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1 Introduction

The perturbative approach in QED is very successful. Every higher order in perturbative
theory comes with a higher order in the coupling constant av. With a coupling constant
a & % well below 1, QED can be described in a precise way already in low orders.
Now QCD is completely different. Experiments show that the coupling constant of the
strong interaction gets very small at short distances. This means that particles obeying
strong interactions get almost free for small distances. This behaviour is called asymptotic
freedom. In the asymptotic freedom the coupling constant is of course very small and a
perturbative approach is justified. But for larger separations the coupling gets larger and
larger. When the coupling constant approaches 1, perturbative theory will breakdown,
as one can not only look at the leading terms but would have to take the whole series.
The behaviour of the coupling constant getting larger for larger distances leads to the
situation that one is not able to separate particles as long as they are not color neutral.

The fact that only color neutral particles as asymptotic states exist is called confinement.

Because of the large coupling we need an alternative for the perturbation theory - a
non-perturbative approach. The most succesful non-perturbative approach to date for
QCD is the lattice theory. First of all we would like to have a look at the partition
function Z = [ Dge . We have two infinities here: First, every field ¢ can have an
infinite amount of configurations. Second, we integrate over an infinite amount of space-
time points. Those two infinities make it impossible to solve this problem numerically.
So we want to replace the continuum space-time by a discrete one. This we can do
by introducing a lattice, where every field ¢ is only defined on a lattice point. So we
replace the continuum space-time by a discrete one, having then only a finite number of
space-time points as long as the lattice is stretched over a finite volume. One can prove
that different lattices yield the same results in the continuum limit, therefore usually the
simplest one, i.e. the hypercubic lattice, is considered.

But with the lattice theory we might get rid of an infinite space-time points and
therefore an infinite amount of integrals, but do we really study a physical theory when
considering it in a non-physical environment, i.e. working on the lattice instead in a
continuum space-time? This question is very subtle. One might think that if we make
the lattice finer and finer and in the end take the continuum limit (i.e. we let the lattice
spacing a go to 0) one should end up with continuum QCD. But this is a process which
involves more work than it might seem in the beginning. Several problems arise and
probably the most important one is, that introducing a lattice breaks certain symmetries,
for example rotational symmetry. If we work on a lattice the theory can only be invariant
under rotations of a multiple of 7. Also the translation symmetry is broken, as only
translations of a multiple of the lattice spacing a are valid. But calculations show, that
those symmetry breaking terms come in higher order with the lattice spacing a, so if
we let a — 0 we really end up with a gauge theory having the desired rotational and



translational symmetry.

Another problem which can arise is due to fermions on the lattice. Because of the
spin-statistics properties and their mathematical description as Grassmann variables we
encounter some problems when dealing with fermions on the lattice. There exist several
solutions to this problem, while we will use one of those solutions in this talk, we will not
go into any further detail about the problem and for the time being just ignore it.

2 Abelian gauge fields on the lattice (QED)

In this section, we want to study how an abelian gauge field behaves on the lattice, to do
so we consider QED as an example. In the next section we go a step further and look at
a non-abelian gauge field.

The action of QED is given by

Saep = [ die |60y D~ (o) - 1FE 1)

where the last term is the kinetic term familiar from classical electrodynamics and
are the Dirac-matrices in Minkowski space-time, m is the mass of the particle and D, =
0, +1eA, denotes the covariant derivative which was introduced to obtain an action which
is invariant under the local U(1) transformations

¥(2) = Gla)(a). 2
$(2) = b)), | (3)
(@) = G@)4,(@)G (@) - ZC(2)9,67 () (4)

with
G(z) =@ e U(1). (5)

Note, that A(x) depends on x, so we have invariance under local transformations, not
only global transformations. Using the covariant derivative D, instead of the "normal”
derivative 0, we promote the invariance from a global one to a local one.

Also we could have written (2) as A, — A, — 28, A - which is probably more familiar
-, since A, and G commute. But this will not be the case anymore when we look at the
non-abelian theory.

As the lattice theory is formulated in euclidean spacetime (i.e. z° — —ixy), we would
like to express the action (1) in the euclidean version as well. From 2 — —izy it follows
Jo — —%84 = +i0y, so in order to D,, transform properly (namely into itself) we demand
the transformation of A to be A? — +iA%.
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Hence the action (1) transforms as (as we are now only dealing with the euclidean
action S we will omit the index F for simplicity for the rest of this paper)

Saep — i85 =i [ d'a [S2)0#D, + m)ie) + 1 E|. ©)

where we have introduced a new set of y-matrices:

= (7)

Yi = —va[

Of course, usually the ~v,/-matrices are just called v and the new defined matrices
which hold in Euclidean space-time have an index, rather than those used in Minkowski
space-time. As we are here dealing only in Euclidean space-time and don’t want to carry
unnecessary indexes along every calculation we simply define the Euclidean y-matrices
as those without index. In analogy to the Clifford algebra for Minkowski ~,,-matrices
{Vh Yot = 2¢", we have an even simpler anticommutation relation

{'y/m ’YV} = 25,uu 5 (8)
while we are always working with the signature g = diag(1, —1, -1, —1).

As a sidenote and to draw a connection to the first talk in this series we also denote
here the generating functional of the QED action:

Z[J,n,n = / (DA)(Dz/jwa)eiSoHfd4xJuAu+ifd4x(ﬁ¢+qzn) . 9)

Remember that one has to differentiate with respect to the sources J*, n and 7 to compute
the Green functions.

2.1 The lattice formulation

If we want to formulate the theory from the above section on a lattice we will not have
anymore a continuous spacetime but a discrete one. Therefore we suggest the following
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substitutions to be made in a lattice formulation:

5= ma (10)
/ de -ty (11)
Va(e) = =) = —ati(an), (12)
Ga(@) = —5a(n) = —av(an) (13)
00(w) = —mdd(0) = o Waln + ) ~duln— )], (14
m— i (15)

where /i is a unit vector pointing along a lattice direction.
For simplicity we forget about the mass-term (i.e. we set m = 0) and split up the
above action to treat the two terms separately, for this we write

S = / d*z (2)y" D, (z) + / d'z iF‘“’FW =51+ 5. (17)

Now we just write down the action, we will check later that it indeed leads to the contin-
uum action S; as written above when taking the continuum limit.

$1 = 50 0) S lUalm)ln + ) — Ubln — i(n — )] (18)

where we have introduced a factor U(x,y) = U(z,z +¢€) =: U(x). This factor is included

because according to (2) and (3) ¥ (z)(y) transforms to ¥ (2)G~1(x)G(y)(y) and one
can show that U(x,y) transforms to G(x)U(x,y)G~*(y) so if we modify

P(a)b(w + ) = DU}l + ), (19)
Do+ (@) — Do + U (@0)(x) (20)

we achieve gauge invariance. Now one can show that the so called Schwinger line integral
can be written as

UM (;p) = gle f;-HL da’ Ay (")

= Uu(n) — 67;0,614#(”) ~ 1 + iaeAM(n) . (21)



Note that the U,(n) are elements of the U(1) gauge group. This is why they are usually
referred to link variables or simply as links. They are directed quantities and we have

Uu(n) = UL, (n + f1). (22)

Now one can easily check that (18) recovers the Dirac action in the limit a — 0

Si = 5 (n)lUu(m)(n+ i) = Ul(n — f)ib(n — )]
= 21 +iaeAu(n) + .. )(W(n) + adup(n) + ... )—
(1 —iaeA,(n) +...)(1(n) — adup(n) +...)]
= V)70, + L +.. )v(n)+
ied ()Yl A, + (382 A, + (8,408, + A2) + ... Jv(n)

= Y(n)y,(0, +ied, )Y (n) + O(a?) .

(23)

In the O(a?) all symmetry breaking terms are included. As shortly mentioned above
rotational and translational symmetry are broken when a lattice is introduced. By taking
the naive continuum limit a — 0 those additional terms vanish fast enough so that the
original symmetry is achieved again.

For the lattice gauge action we introduce the 1 x 1 plaquette (see figure 1), which
represents the simplest Wilson loop

Pu(n) = U,(n)U,(n+ @)Ul (n+ 2)Ul(n) . (24)

Using (21) one finds that
P(n) = e Bueto) (25)

where

Fu(n) = ~[(Ay(n+ ) = A,(n)) = (Au(n+ ) — Ay(n))] (26)

a

is a discretized version of the continuum field strength tensor.
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Figure 1: The 1 x 1 plaquette

It then follows for small a that

Sy = e% Zn Zu,u,u<u [1 - %(P/W(n) + P/“’(n)T)]
= eiz Zn Zu,u,,u<u

(1= 51+ iea® Fyugy — S5 Fp, (n) + -+ 1= iea®Fy(n) = SFFR,(n) + ..
= &5 S [1 - 52— €a* L, ()] + O(a”)
~ % Zn Z,u,l/,,u<u [a4F3V (n>]

- % Zn“u,,u a4FHV (n) FHV (n) .

(27)
Note that the last sum extends over all 4 and v and the double counting is taking care
of by an extra factor of 3. If we then take the limit a — 0 and remember (11) we indeed
get the continuum gauge action.
So we end up with the simplest formulation of the lattice action which reads

S = 50 X, U)o (n + i) = Ul(n — @)(n — )]
2 Xon D 11— 5(Bu(n) + Pl (n)] (28)
+im 3, P (n)i(n) .

But this equation is not very useful for the formulation of the lattice action in QCD.
The problem is, that the fermions on the lattice have some subtle difficulties: In particular,
the naive fermion discretization yields too many fermionic modes (doublers). One can
avoid those problems in different ways, one of them is using so called Wilson fermions.
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By using Wilson fermions the derivation of the action gets a bit more difficult but the
idea stays the same (namely that the action has to reproduce the continuum action in
the limit a — 0). We will not go into any details of the derivation but instead just write
down the lattice action for an abelian gauge theory with Wilson fermions:

SopplU 9] = 535, 2 uucll = 5(Pu(n) + PL(n)] + (i +4r) 32, 9 (n)i)(n)—

3 L) Ly = 1) U)o+ f1) + (n+ @) (r - La + 7,) UL (n)$(n)] -

(29)

The gauge action stays the same as before, as there are no fermions involved, but the

fermion action looks now a bit different. We have introduced an additional term r - A

compared to (28), where r is the Wilson parameter. With this additional term one can

avoid the problems arising with fermions on the lattice. This additional factor can be

added as long as the continuum limit a — 0 will not change and one can show that this
is indeed the case.

3 Non abelian gauge fields on the lattice

For the non abelian case we can proceed similarly to the abelian case but we have to
consider that the abelian group U(1) is replaced by the non-abelian group SU(N), where
in QCD N is 3. So we have to replace the fields ¢ with

77Z)1
v=|: |,v=(" ..., V). (30)
,¢N
The fermion action for the non-abelian case then reads the same as the one for the
abelian case

Sp = (i +4r) 32, ¥(n)i(n)

_ _ (31)
—5 2 [ () = 1)U () (n + i) + P+ @) (r +7,) Ui (n)e(n)]
and this equation is also invariant under the same local transformations
U(n) = Gn)(n) (32)
h(n) — ()G (n), (33)
Uu(n) — G(n)Uu(n)G™ (n+ i), (34)
Ui(n) — G(n+ ,&)Ug(n)G_l(n) , (35)



but now we have to be careful, as G(n) and U,(n) are elements of SU(N) and they can
be written as

G(n) = e (36)
U'u(n) — ei¢u(n) — eigaAu(n) , (37)

where A(n) and ¢,(n) are elements of the Lie algebra of SU(N). For the Wilson loop
(24) the same relation holds

Po(n) = Up(m)Uy (n + )US(n + 2)US () (38)

This quantity is path ordered and this time the ordering is important as the link variables
are not abelian anymore. In the abelian case the link variables were just some complex
numbers, but in the non-abelian case we have to deal with matrices. We form the sim-
plest gauge-invariant quantity which is just the trace of the path ordered product of link
variables along the boundary of an elementary plaquette

S = =Tr 3 [a = 5(Puln) + PL (). (39)

n,u<v

where we have a constant factor in front of the trace to end up with the right gauge
action.
As before we write
Uy (n) = €99 Fiv(m) (40)

but this time it will be harder to get the relation between F,,(n) and A,(n) as the
link variables appearing in (38) do not commute anymore and one has to use the Baker-
Campbell-Hausdorft formula

eAeB — pA+B+3[ABl+... (41)

One then finds that
f,u,u — F,u,y = a,uAV - al/"4/L + Zg[AIM AV] (42)

for a — 0 and this is the expression for the field strength tensor in continuum QCD: the
gluon field tensor.

Let us briefly discuss this tensor: In the abelian case the commutator vanishes of course,
Fﬁy leads then only to two interacting A-fields. This is different for the non-abelian gluon
field tensor, here also A-fields to the order 3 and 4 are possible, which corresponds to 3-
and 4-gluon interactions. Gluons can therefore interact with themself, they also carry a
color charge!



If we apply the local transformation (34) to the action (39) and make use of the
expression '
Uy(n) = clmutr), (43)

we get the transformation law for A, in the continuum limit:
Au(r) = Gz) A ()G (x) — éG(x)@HG_l(x) , (44)

which is of course the same as (3).
So now we have constructed our non-abelian action for QCD, it reads as

S = (it 4r) Y, d(n)b(n)
~1 50, ) = ) Up ()0 + 1) + D0+ ) (r + 3)Uf ()] (45)
+5TrY, o [l — 5(Pu(n) + Pf,(n))],

4 The continuum limit

4.1 The naive limit

In the preceding section we constructed a lattice gauge action which reproduces the QCD
action in the continuum limit. But we could also have constructed another action which
would have led to the right QCD action in the limit. And also just because we might
recover the right action it is not sure if our construction really leads to a meaningful
theory. By taking the limit for the lattice spacing a — 0 we never thought about the
consequences and just worked with the naive limit. This worked good for the action but
to get a physical result now we have to be more careful and be sure, that the theory we
get when a goes to 0 does not have any remnants of the lattice. For example we may
consider an observable O, which depends on the lattice spacing a and another quantity
which we denote with ¢ as it will turn out that it will be the coupling constant. But
g may also depend on a and as we will see later it really does and this is an important
feature of QCD. Now for @ — 0 we want to get the physical value of © (which we denote
with © PHY S)

©(g(a),a) = Oppys . (46)

So when @ — 0 in order to have © — Oppyyg, g(a) will be tuned this way, so that the
relation (46) will be fulfilled. So if ©pyys and also its corresponding lattice quantity is
known one can determine g(a). Now one may argue that the function g(a) may depend
on the observable © one chooses but for sufficiently small a, when the lattice theory really
describes continuum physics then does a universal function g(a) exist.
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4.2 Asymptotic freedom

We’ve seen that we can use any observable to determine g(a), which will be the goal of
this chapter. We will use the static ¢g potential which is

1~ R
V(Tvgv(Z) - aV(CL?g)? (47)
where R is the physical separation and the hat on the V indicates that this quantity is
to be understood as the lattice quantity corresponding to the continuum (i.e. physical)
potential. (47) holds for a finite, but small lattice spacing. Now for a sufficiently small
lattice spacing (47) must become independent of a. Thus the potential must satisfy the
renormalization group equation

0 0
—- _ —IV(R =0 48
03¢ = A5 IV (R.g.0) =0, (13)
where 5
g
= —a—= 49
Blg) = —am_ (49)
is the so called Callan-Symanzik S-function.
Note that we can rewrite (48) as
a%e —B9)%5 = 0
v 99 oV —
< an-t 55 =0
da da Og (50)
9
& al% + 5‘1%—‘;] =0
& a- % = 0.

So we want to have the potential V' to be independent of the lattice spacing a.

The next step would therefore be to calculate 3(g), which can be done in perturbation
theory.

In the second talk the Wilson loop was introduced as

Wc[A] _ eief dz Au(z) , (51)

where C' is the contour we are integrating along. As discussed in the second talk we
are interested in the ground state expectation value in the absence of the static quark-
antiquark source, i.e. for large T'. With the overlap of our original state with the ground
state F'(R) and the interaction energy V(R) we have

(WelA]) = W(R,T) —— F(R)e™" 7 (52)
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Figure 2: Some diagrams contributing to (54) up to order g*.

and therefore the potential V(R) can be calculated as
V(R) = — i ! In (Wg|A 53
(R) =~ lim ~In (Wo[A]). (53)
So in order to calculate 3(g), one can expand the continuum expression

1 .
V(R,g,a) = — lim Tln[mpe@gf dznAu(2))] (54)

T—oo
and one then finds that

22 R

C
g% + @94 In o +0(¢%)], (55)

V(R, g, CL) = RR

where C' is a group theoretical factor which is irrelevant for our case. Up to O(g*) the
diagrams in fig. 2 contribute to the potential.
By putting (55) in (48) we readily find that

11
1672

Blg) = ——=9°. (56)

We expect this to be a good approximation for a sufficiently small coupling constant

g.
Integrating (49) leads to

1 _16x2

a=-—e 22 (57)
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where Ay, is an integration constant and we see that 3(g) goes to 0 as a — 0, so we have
fora — 0
g—0. (58)

That means for vanishing lattice spacing, i.e. for the continuum limit we end up with a
vanishing coupling constant for small separations. This fact is experimentally well tested
and is called the asymptotic freedom. In other words the interaction between particles in
this gauge theory becomes arbitrarily weak for short separations.

5 Strong coupling expansion

We now want to have a look at the gg-potential V(R), which we already studied in the
previous chapter but now we look at large separation. For short separations we have seen
that the coupling constant goes to 0, but for a small coupling constant we could also use
an expansion in perturbation theory and therefore the lattice approach is not motivated.
But as the theory predicts and as experiments confirm, the running coupling of QCD
grows for large distances between the quarks and a treatment in the perturbation theory
frame is no longer justified. (39) suggests an expansion in powers of the inverse coupling,
this is the analog of the high temperature expansion in statistical mechanics. We want to
concentrate on the leading strong coupling factor. We write equation (39) as

So=23"[- éTT(P + P, (59)

2
9 P

where the summation over P just means that we sum over every elementary plaquette
taken in the counterclockwise direction. We rewrite this as

6
Se=——= Z Sp + const. (60)
9

where

1
Sp = 6Tr(P + PT). (61)

The corresponding partition function now is
Z = /DP e Se (62)

Now we also introduce the gauge invariant Wilson loop operator

WelPl=Tr [] P\ (63)
leCy,
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Figure 3: Smallest number of elementary plaquettes with non-vanishing integral.

where (', is a Wilson loop. This quantity is only gauge invariant when it is path ordered.

The expectation value of the Wilson loop operator with spatial extension R and tem-
poral extension 7" (see figure 4) is given by

_ [ DPW[P][]p e

<WC{P]> fDP H eBSp ) (64)
P
where we have written
6
f=—. 65
= (65)
The exponential can be expanded as
BSp __ ﬁn n
[T =TT |32 s (66)
P P n )

We're interested in the leading contribution for the expectation value of the Wilson loop
operator so we want to keep (3 as small as possible. As each plaquette in the expansion
adds a factor of 3, the leading contribution is achieved by choosing the way with the
smallest number of elementary plaquettes but for which the integral does not vanish.

Let us have a look at the standard group integrals involving polynomials of the link
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variables for any unitarian group. We have the following integrals:
/ av =1, (67)
/ daUU =0, (68)
/ﬁUWU:/QU:l. (69)

Therefore we see from (69) that in order to have a non-vanishing integral every U must
be paired with a UT, in other words, every link must be taken care of another link which
points in the other direction.

Figure 3 shows an example of the leading contribution to (W¢[P]) in the strong coupling
approximation for an exemplary Wilson loop C.

The numerator is proportional to 3% while the leading contribution to the denomina-
tor is obtained by making the replacement e”2 5P — 1, therefore we have

(WelP)) ~ ¢ (é)R 7 (70)

where the constant ¢ can be calculated with the group integrals and this leads to ¢ =

(%)RT*I, so we finally end up with

3 RT
Pl) =~ — . 1
ovelPh ~3 (1) )
The gg-potential in the strong coupling limit is then given by
V(R) =~ lim = In(WelP)) = 6(9)R, (72)

where we have defined the string tension measured in lattice units

&:—m<%), (73)

(WeP)) ~ 3e0FT (74)

with this quantity we can write

which holds in the leading strong coupling approximation.
Now we observe something important and it is this observation which made the lattice
theory so successful: The potential V(R) = limy_.o — 7 In(W¢[P]) increases linearly with
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Figure 4: Integration contour on a lattice in two space-time dimensions.

R. In other words, if we try to separate two quarks we would have to put an infinite
amount of energy in it. It is therefore impossible to separate two quarks. This is also true
for all particles which are not in a color-singlet state. This behaviour is called confinement.

So our lattice theory does imply confinement. But we still have hats on our quantities,
that means we’re still dealing with quantities on the lattice - we’re still in lattice theory! If
and how this confining property persists into the small coupling regime, where continuum
physics should be observed is out of the scope of this talk.
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