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Symmetries and Conservation Laws

Basics of Classical Field Theory

@ Real, n-component Field ¢.

@ Dynamics: Lagrange Density L.

oL

@ n Momentum Operators: 7/(x) = BIGTIE)
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Symmetries and Conservation Laws

Basics of Classical Field Theory

@ Field Transformations:

$(X) = $(x) = (R(61,- -, 6k))b(X)
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Symmetries and Conservation Laws

Basics of Classical Field Theory

@ Field Transformations:
$(x) = d(x) = (R(B1 -+ . 0k))$()
@ R = Representation of Lie Group:

R0y, ,0k) = 6027 = 1 — i\, + 0(62)
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Symmetries and Conservation Laws

Basics of Classical Field Theory

@ Field Transformations:
$(x) = d(x) = (R(B1 -+ . 0k))$()
@ R = Representation of Lie Group:
R(6y,--- ,0k) = e 0a%a =1 — G\, + 0(6?)

@ )\, = Basis of Lie Algebra
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Symmetries and Conservation Laws

Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

SL($(X), 0u (X)) = L(S(x), 0uD(x)) — L((x), 0u(X))
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Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

SL($(X), 0u (X)) = L(S(x), 0uD(x)) — L((x), 0u(X))

(Use Euler-Lagrange)
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Symmetries and Conservation Laws

Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

SL($(X), 0u (X)) = L(S(x), 0uD(x)) — L((x), 0u(X))

(Use Euler-Lagrange)

= 020, (—i 535 7a0)
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Symmetries and Conservation Laws

Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

SL($(X), 0u (X)) = L(S(x), 0uD(x)) — L((x), 0u(X))

(Use Euler-Lagrange)

= 020, (~ 535 0a0) = Oaly ()
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Symmetries and Conservation Laws

Symmetries and Noether’s Theorem

@ Symmetry: §L(¢(x),0,0(x)) =0
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Symmetries and Conservation Laws

Symmetries and Noether’s Theorem

@ Symmetry: §L(¢(x),0,0(x)) =0

@ 0=0L= Gaau(Jg(X))
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Symmetries and Conservation Laws

Symmetries and Noether’s Theorem

@ Symmetry: §L(¢(x),0,0(x)) =0
@ 0=106L=1040,(J5(x))

@ Noether current:

J(x) = —ig@Esrad  with  9,J5(x) =0
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Symmetries and Conservation Laws

Symmetries and Noether’s Theorem

@ Symmetry: §L(¢(x),0,0(x)) =0
@ 0=106L=1040,(J5(x))

@ Noether current:

J(x) = —ig@Esrad  with  9,J5(x) =0

@ Noether charge:

Qa(t) = [J(t, X)d®x  with  £Qa(t) =0.
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

X; > + Canonical Commutation Relations
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

° ( ¢(x) — ‘?(X) > + Canonical Commutation Relations
m(x) — #(x)

@ Hilbert Space H of Physical States with Basis Vectors |a).
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

o ( 90)—=9(X) ) | canonical Commutation Relations
m(x) — &(x)
@ Hilbert Space H of Physical States with Basis Vectors |a).

@ Current and Charge Operators: J%(x) and Q(t)
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

° ( ¢(x) — ‘?(X) > + Canonical Commutation Relations
m(x) — #(x)

@ Hilbert Space H of Physical States with Basis Vectors |a).
@ Current and Charge Operators: J%(x) and Q(t)

@ For Symmetry Transformations: Noether’s Theorem

A ~

LQu(t) = [Qa(t), H] = 0

=9

d,J5(x)=0 and

o
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

o Qa(t) = —i [ #(t, ¥)Nad(t, X)d3x
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

o Qa(t) = —i [ #(t, ¥)Nad(t, X)d3x

@ Charge Algebra: [Qa(t), Qu(t)] = ifarcQs(1).
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

o Qa(t) = —i [ #(t, ¥)Nad(t, X)d3x
@ Charge Algebra: [Qa(t), Qu(t)] = ifarcQs(1).

@ Under Transformations: ¢ — ¢ la) — |&)
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

o Qa(t) = —i [ #(t, ¥)Nad(t, X)d3x
@ Charge Algebra: [Qa(t), Qu(t)] = ifarcQs(1).
@ Under Transformations: ¢ — ¢ la) — |&)

°4la)=(¢la)) = [a)=e %)
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Symmetries and Conservation Laws

Transfer to Quantum Field Theory

o Qa(t) = —i [ #(t, ¥)Nad(t, X)d3x

@ Charge Algebra: [Qa(t), Qu(t)] = ifape Qu(1).
@ Under Transformations: ¢ — ¢ la) — |&)
°4la)=(¢la)) = [a)=e %)

@ Charges = Generators of Transformations on H.
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Symmetries and Conservation Laws

Summary

@ Behaviour of Lagrangian under Transformations.
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Symmetries and Conservation Laws

Summary

@ Behaviour of Lagrangian under Transformations.
@ Variation of Lagrangian = Divergence of a Current.

@ Noether's Theorem: Each Symmetry of a System gives rise to
conserved Noether Currents and Noether Charges.
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Symmetries and Conservation Laws

Summary

@ Behaviour of Lagrangian under Transformations.
@ Variation of Lagrangian = Divergence of a Current.

@ Noether's Theorem: Each Symmetry of a System gives rise to
conserved Noether Currents and Noether Charges.

@ Quantum Mechanics: Noether Currents and Noether Charges
promoted to Operators.
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Symmetries and Conservation Laws

Summary

@ Behaviour of Lagrangian under Transformations.
@ Variation of Lagrangian = Divergence of a Current.

@ Noether's Theorem: Each Symmetry of a System gives rise to
conserved Noether Currents and Noether Charges.

@ Quantum Mechanics: Noether Currents and Noether Charges
promoted to Operators.

@ Noether Charges = Generators of Field Transformations. Algebra
of Charges.
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@ Conserved Quantities in QCD
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Chiral Symmetry of QCD

Outline

@ The QCD Lagrangian and its Symmetries
@ Conserved Quantities in QCD

@ Explicit Symmetry Breaking
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

@ 6 Quark Flavours (u,d,s,c,t,b)

m, = 0.005 GeV m,~ 1.2 GeV
my =0.009GeV | «1GeV < mp =~ 4.2 GeV

ms = 0.175 GeV my ~ 174 GeV

Felix Traub Goldstone’s Theorem and Chiral Symmetry Breaking



Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

@ 6 Quark Flavours (u,d,s,c,t,b)

my = 0.005 GeV m,~ 1.2 GeV

my =0.009GeV | «1GeV < mp =~ 4.2 GeV

ms = 0.175 GeV my ~ 174 GeV
@ 3 Colours (r,g,b)

aqr.r
qr = qf,g
ar.b
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

@ 6 Quark Flavours (u,d,s,c,t,b)

my = 0.005 GeV m,~ 1.2 GeV

my =0.009GeV | «1GeV < mp =~ 4.2 GeV

ms = 0.175 GeV my ~ 174 GeV
@ 3 Colours (r,g,b)

aqr.r
qr = qf,g
ar.b

@ g = Dirac 4-Spinor valued Fields
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

® Laco = Gs(iV"Dy — Mp)qr — 1GauGh”
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

® Laco = Gs(iV"Dy — Mp)qr — 1GauGh”
@ Covariant derivative: D, = 9, — igA,

is independent of Flavour.
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

® Laco = Gs(iV"Dy — Mp)qr — 1GauGh”
@ Covariant derivative: D, = 9, — igA,
is independent of Flavour.

@ G, .- Components of Field Strength Tensor
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

® Laco = Gs(iV"Dy — Mp)qr — 1GauGh”
@ Covariant derivative: D, = 9, — igA,
is independent of Flavour.

@ G, .- Components of Field Strength Tensor

@ Gauge Symmetry: SU(3)colour
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Chiral Symmetry of QCD

Chirality

@ Chirality Matrix: 45 = jy0172+3
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Chiral Symmetry of QCD

Chirality

@ Chirality Matrix: 45 = jy0172+3

@ Projectors: P = 5(1 4%  Pa=3(1+1°)
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Chiral Symmetry of QCD

Chirality

@ Chirality Matrix: 4> = jy%y'72+3
@ Projectors: P = 5(1 4%  Pa=3(1+1°)

@ Completeness, Orthogonality:
P .+ Pr=1 P .Pgr=PrP. =0

Felix Traub Goldstone’s Theorem and Chiral Symmetry Breaking



Chiral Symmetry of QCD

Chirality

@ Chirality Matrix: 4> = jy%y'72+3
@ Projectors: P = 5(1 4%  Pa=3(1+1°)

@ Completeness, Orthogonality:
P .+ Pr=1 P .Pgr=PrP. =0

® gr. = PLgs gr.r = Prgs gr=qrL+ Q1R
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

Lagrangian in the Light Quark Sector:

L = Zf:u,d,s qs(iv"Dp — me)qr — %ga,uugéﬂ/
= Y tmuds19r.(17"Dy)qrL + G; g(IV"Dy) A1 R

_ _ | .
—mQs 1 Gr.R — MiQs RA1LY — 392,95
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =30l (WD) ar + Gr a(I7"D,)ar R}

@ Approximation: Massless Quarks.
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =30l (WD) ar + Gr a(I7"D,)ar R}

@ Approximation: Massless Quarks.

@ Consequence: Independent Left- and Right-Handed Fields.
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =% 06l (W"Du)arL + Gr g(I7*Dy)ar R}

@ Symmetry: s — e qrr qrr— €% qrp
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =% 06l (W"Du)arL + Gr g(I7*Dy)ar R}

@ Symmetry: s — e qrr qrr— €% qrp

@ Vector Transformations:

gr — e~ "%q; Noether Current:V* = gy q
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =% 06l (W"Du)arL + Gr g(I7*Dy)ar R}

@ Symmetry: s — e qrr qrr— €% qrp

@ Vector Transformations:

gr — e~ "%q; Noether Current:V* = gy q

@ Axial Transformations:

gr — e—"eﬂsqf Noether Current: A* = g,y*1°q

Felix Traub Goldstone’s Theorem and Chiral Symmetry Breaking



Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =3 4.s{0r.. (W Du)ar L + Gr (VD) Gr R}

@ Recall: Flavour Independence of Covariant Derivative
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =3 4.s{0r.. (W Du)ar L + Gr (VD) Gr R}

@ Recall: Flavour Independence of Covariant Derivative

@ SU(3)favour . SU(3)Havour = Chiral Symmetry Group
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Chiral Symmetry of QCD

The QCD Lagrangian and its Symmetries

L0 =3 4.s{0r.. (W Du)ar L + Gr (VD) Gr R}

@ Recall: Flavour Independence of Covariant Derivative
@ SU(3)favour . SU(3)Havour = Chiral Symmetry Group

@ Vector/Axial Transformations:

u iob \F u b Ab 5
d N eflE'V?b d q— eleATy q
S S
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Chiral Symmetry of QCD

Conserved Quantities

@ Full Symmetry: SU(3)y x SUB)a x U(1)y x U(1)a
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Chiral Symmetry of QCD

Conserved Quantities

@ Full Symmetry: SU(3)y x SUB)a x U(1)y x U(1)a

@ 8+8+1+1 = 18 conserved Noether Currents.
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Chiral Symmetry of QCD

Conserved Quantities

@ Full Symmetry: SU(3)y x SUB)a x U(1)y x U(1)a
@ 8+8+1+1 = 18 conserved Noether Currents.

o Vi =7gn g A" =g 1 ar
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Chiral Symmetry of QCD

Conserved Quantities

@ Full Symmetry: SU(3)y x SUB)a x U(1)y x U(1)a
@ 8+8+1+1 = 18 conserved Noether Currents.
o Vi=gpntgr A =qn"y g

VI»L_*;A)‘Z A* — gyH 5)‘5
o Vy =agv"3q A, =aqV"v’2q
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

@ So far: Massless Quarks
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

@ So far: Massless Quarks

QR)

v 0 uL+ Ur
my a. +dg
0 mS S+ SnR

LM = (g, +9r)M(qy

+
up+Up
= d[_-I-d,q
5.+ Sr

co3
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

@ So far: Massless Quarks

LM = (q.+qp)M(ar + gr)
U, +Up m, O 0 u.+ Ug
= d,+dgr 0 mgy O a. +dg
S, + SR 0 0 ms S, + Sr

@ Not Invariant Under Chiral Symmetry: Explicit Symmetry
Breaking
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

@ Problem: Symmetry Broken = Conservation Laws Violated
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

@ Problem: Symmetry Broken = Conservation Laws Violated

0 9,Jt = 6L
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

@ Problem: Symmetry Broken = Conservation Laws Violated

@ J,Jt =L
oV =0
oA = 2igM~q
X
oVl = igM,%]q
F
9 AL = ig{M, % }5q
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

@ Problem: Symmetry Broken = Conservation Laws Violated

@ J,Jt =L
oV =0
oA = 2igM~q
X
gVl = iqIM,2]q
F
8 AL = ig{M, %2} q

@ Divergences « Quark Masses.
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

©o_ imrag b
@ 0,V =iqM, F]q
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

® 0,V{ = igM, %1q
@ )3 and \g commute with diagonal Matrices.
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

° au V[ﬁL = @[M, %g]q
@ )3 and \g commute with diagonal Matrices.

9, Vi =0 VI = Tytu
ouV§ =0 | = | V4 =dy*d | Are Conserved.
Vi=0

Vi =syts
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Chiral Symmetry of QCD

Chiral Symmetry Breaking

° au V[ﬁL = @[M, %g]q
@ )3 and \g commute with diagonal Matrices.

9,V =0 Vi = Tytu
ouV§ =0 | = | V4 =dy*d | Are Conserved.
0

Vi =syts

@ All quark masses equal = SU(3){/2"°“" unbroken.
Gell-Mann, Ne’eman: Approximate SU(3)favour Symmetry of
QCD
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Chiral Symmetry of QCD

Summary

@ Massless Limit: Chiral Components are independent.
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Chiral Symmetry of QCD

Summary

@ Massless Limit: Chiral Components are independent.

@ Phase invariance: U(1)y x U(1)a, 2 Noether Currents
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Chiral Symmetry of QCD

Summary

@ Massless Limit: Chiral Components are independent.
@ Phase invariance: U(1)y x U(1)a, 2 Noether Currents

@ Flavour invariance: SU(3), x SU(3)%, 16 Noether Currents
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Chiral Symmetry of QCD

Summary

@ Massless Limit: Chiral Components are independent.
@ Phase invariance: U(1)y x U(1)a, 2 Noether Currents
@ Flavour invariance: SU(3), x SU(3)%, 16 Noether Currents

@ Explicit Symmetry Breaking by Quark Masses:
Divergences of Noether Currents « Quark Masses.
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Chiral Symmetry of QCD

Summary

@ Massless Limit: Chiral Components are independent.

Phase invariance: U(1)y x U(1)a, 2 Noether Currents

Flavour invariance: SU(3)f, x SU(3)%, 16 Noether Currents

Explicit Symmetry Breaking by Quark Masses:
Divergences of Noether Currents « Quark Masses.

Individual Flavour Currents Survive: ty*u, dv*d,sy"s.
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Outline

@ Spontaneous Symmetry Breaking - An Intuitive Example
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Outline

@ Spontaneous Symmetry Breaking - An Intuitive Example

@ Quantum Mechanical Proof
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ 2-Component, Real Field ¢ = (¢1, ¢2)
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ 2-Component, Real Field ¢ = (¢1, ¢2)

£= 30,0101 + $0,520" o — (5 + 3B) — (0% + 3B
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ 2-Component, Real Field ¢ = (¢1, ¢2)

£= 30,0101 + $0,520" o — (5 + 3B) — (0% + 3B

@ SO(2) Invariance.
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ 2-Component, Real Field ¢ = (¢1, ¢2)

£= 30,0101 + $0,520" o — (5 + 3B) — (0% + 3B

@ SO(2) Invariance.
@ For p? > 0: Two Massive, Interacting Fields.
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ 2-Component, Real Field ¢ = (¢1, ¢2)

£= 30,0101 + $0,520" o — (5 + 3B) — (0% + 3B

@ SO(2) Invariance.
@ For p? > 0: Two Massive, Interacting Fields.

2

@ For ;2 < 0: Minimum at |$(x)| = v = /- %
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ Physical Fields: Perturbations around Minimum
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ Physical Fields: Perturbations around Minimum

P(x) = ( Vj;j;(()x) )
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

@ Physical Fields: Perturbations around Minimum

P(x) = ( Vj;j;(()x) )

@ Choice of Physical Minimum destroys SO(2) Invariance!
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

L= (0,61(3)0"61(x) + % n ()
(0, p2(x)0" p2(x))

(cubic + quartic)

++

@ One Massive Field (Radial Excitations)
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

An Intuitive Example

L= (0,61(3)0"61(x) + % n ()
(0, p2(x)0" p2(x))

(cubic + quartic)

++

@ One Massive Field (Radial Excitations)

@ One Massless Field (Rotational Excitations)
= Goldstone Boson.

Felix Traub Goldstone’s Theorem and Chiral Symmetry Breaking



Spontaneous Symmetry Breaking and Goldstone’s Theorem

Quantum Mechanical Proof

@ Definition of SSB.
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Quantum Mechanical Proof

@ Definition of SSB.

@ Goldstone’s Theorem: In a theory that is spon. broken, each
broken generator gives rise to a massless scalar particle.
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Quantum Mechanical Proof

@ Definition of SSB.

@ Goldstone’s Theorem: In a theory that is spon. broken, each
broken generator gives rise to a massless scalar particle.

@ Existence of Green functions with Poles at p?> = 0.
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Quantum Mechanical Proof

@ Definition of SSB.

@ Goldstone’s Theorem: In a theory that is spon. broken, each
broken generator gives rise to a massless scalar particle.

@ Existence of Green functions with Poles at p?> = 0.

@ Existence of Massless, Scalar Particles (Goldstone Bosons)
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Summary

@ The Vacuum does not have full Symmetry of Lagrangian
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Summary

@ The Vacuum does not have full Symmetry of Lagrangian

@ Non-vanishing VEV for Field Operators, Vacuum is Charged.
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Summary

@ The Vacuum does not have full Symmetry of Lagrangian
@ Non-vanishing VEV for Field Operators, Vacuum is Charged.

@ Emergence of Massless Bosons: Goldstone Bosons
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Spontaneous Symmetry Breaking and Goldstone’s Theorem

Summary

@ The Vacuum does not have full Symmetry of Lagrangian
@ Non-vanishing VEV for Field Operators, Vacuum is Charged.
@ Emergence of Massless Bosons: Goldstone Bosons

@ # Goldstone Bosons = # Broken Symmetries
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Spontaneous Breaking of Chiral Symmetry

Outline

@ Spontaneous Symmetry Breaking in QCD
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Outline

@ Spontaneous Symmetry Breaking in QCD

@ The Pions
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Spontaneous Breaking of Chiral Symmetry

Outline

@ Spontaneous Symmetry Breaking in QCD
@ The Pions

@ Masses for the Goldstone Bosons
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Spontaneous Breaking of Chiral Symmetry

Spontaneous Symmetry Breaking in QCD

@ Attractive Interaction between g and gq.
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Spontaneous Breaking of Chiral Symmetry

Spontaneous Symmetry Breaking in QCD

@ Attractive Interaction between g and gq.

@ Expect a gq Condensate in Ground State: (0| gq|0) # 0.
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Spontaneous Breaking of Chiral Symmetry

Spontaneous Symmetry Breaking in QCD

¢ = ﬁ,-q; M= @’qul' i,j€{u,d,s}

@ Bound States of 2 Fermions: Bosonic Field Operators.
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Spontaneous Symmetry Breaking in QCD

¢ = ﬁ,-q; M= @’qul' i,j€{u,d,s}

@ Bound States of 2 Fermions: Bosonic Field Operators.

@ Parity(®) = +, Parity() = -.
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Spontaneous Breaking of Chiral Symmetry

Spontaneous Symmetry Breaking in QCD

¢ = ﬁ,-q; M= @’qul' i,j€{u,d,s}

@ Bound States of 2 Fermions: Bosonic Field Operators.
@ Parity(®) = +, Parity() = -.

@ Hermiticity: T =o, NMf=n
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Spontaneous Breaking of Chiral Symmetry

Spontaneous Symmetry Breaking in QCD

¢ = ﬁ,-q; M= @’qul' i,j€{u,d,s}

@ Bound States of 2 Fermions: Bosonic Field Operators.
@ Parity(®) = +, Parity() = -.
@ Hermiticity: T =o, NMf=n

@ ® and Mare in (1,1) of SU(3) vector-
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Spontaneous Breaking of Chiral Symmetry

Spontaneous Symmetry Breaking in QCD

@ QCD respects Parity.
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Spontaneous Symmetry Breaking in QCD

@ QCD respects Parity.

@ SU(3)y is exact symmetry.
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Spontaneous Symmetry Breaking in QCD

@ QCD respects Parity.
@ SU(3)y is exact symmetry.

@ gqg Condensate in Vacuum.
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Spontaneous Breaking of Chiral Symmetry

Spontaneous Symmetry Breaking in QCD

@ QCD respects Parity.
@ SU(3)y is exact symmetry.

@ gqg Condensate in Vacuum.

(0[®0) = v1(sxg #0  (0[M]0) =0
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Spontaneous Breaking of Chiral Symmetry

The Pions

ma(x) = 3TH(N(x)Aa) = 39(X)Aa7°q(x)

@ Green function: Gh, = (0| T[A5(x)7mb(y)] |0)
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Spontaneous Breaking of Chiral Symmetry

The Pions

ma(X) = zT(N(x)Aa) = 3G(x)Aa1°q(x)

@ Green function: Gh) = (0| T[AL(x)7m(y)] 0)

® 52 Ghy = 3(x° — y°) (0] [Aa(x), mp(¥)]10) = ~3id™(x — y)dapV.
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Spontaneous Breaking of Chiral Symmetry

The Pions

ma(X) = zT(N(x)Aa) = 3G(x)Aa1°q(x)

@ Green function: G5, = (0] T[A%(x)7ms(y)] |0)
© 55 Gy = 6(x° — y°) (0] [AZ(x), mo ()] [0) = —3id(x — y)dapV.

@ Proved: Green Functions with Pole at p> =0 = Goldstone’s
Theorem
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Spontaneous Breaking of Chiral Symmetry

The Pions

@ SU(3)4 broken = 8 Goldstone Bosons # Experiment.
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Spontaneous Breaking of Chiral Symmetry

The Pions

@ SU(3)4 broken = 8 Goldstone Bosons # Experiment.

@ Consider only u,d Quark:
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Spontaneous Breaking of Chiral Symmetry

The Pions

@ SU(3)4 broken = 8 Goldstone Bosons # Experiment.

@ Consider only u,d Quark:

. wdu dydu
= ( Uy*d  dy°d ) ~
T = %Tr(n01) = %(@75U+U75d)
m = 3 T(Moz) = 3 (dy°u —Ty°d)
T3 = 3 Tr(Mo3) = 3(TUyPu — dy°d)
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Spontaneous Breaking of Chiral Symmetry

The Pions - Experimental Facts

@ Triplet under SU(2) vector Vv
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The Pions - Experimental Facts

@ Triplet under SU(2) vector Vv

@ Negative Parity /
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The Pions - Experimental Facts

@ Triplet under SU(2) vector Vv
@ Negative Parity /

@ Spin=0 /
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Spontaneous Breaking of Chiral Symmetry

The Pions - Experimental Facts

@ Triplet under SU(2) vector Vv
@ Negative Parity /
@ Spin=0 /

@ Not Massless, but lightest Mesons =~ /
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Spontaneous Breaking of Chiral Symmetry

The Pions - Experimental Facts

@ Triplet under SU(2) vector Vv
@ Negative Parity /
@ Spin=0 /

@ Not Massless, but lightest Mesons =~ /

t =dydu 7~ =uyd = %(UVSU — d+%d)
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Spontaneous Breaking of Chiral Symmetry

Masses for the Pions

@ SU(2)axias Only Approximate Symmetry.
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Masses for the Pions

@ SU(2)axias Only Approximate Symmetry.

@ Assume: my=mg=m (SU(2) vector €XaCt)
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Masses for the Pions

@ SU(2)axias Only Approximate Symmetry.
@ Assume: my=mg=m (SU(2) vector €XaCt)

° 0,AL = ig{M,cf}y5q ~ 2mm,
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Spontaneous Breaking of Chiral Symmetry

Masses for the Pions

@ SU(2)axias Only Approximate Symmetry.
@ Assume: my=mg=m (SU(2) vector €XaCt)

° 0,AL = ig{M,cf}y5q ~ 2mm,

o Assume: (0] Tlra(x)m5(y)] [0) = Coap | 5z P Vd?p
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Spontaneous Breaking of Chiral Symmetry

Masses for the Pions

@ In Fourier Space:
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Spontaneous Breaking of Chiral Symmetry

Masses for the Pions

@ In Fourier Space:

P Gop(P) = 2Viap — Cigzm(sab

2
—m3
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Spontaneous Breaking of Chiral Symmetry

Masses for the Pions

@ In Fourier Space:

P Glap(P) = 2V0ap — Ciszm‘s"“’

—m?

@ Choosev,C = Move Pole from 0 to m?.
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Spontaneous Breaking of Chiral Symmetry

Masses for the Pions

@ In Fourier Space:

P Glap(P) = 2V0ap — Ciszm‘s"“’

—m?

@ Choosev,C = Move Pole from 0 to m?.

m2

— O Mauark
Pion_C v
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Spontaneous Breaking of Chiral Symmetry

Summary

@ Vacuum of QCD contains gg Condensate.
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Spontaneous Breaking of Chiral Symmetry

Summary

@ Vacuum of QCD contains gg Condensate.

@ SU(2)axias broken.
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Spontaneous Breaking of Chiral Symmetry

Summary

@ Vacuum of QCD contains gg Condensate.
@ SU(2)axias broken.

@ Emergence of 3 Goldstone Bosons = Pion Triplet.
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Spontaneous Breaking of Chiral Symmetry

Summary

@ Vacuum of QCD contains gg Condensate.
@ SU(2)axias broken.
@ Emergence of 3 Goldstone Bosons = Pion Triplet.

@ Explicit Breaking of Chiral Symmetry: Masses for Pions.
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