We applied the results to chiral symmetry of QCD. We motivated why we
expect it to be broken and we identified the emerging Goldstone bosons
with the pions.

4. We sketched two methods to make the Goldstone bosons massive. One is
to include terms that explicitly break the underlying symmetry, making it
an approximate symmetry only. The other one is to promote the symmetry
to a gauge symmetry such that Higgs’ theorem holds.
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