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Perturbation theory

» full solution A, known solution (without perturbation) Ag
> series: A= eCAg+ A1+ 2Ar + ...

» QED: e =a~ 37 < 1

» QCD: € = 1 (highly dependent on the energy)
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Perturbation theory

>
>
>
>
>

full solution A, known solution (without perturbation) Ag
series: A= eQAg + el A1 + 2Ar + . ..

QED: e = a = 13% <1

QCD: € = 1 (highly dependent on the energy)

no reasonable perturbative approach for QCD!
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Perturbation theory
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full solution A, known solution (without perturbation) Ag
series: A= eQAg + el A1 + 2Ar + . ..

QED: e = a = 13% <1

QCD: € = 1 (highly dependent on the energy)

no reasonable perturbative approach for QCD!

non-perturbative approach: Lattice QCD
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Lattice QCD - a two dimensional example
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From continuum QCD to lattice QCD...

introduce a hypercubic lattice in your theory
all quantities are only defined on lattice points
quantities may depend on lattice spacing a

partition function Z = [ D¢ e~
integration over infinitely many space-points

vV v vy
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From continuum QCD to lattice QCD...

introduce a hypercubic lattice in your theory
all quantities are only defined on lattice points
quantities may depend on lattice spacing a

partition function Z = [ D¢ e~
integration over infinitely many space-points

vV v vy

» by introducing a lattice only finitely many integrations
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..and back to continuum QCD

» continuum QCD should be recovered for a — 0

Basil Schneider Lattice formulation of Yang-Mills theory and confinement



Introduction
Perturbation theory
Lattice QCD

..and back to continuum QCD

» continuum QCD should be recovered for a — 0

» problems may arise:
- symmetry breaking terms
- fermion doublers
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

QED action and gauge symmetry

» action of QED given by
Sqep = [ d*x [P(x)(ivjy Dy — m)ip(x) — ZF* Fuu
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The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

QED action and gauge symmetry

» action of QED given by
Sqep = [ d*x [P(x)(ivy Dy — m)p(x) = G F* Fu]

» covariant derivative D, = 8# + ieA, promotes global gauge
symmetry to local one
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From Minkowski space-time to Euclidean space-time
. . . The lattice formulation

Abelian gauge fields on the lattice (QED) The Dirac action on the lattice
The gauge action on the lattice

The action on the lattice

QED action and gauge symmetry

» action of QED given by
Sqep = [ d*x [P(x)(ivy Dy — m)p(x) = G F* Fu]

» covariant derivative D, = 0, + ieA,, promotes global gauge
symmetry to local one

» local U(1) transformations:

(x) = GO)P()
h(x) = D(x)GH(x) ,
Au(x) = G(x)AL(x)GH(x) = £G(x)9u G (x)

G(x) = e e U(1)
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

Euclidean action for QED

> X0 — —iX4
Do — +iD4
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

Euclidean action for QED

DO - +ID4
> Sqep — iSe = i [ d*x [Y(x)(7* Dy + m)ip(x) + zF* Fu]
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

Substitutions in the lattice formulation

» quantities on the lattice are usually denoted with a hat
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

Substitutions in the lattice formulation

» quantities on the lattice are usually denoted with a hat
> X, — nya
> [dix—a'y,
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From Minkowski space-time to Euclidean space-time
. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice
The gauge action on the lattice
The action on the lattice

Substitutions in the lattice formulation

» quantities on the lattice are usually denoted with a hat

> Xy — nya

> Po(x) — a3—1/2

Da(x) — a371/2
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

Substitutions in the lattice formulation

» quantities on the lattice are usually denoted with a hat
> X, — nya

» [d'x —a*y,

> Ya(x) — aTl/ﬂ/za(”)

Da(x) — a371/21204(”)

~

O (x) = 3p0ub(n) = Fm - 35[0+ A1) —d(n — p)]

v
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

Substitutions in the lattice formulation

» quantities on the lattice are usually denoted with a hat
> X, — nya
» [d'x —a*y,
> Ya(x) — aTl/ﬂ/za(”)
Da(x) — a371/21204(”)
> (x) = 2R0ud(n) = Fm - 55[d(n+ p) — P(n — )]

> m—>éﬁ’1
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The Dirac action on the lattice

> S5 = fd4x @Z(x)q/“Dﬂw(x)

theory and confinement




From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The Dirac action on the lattice
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The Dirac action on the lattice

> S1= [ d*x P(x)y* Duib(x)
> 81 = Y 559l Uun)d(n + ) = Uji(n — f)ib(n — )]
» action on the lattice is not unique
naive limit has to recover continuum action
action can be modified to avoid difficulties (will be done to
avoid problems with fermions)
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The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The link variables

> (x)(y) — b(x)GH(x)G(y)¥(y) is not gauge invariant!
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The link variables

> (x)(y) — b(x)GH(x)G(y)¥(y) is not gauge invariant!
» Dirac action on the lattice introduced link variables U, (n)

b Up(x) = Ulx,x + p) = efe " o Au)
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The link variables

> (x)(y) — b(x)GH(x)G(y)¥(y) is not gauge invariant!
» Dirac action on the lattice introduced link variables U, (n)
> Uy(x) =U(x,x+p) = eie [iT dx Au(x')

» U(x,y) transforms to G(x)U(x,y)G(y)
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The link variables

v

P()Y(y) — P(x)G7L(x)G(y)(y) is not gauge invariant!
Dirac action on the lattice introduced link variables U, (n)
Uu(x) = U(x,x + p) = eie [ dx Au(x')

U(x, y) transforms to G(x)U(x,y)G1(y)

PY(x)U(x, y)(y) is gauge invariant!

v

v

v

v
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The link variables

> (x)(y) — b(x)GH(x)G(y)¥(y) is not gauge invariant!
Dirac action on the lattice introduced link variables U, (n)
Uu(x) = U(x,x + p) = eie [ dx Au(x')

U(x, y) transforms to G(x)U(x,y)G1(y)

PY(x)U(x, y)(y) is gauge invariant!
Uu(n) = e@e4u(n) x~ 1 4 jaeA,(n)

v
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The link variables

> (x)(y) — b(x)GH(x)G(y)¥(y) is not gauge invariant!
Dirac action on the lattice introduced link variables U, (n)
Uu(x) = U(x,x + p) = eie [ dx Au(x')

U(x, y) transforms to G(x)U(x,y)G1(y)

PY(x)U(x, y)(y) is gauge invariant!
Uu(n) = e@e4u(n) x~ 1 4 jaeA,(n)

Un(n) = U',(n + )

v
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The link variables

> (x)(y) — b(x)GH(x)G(y)¥(y) is not gauge invariant!
Dirac action on the lattice introduced link variables U, (n)
Uu(x) = U(x,x + p) = eie [ dx Au(x')

U(x, y) transforms to G(x)U(x,y)G1(y)

PY(x)U(x, y)(y) is gauge invariant!
Uu(n) = e@e4u(n) x~ 1 4 jaeA,(n)
U(m) = U (0 + )

U, (n) are directed quantities

v

vV V. vV v VY
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From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The Dirac action on the lattice

Sio= Y P(lUa(n)d(n+ p) = Ufi(n — p)i(n — )]
= D A D(M(L+ iaeAu(n) + .. )(W(n) + adup(n) +...)—
(1 —iaeAn(n) +...)((n) — adup(n) +...)]
= Y, P+ 5+ )(n)+
ied(n)vu[Au + % (202 Au + (0 A0y + AuBR) + ... 1(n)

= Yo (M8, + ieAu)(n) + O(a%) .
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From Minkowski space-time to Euclidean space-time

. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice

The gauge action on the lattice
The action on the lattice

The gauge action on the lattice

> S = [d*x :FF,

Lattice formulation of ills theory and confinement




From Minkowski space-time to Euclidean space-time
. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice
The gauge action on the lattice
The action on the lattice

The gauge action on the lattice

> S = [d*x :FF,
> 32 = é Zn Zu,u,,u<u []‘ - %('DMV(H) + PI"V(H))]

Lattice formulation of Yang-Mills theory and confinement
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From Minkowski space-time to Euclidean space-time

. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice

The gauge action on the lattice
The action on the lattice

The 1 x 1 plaquette

» P, is a1l x 1 plaquette, the simplest Wilson loop
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. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice
The gauge action on the lattice
The action on the lattice

The 1 x 1 plaquette

» P, is a1l x 1 plaquette, the simplest Wilson loop

_ Puln) = Uu(m)Uy(n+ )UL(n + 2)Ul(n)
eieasz,(n)
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From Minkowski space-time to Euclidean space-time
. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice
The gauge action on the lattice
The action on the lattice

The 1 x 1 plaquette

» P, is a1l x 1 plaquette, the simplest Wilson loop

_ Puln) = Uu(m)Uy(n+ )UL(n + 2)Ul(n)
eieasz,(n)

» discretized field strength tensor:
Fuv(n) = S1(Au(n + 2) = Ay(n)) = (Au(n + ) — Au(n))]

Lattice formulation of Yang-Mills theory and confinement
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. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice

The gauge action on the lattice
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The 1 x 1 plaquette

Lattice formulation of Yang-Mills theory and confinement




From Minkowski space-time to Euclidean space-time
The lattice formulation

The Dirac action on the lattice

The gauge action on the lattice

The action on the lattice

Abelian gauge fields on the lattice (QED)

The gauge action on the lattice

2 = & o Ypwen [ = 5(Pun(n) + P, (n))]
= 3, e[l = (Lt ieaF(y — SEF2(n) ..
+1 — jea®Fo(n) — S2F2,(n) +...)]
= &0 e L= 22— €3, ()] + O(2°)
N30 e [ ()]
= 1,0 @ Fun(n)Fu(n) .

Basil Schneider Lattice formulation of Yang-Mills theory and confinement



From Minkowski space-time to Euclidean space-time
. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice
The gauge action on the lattice
The action on the lattice

The simplest action on the lattice

S = E0(n) X, vulUu(n)(n + 1) = Uf(n— p)e(n — )]
+% Zn Zu,u,u<u [1 - %(P#V(n) + P):u(n))]
+m 3, O(n)y(n)
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From Minkowski space-time to Euclidean space-time
. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The action on the lattice
The gauge action on the lattice
The action on the lattice

The Wilson action on the lattice

Seeo[U. 0] = 53,30 e[l = 5(Pun(n) + P, (n))]
+(+4r) 32, (n)p(n)—
3 2nulP(n)(r - s =) Uy () (n + i)+
D+ ) (r - La+ ) Ui (n)io(n)]
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From Minkowski space-time to Euclidean space-time
. . . The lattice formulation
Abelian gauge fields on the lattice (QED) The Dirac action on the lattice
The gauge action on the lattice
The action on the lattice

The Wilson action on the lattice

SeeolU, 4, 9] = %, Dpwp<nll — 5(Puv(n) + Pl (n)]
+(+4r) 32, (n)p(n)—
3 2nulP(n)(r - s =) Uy () (n + i)+
D+ ) (r - La+ ) Ui (n)io(n)]
» Added a term r - A to the action
» vanishes for a — 0
» ris called Wilson parameter

» breaks chiral symmetry
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice D 5
n abelian gauge fi n ice (QCD) The gauge action

From U(1) to SU(N)
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice D 5
n abelian gauge fi n ice (QCD) The gauge action

From U(1) to SU(N)

> = 71/_}:(1;17 s QZN)
d}N
> G(n) = e™® with G(n) € SU(N)
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice D 5
n abelian gauge fi n ice (QCD) The gauge action

From U(1) to SU(N)

> = 71/_}:(1;17 s QZN)
d}N

> G(n) = M with G(n) € SU(N)

> U,(n) = e®(") with U,(n) € SU(N)
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice D 5
n abelian gauge fi n ice (QCD) The gauge action

From U(1) to SU(N)

> = 71/_}:(1;17 s QZN)
d}N

> G(n) = M with G(n) € SU(N)

> U,(n) = e®(") with U,(n) € SU(N)

» G(n) and U,(n) not abelian anymore!
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice D 5
n abelian gauge fi n ice (QCD) The gauge action

The fermion action

Sk = (M+4r) 3, d(n)(n)
_% En,uw(”)(r = %) Un(m)b(n + f2)
+(n+ @)(r +7,) Ul (n)e(n)]

» same action as in the abelian case
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice (QCD) T e S
-t

The gauge action

S6 = ZTr Y e l13 = 3(Pun(n) + Plu(n))]
» similar as before, but now we take the trace
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice (QCD) T e S
-t

The gauge action

S6 = ZTr Y e l13 = 3(Pun(n) + Plu(n))]
» similar as before, but now we take the trace

» simplest way to achieve a gauge invariant action
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice (QCD) T e S
-t

The gauge action

S6 = ZTr Y e l13 = 3(Pun(n) + Plu(n))]
» similar as before, but now we take the trace
» simplest way to achieve a gauge invariant action
» action holds for SU(3)
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice (QCD) T e S
-t

The link variables in SU(3)

» remember the definition:
Puv(n) = Uu(n)Uy(n + ) UL(n + 2)UJ(n)
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice (QCD) T e S
-t

The link variables in SU(3)

» remember the definition:
Puv(n) = Uu(n)Uy(n + ) UL(n + 2)UJ(n)

> Pu(n) = e (o)
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice (QCD) T e S
-t

The link variables in SU(3)

» remember the definition:
Puv(n) = Uu(n)Uy(n + ) UL(n + 2)UJ(n)
> Pyy(n) = e Tl

» Baker-Campbell-Hausdorff: eef = eA+B+3IABl+...
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From U(1) to SU(N)
The fermion action

Non abelian gauge fields on the lattice (QCD) T e S
-t

The link variables in SU(3)

» remember the definition:
Puv(n) = Uu(n)Uy(n + ) UL(n + 2)UJ(n)
> Pyy(n) = e Tl

» Baker-Campbell-Hausdorff: eef = eA+B+3IABl+...

a—0

> Fu — Fu = 0,A, — 0,A, + ig[Au, Al
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From U(1) to SU(N)

Non abelian gauge fields on the lattice (QCD) IE: i:’:;fl;;?::n
8

The non abelian action

S = (M+4r) 3, v(n)(n)
=3 L u0(n)(r =) U () (n + )
+0(n+ @)(r +7.) Ul (n)w(n)]
3

+2Tr Y, o lls = 2(Pu(n) + Pl (n))],
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The naive limi
Asymptotic freedom

The continuum limit

The naive limit

» naive limit: a — 0
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The naive limit
Asymptotic freedom
The continuum limit

The naive limit

» naive limit: a — 0
» O observable, coupling g(a) may depend on a
©(g(a),a) — Ophys
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The naive limit
Asymptotic freedom
The continuum limit

The Wilson loop

» Wilson loop: W(¢[A] = Peig | dzuAu(2)
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The naive limit
Asymptotic freedom
The continuum limit

The Wilson loop

» Wilson loop: W(¢[A] = Peig | dzuAu(2)

» consider static quark-antiquark potential (no kinetic energy)
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The naive limit
Asymptotic freedom
The continuum limit

The Wilson loop

» Wilson loop: W(¢[A] = Pee | dzuAu(z)
» consider static quark-antiquark potential (no kinetic energy)

» (Wc[A]) = W(R, T) T F(R)e V(RIT
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The naive limit
Asymptotic freedom
The continuum limit

The Wilson loop

> Wilson loop: W([A] = Pe'8 [ dzuAu(z)
» consider static quark-antiquark potential (no kinetic energy)
> (WA = W(R, T) =3 F(R)e~V(RIT
» V(R.g,a) = —lim7_.0 7 In (W([A]) =
—lim1_ % In PeigfdzﬂAH(Z)]
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The naive limit
Asymptotic freedom
The continuum limit

The Wilson loop

» Wilson loop: W(¢[A] = Pee | dzuAu(z)
» consider static quark-antiquark potential (no kinetic energy)
> (WA = W(R, T) =3 F(R)e~V(RIT
» V(R.g,a) = —lim7_.0 7 In (W([A]) =
—lim1_ % In [PeigfdzﬂAH(z)]
» perturbative result:

V(R,g,3) = 155 [ + 122:8*In B + 0(g9)]

s
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The naive limit
Asymptotic freedom
The continuum limit

Diagrams contributing to potential in order g*

Basil Schneider Lattice formulation of Yang-Mills theory and confinement



The naive limit
Asymptotic freedom
The continuum limit

Callan-Symanzik 3 function

» renormalization group equation:
lag5 — B(g) 5] V(R.g.2) =0
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The naive limit
Asymptotic freedom
The continuum limit

Callan-Symanzik 3 function

» renormalization group equation:
lag5 — B(g) 5] V(R.g.2) =0
» Callan-Symanzik 3 function: 3(g) = —a%
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The naive limit
Asymptotic freedom
The continuum limit

Callan-Symanzik 3 function

» renormalization group equation:
o) 0
[a55 — 5(8)ggl V(R &,a) =0
Og

» Callan-Symanzik 3 function: 3(g) = —ag;

11

» with result from last slide: 3(g) —16,r2g3
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The naive limit
Asymptotic freedom
The continuum limit

Asymptotic freedom

1672

e 22g2

2}

Lattice formulation of ills theory and confinement



The continuum limit

Asymptotic freedom

The naive limit
Asymptotic freedom

1 1672
> a=ge 2262

»a—-0=g—0
asymptotic freedom!

Basil Schneider
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The naive limit
Asymptotic freedom
The continuum limit

Asymptotic freedom

1 1672
> a=ge 2262

»a—-0=g—0
asymptotic freedom!

» g < 1; can therefore also be studied in perturbation theory,
no lattice needed
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

The Wilson loop operator

» remember:
Se = Xpll—§Tr(P+ P =—25%pSp + const.
Sp =t Tr(P + PY)
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

The Wilson loop operator

» remember:
S¢ = % Spll—LTr(P+ P = —% > p Sp + const.
Sp = Tr(P + PY)

> partition function: Z = [ DU e82r5p
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

The Wilson loop operator

» remember:
Se = Xpll—§Tr(P+ P =—25%pSp + const.

Sp = Tr(P + PY)
> partition function: Z = [ DU e82r5p
» Wilson loop operator: Wc[U] = Tr[[,cc, U
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

The Wilson loop operator

» remember:
S¢ = % Spll—LTr(P+ P = —% p Sp + const.
Sp = Tr(P + PY)

> partition function: Z = [ DU e82r5p

» Wilson loop operator: Wc[U] = Tr[[,cc, U

efs
> (Welu)) = Logretllee

with Wilson loop C given by spatial extension R and temporal
extension T

Vﬂ:i

g
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Leading contribution

> expand [[p efsp = I [Zn %(SP)n}
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Leading contribution

> expand [[p efsp = I [Zn %(SP)n}

» leading contribution in (3 (strong coupling expansion): every
plaquette costs a factor of 3
therefore we are interested in the Wilson loop with the

smallest number of elementary plaquettes yielding a
non-vanishing integral
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Leading contribution

> expand [[p efsp = I [Zn %(SP)n}

» leading contribution in (3 (strong coupling expansion): every
plaquette costs a factor of 3
therefore we are interested in the Wilson loop with the
smallest number of elementary plaquettes yielding a
non-vanishing integral

» integration rules for unitarian group: [ dU U =0,
deUTU:dezl
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Leading contribution

> expand [[p efsp = I [Zn %(SP)n}

» leading contribution in (3 (strong coupling expansion): every
plaquette costs a factor of 3
therefore we are interested in the Wilson loop with the
smallest number of elementary plaquettes yielding a
non-vanishing integral

» integration rules for unitarian group: [ dU U =0,
deUTU:dezl

» every link needs a counterpart link pointing in the other
direction in order to have a non-vanishing integral!
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Smallest number of elementary plaquettes with
non-vanishing integral

A Ya Ya Y
> > >
\FJL "Jl \”r “Jr
> >
A YA A Y
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Area law

» numerator of Wilson loop operator expectation value
proportional to BN with N the number of plaquettes
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Area law

» numerator of Wilson loop operator expectation value
proportional to BN with N the number of plaquettes

» N=A=RT
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Area law

» numerator of Wilson loop operator expectation value
proportional to BN with N the number of plaquettes

RT
> Area law: (Wc[U]) ~3 (%)
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Confinement
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Confinement

> V(R) = —lim71_0 3 IN(Wc[U]) = ()R

» static gg-potential rises linearly with R! Confinement!
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Confinement

> V(R) = —lim7_oo £ In(Wc[U]) = 6(g)R
» static gg-potential rises linearly with R! Confinement!

» particle not in color-singlet state are impossible to separate
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Confinement

> V(R) = —lim7_oo £ In(Wc[U]) = 6(g)R
» static gg-potential rises linearly with R! Confinement!

» particle not in color-singlet state are impossible to separate

» calculations hold for small 3 (large g), numerical calculations
indicate that it is also true for large (8
no phase transition (true for zero temperature)
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

Confinement

> V(R) = —lim7_oo £ In(Wc[U]) = 6(g)R
» static gg-potential rises linearly with R! Confinement!

» particle not in color-singlet state are impossible to separate

» calculations hold for small 3 (large g), numerical calculations
indicate that it is also true for large (8
no phase transition (true for zero temperature)

» caution: proof of confinement holds only on the lattice, not
on continuum QCD
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Leading contribution of Wilson loop operator
Confinement

Strong coupling expansion

attice formulation of Yang-Mills theory and confinement
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