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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Grand canonical ensemble

» Used to describe systems at fixed T and
» System can exchange particles and energy with reservoirs
» Particles can be destroyed and created

» — use grand canonical ensemble
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» System described by Hamiltonian H and conserved charges ;
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
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Finite temperature in the Euclidean path integral

Partition function

» System described by Hamiltonian H and conserved charges ;
» Density Matrix

ﬁ fd e_/B(H_MI'NI') /B o 1/T
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» Density Matrix
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Partition function

» System described by Hamiltonian H and conserved charges ;
» Density Matrix

ﬁ: e_/B(H_MI'NI') /B: 1/T
» Ensemble avarage of an operator A

) =32

» Partition function

Z="Trp
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Partition function

» System described by Hamiltonian H and conserved charges N;

» Density Matrix
p=eBH-ul) g_1/T

» Ensemble avarage of an operator A

TrpA
(A) = Trfﬁ

» Partition function
Z ="Trp

TrA =", (n|Aln)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Partition function

» Partition function is most important function in
thermodynamics

» All thermodynamic properties like pressure, particle number
etc. can be determined
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Partition function

d(TInZ)
oV
d(TInZ)
O
d(TInZ)
> T
E = —PV+TS+uiN;
F —TInZ
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Partition function of the grand canonical ensemble
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Path integral representation of Z in Q.M.

» Coordinate degrees of freedom g = {q,} of the system
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Path integral representation of Z in Q.M.

» Coordinate degrees of freedom g = {q,} of the system
» Eigenstates |g) of operators {g,} with
é\]Ol’q>:qOé|q>7 04217"' ak
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Path integral representation of Z in Q.M.

» Coordinate degrees of freedom g = {q,} of the system
» Eigenstates |g) of operators {g,} with

Golq) = dal@), a=1,--- .k
» Partition function

Z =Tre PH = [ dq(qle""|q)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Path integral representation of Z in Q.M.

» Coordinate degrees of freedom g = {q,} of the system
» Eigenstates |g) of operators {g,} with

Golq) = dal@), a=1,--- .k
» Partition function

Z =Tre " = [ dg(qle="|q)
» With measure

dg = [I¢-1 dga
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Path integral representation of Z in Q.M.

» Coordinate degrees of freedom g = {q,} of the system
» Eigenstates |g) of operators {g,} with
ela’CI>:CIa|q>, O[:17"' ak
» Partition function
Z =Tre " = [ dq(qle="|q)

» With measure

dg = [I¢-1 dga
» Set =€l

Z = [dq(qle—He=" ... e=M|q)
N times
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Set g = q(® and insert a complete set of states

JTIG dgD(gMje=<H|gN=1)) ... (qD)]e=H|qO)| o)_ym
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Set g = q(® and insert a complete set of states

SIS dgtD (g ]e=<H|gN=1)) .. (gD |e=<H|g ()| _ m)

» For Hamiltonians of the form

—2 Za 1 Pa V(9)

these matrix elements can be approximated (p momenta
canonically conjugated to §)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Set g = q(® and insert a complete set of states
J TG gt (g e |gM=D) - (qW]e=H|g)| 0 _qm

» For Hamiltonians of the form

—2 Za 1 Pa V(9)

these matrix elements can be approximated (p momenta
canonically conjugated to §)

» Use Baker-Hausdorff formula
1
eAeB — gA+B+3[AB]-
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Set g = q(® and insert a complete set of states
ST dg (g [e=cH|g(N=1)) .. (gM]e=H|g®)] o _ym
» For Hamiltonians of the form

—2 Za 1 Pa V(9)

these matrix elements can be approximated (p momenta
canonically conjugated to §)

» Use Baker-Hausdorff formula
1
eAeB — gA+B+3[AB]-

> (qUi+D]e=H| gDy v (qli+D)|e=c/2 0 Pa|g(1)) e =<V ()
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

> (gD |e=H|g)y & (qli+D)|e=</2 X fa§|q(i)>e—ev(q(">)
insert a complete set of momentum eigenstates

k i
and use (glp) = [[n_y o=
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

> <q(i+1)\e_€H|q(i)> %< (i+1) ’6—6/22 |q( Ve —eV(g)
insert a complete set of momentum eigenstates
and use (q|p) = Hk 1 g'Poqa

(l+1) | e—eH’q

e—eV(q® fdp”H [2pa 2 ,pé)( R qu)]}
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

> <q(i+1)\e_€H|q(i)> %< (i+1) ’6—6/22 |q( Ve —eV(g)
insert a complete set of momentum eigenstates
and use (q|p) = Hk 1 g'Poqa

q(l+1) | e—eH’q

e—eV(q® fdp”H [2pa 2 ,pé)( R qu)]}

» Finally we get

Z = [ Dq [ DpeSto' Sa vt (al"—al))—eH(q P y— g0
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

> <q(i+1)\e_€H|q(i)> %< (i+1) ’6—6/22 |q( Ve —eV(g)
insert a complete set of momentum eigenstates
and use (q|p) = Hk 1 g'Poqa

q(’+1)|e_6H]q
2 i+)_ (i)
e*eV(q f dp( i) H [2pa ’P<(1) (Eqa>] }
» Finally we get
Z = [ Dq [ DpeSto' Sa vt (al"—al))—eH(q P y— g0
» With the measure

) 4 ()
_ 1TN-1 dgs’ dpy
DqaDp =[1i=y 11, 2r
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

— . (i i+1 i i i
Z = [Dq [ DpeXis Za ip(al ) —al)—eH (gD pt ))’q(N):q(O)

with continuum limit

B . N Hla(m)o(r
Z = [ erigic Da | Dp elo AT ipa(T)ga(T)—H(a(r),p(7))]
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

- () Gi41) (1) i) (i
Z= [Dq [ Dp e S, ipt) (ah T -l )—eH(q“,p“)’q(N):q(o)
with continuum limit
Z = [ riaic Da | Dp oJ A7, iPa(T)da(r)—H(q(7),p(7))]

» Coordinates q are identified at "time” 0 and (8
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

— . (i i+1 i i i
Z = [Dq [ DpeXis Za ip(al ) —al)—eH (gD pt ))’q(N):q(O)

with continuum limit

¢ . N
Z = [ erigic Da | Dp eJo A7 ipa(7)da(r)—H(a(7).p(7))]

» Coordinates q are identified at "time” 0 and (8

» — coordinates satisfy periodic boundary conditions
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

— . (i i+1 i i i
Z = [Dq [ DpeXis Za ip(al ) —al)—eH (gD pt ))’q(N):q(O)

with continuum limit
B . ,
Z = [ erigic Da | Dp eJo A7 ipa(7)da(r)—H(a(7).p(7))]

» Coordinates q are identified at "time” 0 and (8
» — coordinates satisfy periodic boundary conditions

» Formula holds for any Hamiltonian of the form
H(p, §) = P1(p) + P2(§) where P; are polynomials
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Partition function of the grand ca ical ensemble

- . . . i | i f fi ion f
Finite temperature in the Euclidean path integral E::':il:l:gra epeezentationfofipaiibontiunetioniiogbesons

Thermal Green's functions

Field theory

We can immediately generalize to field theory. Replace
> a— X
> qa(T) = O(X, 7)
> pa(r) — 7(%,7)
» H= [dxH(¢, )
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Partition function of the grand canonical ensemble

- . . . i | i f ition fi ion f
Finite temperature in the Euclidean path integral E::':il:l:gra epeezentationfofipaiibontiunetioniiogbesons

Thermal Green's functions

Field theory

We can immediately generalize to field theory. Replace

> o — X

> Ga(7) — 6(X, 7)
> po(T) — (X, 7)
> H=[d*xH(¢,)

‘= / L] /periodic 4]
0p(x, 1)

x wqéﬂh/gagw‘%-ﬁam@+mMm¢D]
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Partition function of the grand canonical ensemble

Finite temperature in the Euclidean path integral E:::]ilor:sgral [EBiessntationfctipalieniinctionjiogbos s

Thermal Green's functions

Field theory

We can immediately generalize to field theory. Replace

> o — X

> qa(T) — O(X, 7)
> po(T) — (X, T)
> H= [ d3xH(,7)

‘= / L] »/periodic l49]
X exp[/oﬁ dT/d3x(i7r8¢g‘T’T) —H(ﬂ,¢)+uf\/(7r,¢)>]

Noether's theorem — A conserved charge density
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

‘H quadratic in 7

Hamiltonian density H = $72 + %(V¢)2 + Fm?¢* + U(o)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

‘H quadratic in 7

Hamiltonian density H = 372 + 3(V¢)? + m?¢* + U(¢)
No conserved charge
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

‘H quadratic in 7

Hamiltonian density H = 372 + 3(V¢)? + m?¢* + U(¢)
No conserved charge

‘= /[dﬂ-] /periodic [d(z)]

X exp [/05 dT/d3x(i7raMa):T) - %71'2 - U'(Ve, QS)H
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

‘H quadratic in 7

Hamiltonian density H = 372 + 3(V¢)? + m?¢* + U(¢)
No conserved charge

‘= / L] / eriodic l4d]

X exp / dT/d3 i 8¢(ax .7) — %772 - U'(Vé, ¢)>}

Gaussian integral —

_ (= J7ar f a3xce) _ s
Z=N /p - [do]e =N / [do]e

periodic
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Fields satisfy periodic boundary conditions
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Fields satisfy periodic boundary conditions

» Partition function is a weighted sum over fields which live on
a space-time surface compactified along time direction

Roman Mani inite temperature field theory



Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Fields satisfy periodic boundary conditions

» Partition function is a weighted sum over fields which live on
a space-time surface compactified along time direction

» Surface is cylinder with axis along spatial direction
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

» Fields satisfy periodic boundary conditions

» Partition function is a weighted sum over fields which live on
a space-time surface compactified along time direction

» Surface is cylinder with axis along spatial direction

» Radius gets bigger with increasing (3
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

v

Fields satisfy periodic boundary conditions

v

Partition function is a weighted sum over fields which live on
a space-time surface compactified along time direction

v

Surface is cylinder with axis along spatial direction

v

Radius gets bigger with increasing

v

Fields have a Fourier decomposition

2 _ 1 d3p 7 k% iwnT
o457 = 5 2 [ gy n e
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

v

Fields satisfy periodic boundary conditions

v

Partition function is a weighted sum over fields which live on
a space-time surface compactified along time direction

v

Surface is cylinder with axis along spatial direction

v

Radius gets bigger with increasing 3

v

Fields have a Fourier decomposition
1 dp - i
o(%.7) = - /¢>w  B)elk i
5= 5% [ Gopiten

With w, = % the Matsubara frequencies
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Consider fermionic system with Hilbert space spanned by
vacuum and one particle state
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Consider fermionic system with Hilbert space spanned by
vacuum and one particle state

» Vacuum |0), 3|0) =0
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Consider fermionic system with Hilbert space spanned by
vacuum and one particle state

» Vacuum |0), 3|0) =0
» 1 particle state |1) = 37|0)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Consider fermionic system with Hilbert space spanned by
vacuum and one particle state

» Vacuum |0), 3|0) =0
» 1 particle state |1) = 37|0)

» Anticommutator {3,357} =1
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

>

Consider fermionic system with Hilbert space spanned by
vacuum and one particle state

Vacuum |0), a0) =0

1 particle state |1) = a'|0)

Anticommutator {3,351} =1

General operator : A= Koo + K103" + Ko13 + K153

vV V. Vv Y
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

»

Consider fermionic system with Hilbert space spanned by
vacuum and one particle state

Vacuum |0), a0) =0

1 particle state |1) = a'|0)

Anticommutator {3,351} =1

General operator : A= Koo + K103" + Ko13 + K153

Introduce Grassmann variables with

{a,a*} ={a,a} ={a*,a*} =0

vV vVv.v. v Yy
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Consider fermionic system with Hilbert space spanned by
vacuum and one particle state

Vacuum |0), a0) =0

1 particle state |1) = a'|0)

Anticommutator {3,351} =1

General operator : A= Koo + K103" + Ko13 + K153
Introduce Grassmann variables with

{a,a*} ={a,a} ={a*,a*} =0

> I3ep|ace operators by Grassmann variables to get normal form
A(a*,a) = Koo + K1pa* + Ko1a + Kii1a*a

vV vVv.v. v Yy

Roman Mani Finite temperature field theory



Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Matrix form given by

A(a*,a) = ea*a/z\(a*, a) = Aoo + A10a* + Aoia + Ap1a*a
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Matrix form given by
A(a*,a) = ea*a/z\(a*, a) = Aoo + A10a* + Aoia + Ap1a*a

> Trace:
TrA = [ da*dae™* 2A(a*, —a)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Fermions

» Matrix form given by

A(a*,a) = ea*a/z\(a*, a) = Aoo + A10a* + Aoia + Ap1a*a
> TraAce:

TrA = [ da*dae™* 2A(a*, —a)
» Product:

C(a*,a) = [db*dbe P"PA(a*, b)B(b*, a)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Partition function

Simple model




Finite temperature in the Euclidean path integral

Partition function

on function of the grand canonical ensemble
Path integral representation of partition function for bosons
Fermions
Thermal Green's functions

Simple model

» Hamiltonian H = E 33

field theory



Finite temperature in the Euclidean path integral

Partition function

Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Simple model

» Hamiltonian H = E 33

>

» Number operator N = af
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Partition function of the grand canonical ensemble
- . . . Path integral representation of partition function for bosons
Finite temperature in the Euclidean path integral q = F F
Fermions
Thermal Green's functions

Partition function

Simple model

» Hamiltonian H = E 33

» Number operator N = af

>

» Partition function o
Z="Trp= Tre B(H-uN) — Ty (e—e(H—uN))N
Ty (e—e(Efu)éfé)N = Tr N
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Partition function of the grand canonical ensemble
- . . . Path integral representation of partition function for bosons
Finite temperature in the Euclidean path integral q = F F
Fermions
Thermal Green's functions

Partition function

Simple model

» Hamiltonian H = E 33

» Number operator N = 3t

>

» Partition function o
Z = Trp = Tre PH—1N) = Ty (e=e(H-pN))N
Tr (e—G(E_N)éTé)N = rI\rﬁé\l

Matrix form of g

* o * —e(E—p) _ * * _ _ *
pe(a*,a) = e ?j.(a*, a) = e 2ele” W 1)aTa o gaTag—e(E-p)a"a
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

pe(a*7 a) ~ ea*a(lfe(Efu))

N—-1

p(aylﬂ\lv aN) = H da:'kdaie_a?aipe(a;(\h aN—l)pé(aT\I*lv a/V—2)
i=1

-+ pe(al, a0)|ag=ay

Finite temperature field theory



Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

pe(a*’ a) ~ ea*a(l—E(E—u))

N—-1
ploiv-an) = [ T dotdaie ¥ puloivan-pelobr,an-2)
i=1

-+ pe(a; a0)|ag=ay

Z="Trp= /daf\,daNeaEaNp(a*,;,, —ay)

N
* o, — — ¥ a.
_ / [[ dai daje 2-10-cE-)=aiaiy,
i=1
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on function of the grand canonical ensemble
Path integral representation of partition function for bosons
Fermions
Thermal Green's functions

Finite temperature in the Euclidean path integral

0=—an

N
Fai-1(l—e(E—p))—ajia;
Z: Hda?daiea,a 1( E( U)) a;a |a
i=1

Relabel a; — aj11
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

0=—an

N
*aj_1(l—e(E—p))—ata;
Z = Hda?‘da,-e"’"’ 1(1=e(E=p))=aiai)
i=1

Relabel a; — aj11

|31:_3N+1

N
Z — H da;!‘dal-e_a?(aH»l_ai)_e(E_/J‘)a?ai
i=1

Finite temperature field theory



Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

0=—an

N
*aj_1(l—e(E—p))—ata;
Z = Hda?‘da,-e"’"’ 1(1=e(E=p))=aiai)
i=1

Relabel a; — aj11

|31:_3N+1

N
Z — H da;!‘dal-e_a?(aH»l_ai)_e(E_/J‘)a?ai
i=1

Finite temperature field theory



Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

te temperature in the Euclidean path integral

N
Z = [ ] daj daje® 21 (OmelEmm)=aiai
i=1

=—apn

Relabel a; — aj;1

N
Z — H da?daieia;‘(aH»l*af)ie(Eiﬁu)a?ai
i=1

|a1:—aN+1

Contiuum

[da*][da]e_foﬁ dT(a*%"rH—ﬂN)
antip
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Partition function of the d canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Field theory

[d’l,/J*][d’l,/J]e_ foﬁ ded3X (TZ)*(X)5%¢(X)+H(7/)7"/)*)_#N(¢’w*))

antiper
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Partition function of the d canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Field theory

[dd)*][d@[)]ei foﬂ ded3X (w*(X)%¢(X)+H(T/J:¢*)*W(w7w*))

antiper

P(%,0) = —(X, B)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Field theory

/ [ ][du]eJo 971 &% (07 () Zl+H ") —pN (407))
antiper

¥(%,0) = —(%, B) )
Hamiltonian density for free Dirac field H = ¢(7€ - V + m)y
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Field theory

/ [db*][dap]e o @7 P (¥ () Z v+ M) —uN (b.07))
antiper

$(%,0) = —u(%, B) )

Hamiltonian density for free Dirac field H = ¢(7F - V + m)y

/ [dw*][dw]e_ foﬁ dr [ d®x ["/’*(X)’ﬂ(a"i' mW(X) - Mw*(x)w(x)]

Roman Mani Finite temperature field theory



Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Field theory

/ [dop*|[dip)eJo 9 S & (¥ 0 (M) ~uN (b))
antiper

w(zao):_w(;w@) _
Hamiltonian density for free Dirac field H = ¢(7F - V + m)y

/ [d¢*][d¢]6_ foﬁ dedSX [TZ’*(X)'Y4((7+ m)¢(x) - Mw*(x)w(x)]

_ @n+1)m

Matsubara frequencies w, 5
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Thermal Green's functions

» Thermal Green's functions defined by

($(x1) - d(xn)) = Z M Tr[e M T(d(xa) - - xn))]
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Thermal Green's functions

» Thermal Green's functions defined by

(@0a) - ¢(xn)) = Z 7 Te[e PHT((xa) -+ d(xa))]
» Reducetothe T=0G.f. as T —0
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Thermal Green's functions

» Thermal Green's functions defined by

($a) - $(xn)) = Z M Trle " T($0a) -+~ $(xn))]

» Reducetothe T=0G.f. as T —0
» Generating functional

ZU)= [ [agge st il s

Roman Mani Finite temperature field theory



Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Thermal Green's functions

» Thermal Green's functions defined by

($a) - $(xn)) = Z M Trle " T($0a) -+~ $(xn))]

» Reducetothe T=0G.f. as T —0
» Generating functional

ZU)= [ [agge st il s
periodic

» Obtain Green's function by derivation with respect to J at
J=0
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Thermal Green's functions

» Thermal Green's functions defined by

($a) - $(xn)) = Z M Trle " T($0a) -+~ $(xn))]

» Reducetothe T=0G.f. as T —0
» Generating functional

ZU)= [ [agge st il s
periodic

» Obtain Green's function by derivation with respect to J at
J=0
» Expectation value of an operator
fperiodic [dqb] O(¢)G_SE
Z[J=10]

Roman Mani Finite temperature field theory
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Propagator

Generating functional can be integrated for free field
Z[J] — / [d¢] e_5E+IOB ded?’XJ(b
periodic

— Z[0] ez Jp @5 [ Ay J)A(=y)I(y)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Propagator

Generating functional can be integrated for free field
Z[J] — / [d¢] e_5E+IOB ded?’XJ(b
periodic

— Z[0] ez Jp @5 [ Ay J)A(=y)I(y)

» A(x —y) is the inverse operator of — (%)2 — V2 + m?
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Propagator

Generating functional can be integrated for free field
Z[J] — / [d¢] e_5E+IOB ded3XJ¢
periodic

— Z[0] ez Jp @5 [ Ay J)A(=y)I(y)

. : 2
» A(x —y) is the inverse operator of — ()" — V2 + m?
» Periodic — Fourier decomposition

1 d3p A i(wnT+p-X
A(x):ﬁzn:/(zﬁ)3A(wn,p)e( 1p3)
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Propagator

Generating functional can be integrated for free field
Z[J] — / [d¢] e_5E+IOB ded3XJ¢
periodic

— Z[0] ez Jp @5 [ Ay J)A(=y)I(y)

. : 2
» A(x —y) is the inverse operator of — ()" — V2 + m?
» Periodic — Fourier decomposition

1 d3p A i(wnT+p-X
A(x):ﬁzn:/(zﬁ)3A(wn,p)e( 1p3)

» Propagator in frequency momentum space

. 1
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Partition function of the grand canonical ensemble

Path integral representation of partition function for bosons
Fermions

Thermal Green's functions

Finite temperature in the Euclidean path integral

Get expressions for finite T from those at T = 0 by replacing:

[ Rt~ 53w
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Links and action on lattice

» Links: o
Uu(n) = pelg Jy " dzAL(2)
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Links and action on lattice

» Links: o
Uu(n) = pelg Jy " dzAL(2)

» Plaquettes:

Uy (n) = Uu(n) Uy (n + ) U} (n + 2)Uf(n)
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Links and action on lattice

» Links: o
Uu(n) = pelg Jy " dzAL(2)

» Plaquettes:
Uy (n) = Up(n) Uy (n + ) Uj(n + D) Uf(n)
» SU(N) action

Se =8 [1—=Te(Uu(n)+ U, (n))/2N]

n,u<v

B =2N/g?
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center

» The center C C G of a group G consists of all elements z € G
for which zgz= ! = gVg € G
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center

» The center C C G of a group G consists of all elements z € G
for which zgz= ! = gVg € G

» For SU(N) it is given by the identity matrix times exp(2!),
where [ =0,1---N -1

Roman Mani Finite temperature field theory



Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center

» The center C C G of a group G consists of all elements z € G
for which zgz= ! = gVg € G

» For SU(N) it is given by the identity matrix times exp(2!),
where [ =0,1---N -1

» In other words, an element of the center commutes with all
elements of the group
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: Action and links
Center symmetry
Polyakov loop
Physical meaning of Polyakov loop
Simulations

Center Symmetry and Polyakov loop

Center symmetry

» Action not only invariant under periodic gauge transformations
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center symmetry

» Action not only invariant under periodic gauge transformations

» Consider multiplying all time like oriented links in a time slice
by an element of the center.
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center symmetry

» Action not only invariant under periodic gauge transformations

» Consider multiplying all time like oriented links in a time slice
by an element of the center.

» Action invariant under these transformations, too
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center symmetry

» Action not only invariant under periodic gauge transformations

» Consider multiplying all time like oriented links in a time slice
by an element of the center.

» Action invariant under these transformations, too

» For example ny =0

U4(I_'I‘7 0) — ZU4(I_'I‘7 0)
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Center symmetry

T
&
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Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center symmetry

» Let us look at a plaquette

Uia(7,0) = Uj(7i,0)Ua(7i +7,0) U (7, 1) U] (7, 0)
—  Ui(7,0)zUs(7 +7,0) Ul (7, 1) UL(7, 0) 2"
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center symmetry

» Let us look at a plaquette
Uia(7,0) = U;(7,0)Us(7i +7,0) U (7, 1) UJ(
i(7,0)zUs(7 4 1,0) U] (7, 1) U]

— U :
» Center elements commute with links — plaquettes are
invariant.

)
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Center symmetry

» Let us look at a plaquette

Uia(7,0) = Uj(7i,0)Ua(7i +7,0) U (7, 1) U] (7, 0)
—  Ui(#,0)zUs(7 +17,0) Ul (7, 1) UL (7, 0) 2

1

» Center elements commute with links — plaquettes are
invariant.

» Action is composed of plaquettes, therefore it is invariant.
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Center Symmetry and Polyakov loop

Polyakov loop

» Trace of the product of the link variables along a loop,
winding around the euclidean time direction
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: Action and links
Center symmetry
Polyakov loop
Physical meaning of Polyakov loop
Simulations

Center Symmetry and Polyakov loop

Polyakov loop

» Trace of the product of the link variables along a loop,
winding around the euclidean time direction

» Loop at spatial site i

=
L(7) = NTY H Ua(7, na)
n4:0
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Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Polyakov loop

» Trace of the product of the link variables along a loop,
winding around the euclidean time direction

» Loop at spatial site i

» Trace of special unitary matrix. It can get values in complex
plane

Roman Mani Finite temperature field theory



Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
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Polyakov loop
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Polyakov loop

» Polyakov loop is invariant under periodic gauge
transformations G(7,0) = G(#, N;)

Ny—1 Ny—1

Tr Us(,na) — Tr [] G(R, na)Ua(R, na) G (7, ng + 1)
n4:0 n4:0
N-—1

= Tr lT_I U4(ﬁ7 n4)

n4:0
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Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Polyakov loop

» Polyakov loop is invariant under periodic gauge
transformations G(7,0) = G(#, N;)

Ny—1 Ny—1

Tr Us(,na) — Tr [] G(R, na)Ua(R, na) G (7, ng + 1)
n4:0 n4:0
N-—1

= Tr ﬁ U4(ﬁ7 n4)

n4:0

» But not invariant under center transformations unless it is zero
L(A) — zL(A)
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Polyakov loop
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Polyakov loop

» — suggests existence of two phases
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Center Symmetry and Polyakov loop

Polyakov loop

» — suggests existence of two phases

» center symmetric confined phase if (L) = 0 at low
temperatures
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Polyakov loop

» — suggests existence of two phases

» center symmetric confined phase if (L) = 0 at low
temperatures

» deconfined phase (L) # 0 spontaneously breaks symmetry at
high temperatures
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Polyakov loop

» — suggests existence of two phases

» center symmetric confined phase if (L) = 0 at low
temperatures

» deconfined phase (L) # 0 spontaneously breaks symmetry at
high temperatures

» phases separated by a phase transition
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Polyakov loop

v

— suggests existence of two phases

» center symmetric confined phase if (L) = 0 at low
temperatures

» deconfined phase (L) # 0 spontaneously breaks symmetry at
high temperatures

» phases separated by a phase transition

» Polyakov loop serves as an order parameter for distinguishing
these phases
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Center Symmetry and Polyakov loop

Physical meaning of Polyakov loop

» Consider partition function of the infinitely heavy quark in a
heat bath of gluons
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Center Symmetry and Polyakov loop

Physical meaning of Polyakov loop

» Consider partition function of the infinitely heavy quark in a
heat bath of gluons

> |s) states containing quark
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Physical meaning of Polyakov loop

» Consider partition function of the infinitely heavy quark in a
heat bath of gluons

> |s) states containing quark

Z=7 (sleMs)

S

>
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Physical meaning of Polyakov loop

» Consider partition function of the infinitely heavy quark in a
heat bath of gluons

> |s) states containing quark

ZZ —BH|s)

» Apply creation operators to states |s’) which do not contain
the quark

>
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Physical meaning of Polyakov loop

Z=N> (sW(%,0)e PUi(%,0)|s)

=N (e Hu(z, B)Wi(x,0)|s)
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Physical meaning of Polyakov loop

7= NZ(S’N}()?, 0)e PHWT(%,0)|s')

_NZ 'le PHY(R, B)VT(X,0)|s")

» Time evolution (9; — ieAs(X, 7))V (X,7) =0
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Physical meaning of Polyakov loop

Z=N> (sW(%,0)e PUi(%,0)|s)

=N (e Hu(z, B)Wi(x,0)|s)

» Time evolution (0, —ieAs(X, 7))W(X,7) =0
> Solution W(X, §) = ele o 4TA«ZNy (7, 0) = L(X)W(X,0)
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Physical meaning of Polyakov loop

7= NZ<sf|w(z, 0)e PHWT(%,0)|s')

_NZ 'le PHY(R, B)VT(X,0)|s")

» Time evolution (9; —ieAs(X,7))V(X,7) =0
> Solution W(X, §) = ele o 4TA«ZNy (7, 0) = L(X)W(X,0)

Z =N (slePHL(R)W(%,0)W(%,0)|s")

S/
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Physical meaning of Polyakov loop

» Z = e PF with free energy F

Roman Mani Finite temperature field theory



Refresh: Action and links
Center symmetry
Polyakov loop
Center Symmetry and Polyakov loop Physical meaning of Polyakov loop
Simulations

Physical meaning of Polyakov loop

» Z = e PF with free energy F

» Free energy of system containing quark
e~ s = Trfexp(—BH)L(X)]
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Physical meaning of Polyakov loop

» Z = e PF with free energy F

» Free energy of system containing quark
e~ s = Trfexp(—BH)L(X)]

» Divide by partition function of the pure gauge theory to
obtain energy difference — e #AFa = (L)
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Physical meaning of Polyakov loop

» Z = e PF with free energy F

» Free energy of system containing quark
e~ s = Trfexp(—BH)L(X)]

» Divide by partition function of the pure gauge theory to
obtain energy difference — e #AFa = (L)

» If (L) = 0 free energy infinite
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Center Symmetry and Polyakov loop

Physical meaning of Polyakov loop

» Create quark and antiquark at some different spatial points X
and x’
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Physical meaning of Polyakov loop

» Create quark and antiquark at some different spatial points X
and x’

> Free energy of pair e #8Fea = (L(%)LT(xX))
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Physical meaning of Polyakov loop

» Create quark and antiquark at some different spatial points X
and x’

> Free energy of pair e #Afaa = ([(X)LT(x"))
» Behaviour (L(X)LT(x")) — ()2 (X — x| — o)
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Physical meaning of Polyakov loop

» Create quark and antiquark at some different spatial points X
and x’

> Free energy of pair e #8Fea = (L(%)LT(xX))

» Behaviour (L(X)LT(x")) — ()2 (X — x| — o)

» If (L) = 0 energy increases with higher separations —
confinement
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Physical meaning of Polyakov loop

» Create quark and antiquark at some different spatial points X
and x’

> Free energy of pair e #8Fea = (L(%)LT(xX))

» Behaviour (L(X)LT(x")) — ()2 (X — x| — o)

» If (L) = 0 energy increases with higher separations —
confinement

» If (L) # 0 energy approaches finite constant —deconfinement
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Absolute value of P. loop as a function of temperature
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Distribution of Polyakov loop in complex plane

Re L
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Time evolution during simulation near critical
Temperature
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