Goldstone's Theorem and Chiral Symmetry Breaking

Felix Traub

ETH Zürich

April 20, 2009

Outline

Symmetries and Conservation Laws

Spontaneous Symmetry Breaking and Goldstone's Theorem

Spontaneous Breaking of Chiral Symmetry

Symmetries and Conservation Laws

Chiral Symmetry of QCD Spontaneous Symmetry Breaking and Goldstone's Theorem Spontaneous Breaking of Chiral Symmetry

Outline

Basics of Classical Field Theory

• Symmetries and Noether's Theorem

Transfer to Quantum Field Theory

Symmetries and Conservation Laws

Chiral Symmetry of QCD Spontaneous Symmetry Breaking and Goldstone's Theorem Spontaneous Breaking of Chiral Symmetry

- Basics of Classical Field Theory
- Symmetries and Noether's Theorem
- Transfer to Quantum Field Theory

Symmetries and Conservation Laws

Chiral Symmetry of QCD Spontaneous Symmetry Breaking and Goldstone's Theorem Spontaneous Breaking of Chiral Symmetry

- Basics of Classical Field Theory
- Symmetries and Noether's Theorem
- Transfer to Quantum Field Theory

Basics of Classical Field Theory

• Real, n-component Field ϕ .

- Dynamics: Lagrange Density *L*.
- n Momentum Operators: $\pi^i(x) = \frac{\partial \mathcal{L}}{\partial(\partial_0 \phi_i(x))}$

< ロ > < 同 > < 三 > < 三

Basics of Classical Field Theory

- Real, n-component Field ϕ .
- Dynamics: Lagrange Density *L*.
- n Momentum Operators: $\pi^{i}(x) = \frac{\partial \mathcal{L}}{\partial(\partial_{0}\phi_{i}(x))}$

< D > < P > < E > < E</p>

Basics of Classical Field Theory

- Real, n-component Field ϕ .
- Dynamics: Lagrange Density *L*.
- n Momentum Operators: $\pi^{i}(x) = \frac{\partial \mathcal{L}}{\partial(\partial_{0}\phi_{i}(x))}$

Basics of Classical Field Theory

• Field Transformations:

$$\phi(\mathbf{x}) \rightarrow \tilde{\phi}(\mathbf{x}) = (\mathbf{R}(\theta_1, \cdots, \theta_k))\phi(\mathbf{x})$$

R = Representation of Lie Group:

$$R(\theta_1,\cdots,\theta_k)=e^{-i\theta_a\lambda_a}=1-i\theta_a\lambda_a+O(\theta^2)$$

• λ_a = Basis of Lie Algebra

< D > < P > < E > < E</p>

Basics of Classical Field Theory

• Field Transformations:

$$\phi(\mathbf{x}) \rightarrow \tilde{\phi}(\mathbf{x}) = (\mathbf{R}(\theta_1, \cdots, \theta_k))\phi(\mathbf{x})$$

• R = Representation of Lie Group:

$$R(\theta_1,\cdots,\theta_k)=e^{-i\theta_a\lambda_a}=1-i\theta_a\lambda_a+O(\theta^2)$$

• λ_a = Basis of Lie Algebra

< D > < P > < E > < E</p>

Basics of Classical Field Theory

• Field Transformations:

$$\phi(\mathbf{x}) \rightarrow \tilde{\phi}(\mathbf{x}) = (\mathbf{R}(\theta_1, \cdots, \theta_k))\phi(\mathbf{x})$$

• R = Representation of Lie Group:

$$R(\theta_1,\cdots,\theta_k)=e^{-i\theta_a\lambda_a}=1-i\theta_a\lambda_a+O(\theta^2)$$

• λ_a = Basis of Lie Algebra

・ 同 ト ・ ヨ ト ・ ヨ

Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

$$\delta \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x})) = \mathcal{L}(\tilde{\phi}(\mathbf{x}), \partial_{\mu}\tilde{\phi}(\mathbf{x})) - \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x}))$$

(Use Euler-Lagrange)

$$=\theta_{a}\partial_{\mu}\left(-i\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\lambda_{a}\phi\right)=\theta_{a}\partial_{\mu}\left(J_{a}^{\mu}(X)\right)$$

Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

$$\delta \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x})) = \mathcal{L}(\tilde{\phi}(\mathbf{x}), \partial_{\mu}\tilde{\phi}(\mathbf{x})) - \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x}))$$

(Use Euler-Lagrange)

$$=\theta_{a}\partial_{\mu}\left(-i\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\lambda_{a}\phi\right)=\theta_{a}\partial_{\mu}\left(J_{a}^{\mu}(x)\right)$$

Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

$$\delta \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x})) = \mathcal{L}(\tilde{\phi}(\mathbf{x}), \partial_{\mu}\tilde{\phi}(\mathbf{x})) - \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x}))$$

(Use Euler-Lagrange)

$$=\theta_{a}\partial_{\mu}\left(-i\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\lambda_{a}\phi\right)=\theta_{a}\partial_{\mu}\left(J_{a}^{\mu}(x)\right)$$

Basics of Classical Field Theory

Variation of Lagrangian under Field Transformation:

$$\delta \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x})) = \mathcal{L}(\tilde{\phi}(\mathbf{x}), \partial_{\mu}\tilde{\phi}(\mathbf{x})) - \mathcal{L}(\phi(\mathbf{x}), \partial_{\mu}\phi(\mathbf{x}))$$

(Use Euler-Lagrange)

$$=\theta_{a}\partial_{\mu}\left(-i\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\lambda_{a}\phi\right)=\theta_{a}\partial_{\mu}\left(J_{a}^{\mu}(\mathbf{x})\right)$$

Symmetries and Noether's Theorem

• Symmetry: $\delta \mathcal{L}(\phi(x), \partial_{\mu}\phi(x)) = 0$

• $0 = \delta \mathcal{L} = \theta_a \partial_\mu (J^\mu_a(x))$

• Noether current:

$$J_a^{\mu}(x) = -i \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \lambda_a \phi \quad \text{with} \quad \partial_{\mu} J_a^{\mu}(x) = 0$$

Noether charge:

$$Q_a(t) = \int J_a^0(t, \vec{x}) \mathrm{d}^3 x$$
 with $\frac{\mathrm{d}}{\mathrm{d}t} Q_a(t) = 0.$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Symmetries and Noether's Theorem

• Symmetry: $\delta \mathcal{L}(\phi(x), \partial_{\mu}\phi(x)) = 0$

• 0 = $\delta \mathcal{L} = \theta_a \partial_\mu (J^\mu_a(x))$

• Noether current:

 $J_a^{\mu}(x) = -i \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \phi)} \lambda_a \phi \quad \text{with} \quad \partial_{\mu} J_a^{\mu}(x) = 0$

• Noether charge:

 $Q_a(t) = \int J_a^0(t, \vec{x}) \mathrm{d}^3 x$ with $\frac{\mathrm{d}}{\mathrm{d}t} Q_a(t) = 0.$

Symmetries and Noether's Theorem

- Symmetry: $\delta \mathcal{L}(\phi(x), \partial_{\mu}\phi(x)) = 0$
- 0 = $\delta \mathcal{L} = \theta_a \partial_\mu (J^\mu_a(x))$
- Noether current:

$$J^{\mu}_{a}(x) = -i \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \lambda_{a}\phi \quad \text{with} \quad \partial_{\mu}J^{\mu}_{a}(x) = 0$$

Noether charge:

$$Q_a(t) = \int J_a^0(t, \vec{x}) \mathrm{d}^3 x$$
 with $\frac{\mathrm{d}}{\mathrm{d}t} Q_a(t) = 0.$

Symmetries and Noether's Theorem

- Symmetry: $\delta \mathcal{L}(\phi(x), \partial_{\mu}\phi(x)) = 0$
- 0 = $\delta \mathcal{L} = \theta_a \partial_\mu (J^\mu_a(x))$
- Noether current:

$$J^{\mu}_{a}(x) = -i \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \lambda_{a} \phi$$
 with $\partial_{\mu} J^{\mu}_{a}(x) = 0$

Noether charge:

$$Q_a(t) = \int J_a^0(t, \vec{x}) \mathrm{d}^3 x$$
 with $\frac{\mathrm{d}}{\mathrm{d}t} Q_a(t) = 0.$

Transfer to Quantum Field Theory

•
$$\begin{pmatrix} \phi(x) \rightarrow \hat{\phi}(x) \\ \pi(x) \rightarrow \hat{\pi}(x) \end{pmatrix}$$
 + Canonical Commutation Relations

• Hilbert Space \mathcal{H} of Physical States with Basis Vectors $|\alpha\rangle$.

• Current and Charge Operators: $\hat{J}^{\mu}_{a}(x)$ and $\hat{Q}_{a}(t)$

For Symmetry Transformations: Noether's Theorem

 $\partial_{\mu}\hat{J}^{\mu}_{a}(x)=0$ and $rac{\mathrm{d}}{\mathrm{d}t}\hat{Q}_{a}(t)=[\hat{Q}_{a}(t),\hat{H}]=0$

・ 同 ト ・ ヨ ト ・ ヨ

Transfer to Quantum Field Theory

•
$$\begin{pmatrix} \phi(x) \rightarrow \hat{\phi}(x) \\ \pi(x) \rightarrow \hat{\pi}(x) \end{pmatrix}$$
 + Canonical Commutation Relations

- Hilbert Space \mathcal{H} of Physical States with Basis Vectors $|\alpha\rangle$.
- Current and Charge Operators: $\hat{J}^{\mu}_{a}(x)$ and $\hat{Q}_{a}(t)$
- For Symmetry Transformations: Noether's Theorem

$$\partial_{\mu}\hat{J}^{\mu}_{a}(x) = 0$$
 and $\frac{\mathrm{d}}{\mathrm{d}t}\hat{Q}_{a}(t) = [\hat{Q}_{a}(t), \hat{H}] = 0$

• • • • • • • • • • • • •

Transfer to Quantum Field Theory

•
$$\begin{pmatrix} \phi(x) \rightarrow \hat{\phi}(x) \\ \pi(x) \rightarrow \hat{\pi}(x) \end{pmatrix}$$
 + Canonical Commutation Relations

- Hilbert Space \mathcal{H} of Physical States with Basis Vectors $|\alpha\rangle$.
- Current and Charge Operators: $\hat{J}^{\mu}_{a}(x)$ and $\hat{Q}_{a}(t)$

For Symmetry Transformations: Noether's Theorem

 $\partial_{\mu}\hat{J}^{\mu}_{a}(x) = 0$ and $\frac{\mathrm{d}}{\mathrm{d}t}\hat{Q}_{a}(t) = [\hat{Q}_{a}(t), \hat{H}] = 0$

Transfer to Quantum Field Theory

•
$$\begin{pmatrix} \phi(x) \rightarrow \hat{\phi}(x) \\ \pi(x) \rightarrow \hat{\pi}(x) \end{pmatrix}$$
 + Canonical Commutation Relations

- Hilbert Space \mathcal{H} of Physical States with Basis Vectors $|\alpha\rangle$.
- Current and Charge Operators: $\hat{J}^{\mu}_{a}(x)$ and $\hat{Q}_{a}(t)$
- For Symmetry Transformations: Noether's Theorem

$$\partial_{\mu}\hat{J}^{\mu}_{a}(x) = 0$$
 and $\frac{\mathrm{d}}{\mathrm{d}t}\hat{Q}_{a}(t) = [\hat{Q}_{a}(t), \hat{H}] = 0$

イロト イポト イラト イラ

Transfer to Quantum Field Theory

•
$$\hat{Q}_{a}(t) = -i \int \hat{\pi}(t, \vec{x}) \lambda_{a} \hat{\phi}(t, \vec{x}) \mathrm{d}^{3}x$$

• Charge Algebra: $[\hat{Q}_a(t), \hat{Q}_b(t)] = i f_{abc} \hat{Q}_c(t).$

- Under Transformations: $\phi \to \tilde{\phi} \qquad |\alpha
 angle \to |\tilde{\alpha}
 angle$
- $\tilde{\phi} \ket{\tilde{\alpha}} = (\phi \ket{\alpha})^{\tilde{}} \Rightarrow |\tilde{\alpha}\rangle = e^{i\theta_{a}Q_{a}} \ket{\alpha}$
- Charges = Generators of Transformations on H.

・ 同 ト ・ ヨ ト ・ ヨ

Transfer to Quantum Field Theory

•
$$\hat{Q}_a(t) = -i \int \hat{\pi}(t, \vec{x}) \lambda_a \hat{\phi}(t, \vec{x}) \mathrm{d}^3 x$$

- Charge Algebra: $[\hat{Q}_a(t), \hat{Q}_b(t)] = i f_{abc} \hat{Q}_c(t).$
- Under Transformations: $\phi o ilde{\phi} \qquad |lpha
 angle o | ilde{lpha}
 angle$
- $\tilde{\phi} \ket{\tilde{\alpha}} = (\phi \ket{\alpha})^{\tilde{}} \Rightarrow |\tilde{\alpha}\rangle = e^{i\theta_a Q_a} \ket{\alpha}$
- Charges = Generators of Transformations on H.

< D > < P > < E > < E</p>

Transfer to Quantum Field Theory

- $\hat{Q}_{a}(t) = -i \int \hat{\pi}(t, \vec{x}) \lambda_{a} \hat{\phi}(t, \vec{x}) \mathrm{d}^{3}x$
- Charge Algebra: $[\hat{Q}_a(t), \hat{Q}_b(t)] = i f_{abc} \hat{Q}_c(t).$
- Under Transformations: $\phi \to \tilde{\phi} \qquad |\alpha
 angle \to |\tilde{\alpha}
 angle$
- $\tilde{\phi} | \tilde{\alpha} \rangle = (\phi | \alpha \rangle)^{\tilde{}} \Rightarrow | \tilde{\alpha} \rangle = e^{i\theta_a Q_a} | \alpha \rangle$
- Charges = Generators of Transformations on H.

イロト イポト イラト イラト

Transfer to Quantum Field Theory

•
$$\hat{Q}_{a}(t) = -i \int \hat{\pi}(t, \vec{x}) \lambda_{a} \hat{\phi}(t, \vec{x}) \mathrm{d}^{3}x$$

- Charge Algebra: $[\hat{Q}_a(t), \hat{Q}_b(t)] = i f_{abc} \hat{Q}_c(t).$
- Under Transformations: $\phi \to \tilde{\phi} \qquad |\alpha \rangle \to |\tilde{\alpha} \rangle$

•
$$\tilde{\phi} | \tilde{\alpha} \rangle = (\phi | \alpha \rangle)^{\tilde{}} \Rightarrow | \tilde{\alpha} \rangle = e^{i\theta_a Q_a} | \alpha \rangle$$

Charges = Generators of Transformations on H.

Transfer to Quantum Field Theory

•
$$\hat{Q}_{a}(t) = -i \int \hat{\pi}(t, \vec{x}) \lambda_{a} \hat{\phi}(t, \vec{x}) \mathrm{d}^{3}x$$

- Charge Algebra: $[\hat{Q}_a(t), \hat{Q}_b(t)] = i f_{abc} \hat{Q}_c(t).$
- Under Transformations: $\phi \to \tilde{\phi} \qquad |\alpha
 angle \to |\tilde{\alpha}
 angle$

•
$$\tilde{\phi} | \tilde{\alpha} \rangle = (\phi | \alpha \rangle)^{\tilde{}} \Rightarrow | \tilde{\alpha} \rangle = e^{i\theta_a Q_a} | \alpha \rangle$$

• Charges = Generators of Transformations on \mathcal{H} .

イロト イポト イラト イラト

Summary

• Behaviour of Lagrangian under Transformations.

- Variation of Lagrangian = Divergence of a Current.
- Noether's Theorem: Each Symmetry of a System gives rise to conserved Noether Currents and Noether Charges.
- Quantum Mechanics: Noether Currents and Noether Charges promoted to Operators.
- Noether Charges = Generators of Field Transformations. Algebra of Charges.

< D > < P > < E > < E</p>

Summary

- Behaviour of Lagrangian under Transformations.
- Variation of Lagrangian = Divergence of a Current.
- Noether's Theorem: Each Symmetry of a System gives rise to conserved Noether Currents and Noether Charges.
- Quantum Mechanics: Noether Currents and Noether Charges promoted to Operators.
- Noether Charges = Generators of Field Transformations. Algebra of Charges.

< D > < P > < E > < E</p>

Summary

- Behaviour of Lagrangian under Transformations.
- Variation of Lagrangian = Divergence of a Current.
- Noether's Theorem: Each Symmetry of a System gives rise to conserved Noether Currents and Noether Charges.
- Quantum Mechanics: Noether Currents and Noether Charges promoted to Operators.
- Noether Charges = Generators of Field Transformations. Algebra of Charges.

Summary

- Behaviour of Lagrangian under Transformations.
- Variation of Lagrangian = Divergence of a Current.
- Noether's Theorem: Each Symmetry of a System gives rise to conserved Noether Currents and Noether Charges.
- Quantum Mechanics: Noether Currents and Noether Charges promoted to Operators.
- Noether Charges = Generators of Field Transformations. Algebra of Charges.

Summary

- Behaviour of Lagrangian under Transformations.
- Variation of Lagrangian = Divergence of a Current.
- Noether's Theorem: Each Symmetry of a System gives rise to conserved Noether Currents and Noether Charges.
- Quantum Mechanics: Noether Currents and Noether Charges promoted to Operators.
- Noether Charges = Generators of Field Transformations. Algebra of Charges.

イロト イポト イラト イラト

Outline

The QCD Lagrangian and its Symmetries

Conserved Quantities in QCD

Explicit Symmetry Breaking

Outline

- The QCD Lagrangian and its Symmetries
- Conserved Quantities in QCD
- Explicit Symmetry Breaking

- The QCD Lagrangian and its Symmetries
- Conserved Quantities in QCD
- Explicit Symmetry Breaking

The QCD Lagrangian and its Symmetries

• 6 Quark Flavours (u,d,s,c,t,b)

$$\left(egin{array}{c} m_u = 0.005 \; {
m GeV} \ m_d = 0.009 \; {
m GeV} \ m_s = 0.175 \; {
m GeV} \end{array}
ight) \ll 1 \; {
m GeV} < \left(egin{array}{c} m_c pprox 1.2 \; {
m GeV} \ m_b pprox 4.2 \; {
m GeV} \ m_t pprox 174 \; {
m GeV} \end{array}
ight)$$

3 Colours (r,g,b)

$$q_f = \left(egin{array}{c} q_{f,r} \ q_{f,g} \ q_{f,b} \end{array}
ight)$$

q_{f,c} = Dirac 4-Spinor valued Fields

• I > • I > • •

The QCD Lagrangian and its Symmetries

6 Quark Flavours (u,d,s,c,t,b)

$$\left(egin{array}{c} m_u = 0.005 \; {
m GeV} \ m_d = 0.009 \; {
m GeV} \ m_s = 0.175 \; {
m GeV} \end{array}
ight) \ll 1 \; {
m GeV} < \left(egin{array}{c} m_c pprox 1.2 \; {
m GeV} \ m_b pprox 4.2 \; {
m GeV} \ m_t pprox 174 \; {
m GeV} \end{array}
ight)$$

3 Colours (r,g,b)

$$q_f = \left(egin{array}{c} q_{f,r} \ q_{f,g} \ q_{f,b} \end{array}
ight)$$

q_{f,c} = Dirac 4-Spinor valued Fields

• I > • I > • •

The QCD Lagrangian and its Symmetries

6 Quark Flavours (u,d,s,c,t,b)

$$\left(egin{array}{c} m_u = 0.005 \ {
m GeV} \ m_d = 0.009 \ {
m GeV} \ m_s = 0.175 \ {
m GeV} \end{array}
ight) \ll 1 \ {
m GeV} < \left(egin{array}{c} m_c pprox 1.2 \ {
m GeV} \ m_b pprox 4.2 \ {
m GeV} \ m_t pprox 174 \ {
m GeV} \end{array}
ight)$$

• 3 Colours (r,g,b)

$$q_f = \left(egin{array}{c} q_{f,r} \ q_{f,g} \ q_{f,b} \end{array}
ight)$$

q_{f,c} = Dirac 4-Spinor valued Fields

→ Ξ →

< A >

The QCD Lagrangian and its Symmetries

•
$$\mathcal{L}_{QCD} = \sum_{f} \overline{q}_{f} (i \gamma^{\mu} D_{\mu} - m_{f}) q_{f} - \frac{1}{4} \mathcal{G}_{a,\mu\nu} \mathcal{G}_{a}^{\mu\nu}$$

• Covariant derivative: $D_{\mu} = \partial_{\mu} - igA_{\mu}$

is independent of Flavour.

• $\mathcal{G}_{a,\mu\nu}$: Components of Field Strength Tensor

Gauge Symmetry: SU(3)_{Colour}

< ロ > < 同 > < 三 > < 三

The QCD Lagrangian and its Symmetries

•
$$\mathcal{L}_{QCD} = \sum_{f} \overline{q}_{f} (i \gamma^{\mu} D_{\mu} - m_{f}) q_{f} - \frac{1}{4} \mathcal{G}_{a,\mu\nu} \mathcal{G}_{a}^{\mu\nu}$$

• Covariant derivative: $D_{\mu} = \partial_{\mu} - igA_{\mu}$

is independent of Flavour.

- $\mathcal{G}_{a,\mu\nu}$: Components of Field Strength Tensor
- Gauge Symmetry: SU(3)_{Colour}

< D > < P > < E > < E</p>

The QCD Lagrangian and its Symmetries

•
$$\mathcal{L}_{QCD} = \sum_{f} \overline{q}_{f} (i \gamma^{\mu} D_{\mu} - m_{f}) q_{f} - \frac{1}{4} \mathcal{G}_{a,\mu\nu} \mathcal{G}_{a}^{\mu\nu}$$

• Covariant derivative: $D_{\mu} = \partial_{\mu} - igA_{\mu}$

is independent of Flavour.

- *G*_{a,µν}: Components of Field Strength Tensor
- Gauge Symmetry: SU(3)_{Colour}

The QCD Lagrangian and its Symmetries

•
$$\mathcal{L}_{QCD} = \sum_{f} \overline{q}_{f} (i \gamma^{\mu} D_{\mu} - m_{f}) q_{f} - \frac{1}{4} \mathcal{G}_{a,\mu\nu} \mathcal{G}_{a}^{\mu\nu}$$

• Covariant derivative:
$$D_{\mu} = \partial_{\mu} - igA_{\mu}$$

is independent of Flavour.

- *G*_{a,µν}: Components of Field Strength Tensor
- Gauge Symmetry: SU(3)_{Colour}

Chirality

• Chirality Matrix: $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$

• Projectors:
$$P_L = \frac{1}{2}(1 - \gamma^5)$$
 $P_R = \frac{1}{2}(1 + \gamma^5)$

• Completeness, Orthogonality: $P_L + P_R = 1$ $P_L P_R = P_R P_L = 0$

• $q_{f,L} = P_L q_f$ $q_{f,R} = P_R q_f$ $q_f = q_{f,L} + q_{f,R}$

э

Chirality

• Chirality Matrix:
$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$$

• Projectors:
$$P_L = \frac{1}{2}(1 - \gamma^5)$$
 $P_R = \frac{1}{2}(1 + \gamma^5)$

• Completeness, Orthogonality: $P_L + P_R = 1$ $P_L P_R = P_R P_L = 0$

• $q_{f,L} = P_L q_f$ $q_{f,R} = P_R q_f$ $q_f = q_{f,L} + q_{f,R}$

э

Chirality

• Chirality Matrix:
$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$$

• Projectors:
$$P_L = \frac{1}{2}(1 - \gamma^5)$$
 $P_R = \frac{1}{2}(1 + \gamma^5)$

• Completeness, Orthogonality:

$$P_L + P_R = 1$$
 $P_L P_R = P_R P_L = 0$

•
$$q_{f,L} = P_L q_f$$
 $q_{f,R} = P_R q_f$ $q_f = q_{f,L} + q_{f,R}$

æ

Chirality

• Chirality Matrix:
$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$$

• Projectors:
$$P_L = \frac{1}{2}(1 - \gamma^5)$$
 $P_R = \frac{1}{2}(1 + \gamma^5)$

• Completeness, Orthogonality:

$$P_L + P_R = 1$$
 $P_L P_R = P_R P_L = 0$

•
$$q_{f,L} = P_L q_f$$
 $q_{f,R} = P_R q_f$ $q_f = q_{f,L} + q_{f,R}$

æ

The QCD Lagrangian and its Symmetries

Lagrangian in the Light Quark Sector:

$$\mathcal{L} = \sum_{f=u,d,s} \overline{q}_f (i\gamma^{\mu} D\mu - m_f) q_f - \frac{1}{4} \mathcal{G}_{a,\mu\nu} \mathcal{G}_a^{\mu\nu}$$
$$= \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i\gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i\gamma^{\mu} D_{\mu}) q_{f,R}$$
$$- m_f \overline{q}_{f,L} q_{f,R} - m_f \overline{q}_{f,R} q_{f,L} \} - \frac{1}{4} \mathcal{G}_{a,\mu\nu} \mathcal{G}_a^{\mu\nu}$$

< A >

.

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i \gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i \gamma^{\mu} D_{\mu}) q_{f,R} \}$$

• Approximation: Massless Quarks.

• Consequence: Independent Left- and Right-Handed Fields.

• • • • • • • • • • • •

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i \gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i \gamma^{\mu} D_{\mu}) q_{f,R} \}$$

- Approximation: Massless Quarks.
- Consequence: Independent Left- and Right-Handed Fields.

• • • • • • • • • • • • •

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i \gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i \gamma^{\mu} D_{\mu}) q_{f,R} \}$$

• Symmetry:
$$q_{f,L} \rightarrow e^{-i\theta_L}q_{f,L}$$
 $q_{f,R} \rightarrow e^{-i\theta_R}q_{f,R}$

Vector Transformations:

 $q_f \rightarrow e^{-i\theta_V} q_f$ Noether Current: $V^{\mu} = \overline{q}_f \gamma^{\mu} q$

• Axial Transformations:

$$q_f
ightarrow e^{-i heta_A\gamma^5} q_f$$
 Noether Current: $A^\mu = \overline{q}_f \gamma^\mu \gamma^5 q$

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i \gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i \gamma^{\mu} D_{\mu}) q_{f,R} \}$$

• Symmetry:
$$q_{f,L} \rightarrow e^{-i\theta_L}q_{f,L}$$
 $q_{f,R} \rightarrow e^{-i\theta_R}q_{f,R}$

• Vector Transformations:

$$q_f
ightarrow e^{-i heta_V} q_f$$
 Noether Current: $V^{\mu} = \overline{q}_f \gamma^{\mu} q$

• Axial Transformations:

$$q_f \rightarrow e^{-i heta_A\gamma^5}q_f$$
 Noether Current: $A^\mu = \overline{q}_f\gamma^\mu\gamma^5q$

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i\gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i\gamma^{\mu} D_{\mu}) q_{f,R} \}$$

• Symmetry:
$$q_{f,L} \rightarrow e^{-i\theta_L}q_{f,L}$$
 $q_{f,R} \rightarrow e^{-i\theta_R}q_{f,R}$

• Vector Transformations:

$$q_f
ightarrow e^{-i heta_V} q_f$$
 Noether Current: $V^{\mu} = \overline{q}_f \gamma^{\mu} q$

Axial Transformations:

$$q_f \rightarrow e^{-i heta_A\gamma^5}q_f$$
 Noether Current: $A^\mu = \overline{q}_f\gamma^\mu\gamma^5 q$

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i \gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i \gamma^{\mu} D_{\mu}) q_{f,R} \}$$

Recall: Flavour Independence of Covariant Derivative

• $SU(3)_{L}^{Flavour} \times SU(3)_{R}^{Flavour} = Chiral Symmetry Group$

• Vector/Axial Transformations:

$$\begin{pmatrix} u \\ d \\ s \end{pmatrix} \to e^{-i\theta_V^b} \frac{\lambda_b^F}{2} \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad q \to e^{-i\theta_A^b} \frac{\lambda_b^F}{2} \gamma^5 q$$

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i \gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i \gamma^{\mu} D_{\mu}) q_{f,R} \}$$

- Recall: Flavour Independence of Covariant Derivative
- $SU(3)_{L}^{Flavour} \times SU(3)_{R}^{Flavour}$ = Chiral Symmetry Group

• Vector/Axial Transformations:

$$\begin{pmatrix} u \\ d \\ s \end{pmatrix} \to e^{-i\theta_V^b \frac{\lambda_b^F}{2}} \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad q \to e^{-i\theta_A^b \frac{\lambda_b^F}{2} \gamma^5} q$$

The QCD Lagrangian and its Symmetries

$$\mathcal{L}^{0} = \sum_{f=u,d,s} \{ \overline{q}_{f,L} (i \gamma^{\mu} D_{\mu}) q_{f,L} + \overline{q}_{f,R} (i \gamma^{\mu} D_{\mu}) q_{f,R} \}$$

- Recall: Flavour Independence of Covariant Derivative
- $SU(3)_{L}^{Flavour} \times SU(3)_{R}^{Flavour}$ = Chiral Symmetry Group
- Vector/Axial Transformations:

$$egin{pmatrix} u \ d \ s \end{pmatrix} o e^{-i heta_V^b} rac{\lambda_b^F}{2} egin{pmatrix} u \ d \ s \end{pmatrix} \qquad q o e^{-i heta_A^b} rac{\lambda_b^F}{2} \gamma^5 q$$

Conserved Quantities

• Full Symmetry: $SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$

• 8+8+1+1 = 18 conserved Noether Currents.

•
$$V^{\mu} = \overline{q}_{f} \gamma^{\mu} q_{f}$$
 $A^{\mu} = \overline{q}_{f} \gamma^{\mu} \gamma^{5} q_{f}$

•
$$V_b^{\mu} = \overline{q} \gamma^{\mu} \frac{\lambda_b^F}{2} q$$
 $A_b^{\mu} = \overline{q} \gamma^{\mu} \gamma^5 \frac{\lambda_b^F}{2} q$

Conserved Quantities

- Full Symmetry: $SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$
- 8+8+1+1 = 18 conserved Noether Currents.
- $V^{\mu} = \overline{q}_{f} \gamma^{\mu} q_{f}$ $A^{\mu} = \overline{q}_{f} \gamma^{\mu} \gamma^{5} q_{f}$
- $V_b^{\mu} = \overline{q} \gamma^{\mu} \frac{\lambda_b^F}{2} q$ $A_b^{\mu} = \overline{q} \gamma^{\mu} \gamma^5 \frac{\lambda_b^F}{2} q$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Conserved Quantities

- Full Symmetry: $SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$
- 8+8+1+1 = 18 conserved Noether Currents.

•
$$V^{\mu} = \overline{q}_{f} \gamma^{\mu} q_{f}$$
 $A^{\mu} = \overline{q}_{f} \gamma^{\mu} \gamma^{5} q_{f}$

•
$$V_b^{\mu} = \overline{q} \gamma^{\mu} \frac{\lambda_b^F}{2} q$$
 $A_b^{\mu} = \overline{q} \gamma^{\mu} \gamma^5 \frac{\lambda_b^F}{2} q$

Conserved Quantities

- Full Symmetry: $SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$
- 8+8+1+1 = 18 conserved Noether Currents.

•
$$V^{\mu} = \overline{q}_{f} \gamma^{\mu} q_{f}$$
 $A^{\mu} = \overline{q}_{f} \gamma^{\mu} \gamma^{5} q_{f}$

•
$$V_b^{\mu} = \overline{q} \gamma^{\mu} \frac{\lambda_b^F}{2} q$$
 $A_b^{\mu} = \overline{q} \gamma^{\mu} \gamma^5 \frac{\lambda_b^F}{2} q$

Chiral Symmetry Breaking

So far: Massless Quarks

$$\mathcal{L}^{M} = (\overline{q}_{L} + \overline{q}_{R})M(q_{f} + q_{R}) \\ = \begin{pmatrix} \overline{u}_{L} + \overline{u}_{R} \\ \overline{d}_{L} + \overline{d}_{R} \\ \overline{s}_{L} + \overline{s}_{R} \end{pmatrix} \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{d} & 0 \\ 0 & 0 & m_{s} \end{pmatrix} \begin{pmatrix} u_{L} + u_{R} \\ d_{L} + d_{R} \\ s_{L} + s_{R} \end{pmatrix}$$

• Not Invariant Under Chiral Symmetry: Explicit Symmetry Breaking

Chiral Symmetry Breaking

So far: Massless Quarks

$$\mathcal{L}^{M} = (\overline{q}_{L} + \overline{q}_{R})M(q_{f} + q_{R}) \\ = \begin{pmatrix} \overline{u}_{L} + \overline{u}_{R} \\ \overline{d}_{L} + \overline{d}_{R} \\ \overline{s}_{L} + \overline{s}_{R} \end{pmatrix} \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{d} & 0 \\ 0 & 0 & m_{s} \end{pmatrix} \begin{pmatrix} u_{L} + u_{R} \\ d_{L} + d_{R} \\ s_{L} + s_{R} \end{pmatrix}$$

• Not Invariant Under Chiral Symmetry: Explicit Symmetry Breaking

Chiral Symmetry Breaking

So far: Massless Quarks

$$\begin{aligned} \mathcal{L}^{M} &= (\overline{q}_{L} + \overline{q}_{R}) \mathcal{M}(q_{f} + q_{R}) \\ &= \begin{pmatrix} \overline{u}_{L} + \overline{u}_{R} \\ \overline{d}_{L} + \overline{d}_{R} \\ \overline{s}_{L} + \overline{s}_{R} \end{pmatrix} \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{d} & 0 \\ 0 & 0 & m_{s} \end{pmatrix} \begin{pmatrix} u_{L} + u_{R} \\ d_{L} + d_{R} \\ s_{L} + s_{R} \end{pmatrix} \end{aligned}$$

 Not Invariant Under Chiral Symmetry: Explicit Symmetry Breaking

< D > < P > < E > < E</p>

Chiral Symmetry Breaking

• Problem: Symmetry Broken \Rightarrow Conservation Laws Violated

• $\partial_{\mu} J^{\mu} = \delta \mathcal{L}$

$$\begin{array}{rcl} \partial_{\mu}V^{\mu} &=& 0\\ \partial_{\mu}A^{\mu} &=& 2i\overline{q}M\gamma^{5}q\\ \partial_{\mu}V^{\mu}_{b} &=& i\overline{q}[M,\frac{\lambda^{F}_{b}}{2}]q\\ \partial_{\mu}A^{\mu}_{b} &=& i\overline{q}\{M,\frac{\lambda^{F}_{b}}{2}\}\gamma^{5}q \end{array}$$

• Divergences \propto Quark Masses.

Chiral Symmetry Breaking

• Problem: Symmetry Broken \Rightarrow Conservation Laws Violated

•
$$\partial_{\mu} J^{\mu} = \delta \mathcal{L}$$

$$\begin{array}{rcl} \partial_{\mu}V^{\mu} &=& 0\\ \partial_{\mu}A^{\mu} &=& 2i\overline{q}M\gamma^{5}q\\ \partial_{\mu}V^{\mu}_{b} &=& i\overline{q}[M,\frac{\lambda^{F}_{b}}{2}]q\\ \partial_{\mu}A^{\mu}_{b} &=& i\overline{q}\{M,\frac{\lambda^{F}_{b}}{2}\}\gamma^{5}q \end{array}$$

Divergences \propto Quark Masses.

Chiral Symmetry Breaking

• Problem: Symmetry Broken \Rightarrow Conservation Laws Violated

•
$$\partial_{\mu} J^{\mu} = \delta \mathcal{L}$$

$$\begin{array}{rcl} \partial_{\mu}V^{\mu} &=& 0\\ \partial_{\mu}A^{\mu} &=& 2i\overline{q}M\gamma^{5}q\\ \partial_{\mu}V^{\mu}_{b} &=& i\overline{q}[M,\frac{\lambda^{F}_{b}}{2}]q\\ \partial_{\mu}A^{\mu}_{b} &=& i\overline{q}\{M,\frac{\lambda^{F}_{b}}{2}\}\gamma^{5}q \end{array}$$

Divergences \propto Quark Masses.

< D > < P > < E > < E</p>

Chiral Symmetry Breaking

• Problem: Symmetry Broken \Rightarrow Conservation Laws Violated

•
$$\partial_{\mu} J^{\mu} = \delta \mathcal{L}$$

$$\begin{array}{rcl} \partial_{\mu}V^{\mu} &=& 0\\ \partial_{\mu}A^{\mu} &=& 2i\overline{q}M\gamma^{5}q\\ \partial_{\mu}V^{\mu}_{b} &=& i\overline{q}[M,\frac{\lambda^{F}_{b}}{2}]q\\ \partial_{\mu}A^{\mu}_{b} &=& i\overline{q}\{M,\frac{\lambda^{F}_{b}}{2}\}\gamma^{5}q \end{array}$$

$\bullet\,$ Divergences \propto Quark Masses.

イロト イポト イラト イラ

Chiral Symmetry Breaking

•
$$\partial_{\mu}V_{b}^{\mu} = i\overline{q}[M, \frac{\lambda_{b}^{F}}{2}]q$$

• λ_3 and λ_8 commute with diagonal Matrices.

$$\begin{pmatrix} \partial_{\mu} V^{\mu} = 0 \\ \partial_{\mu} V^{\mu}_{3} = 0 \\ \partial_{\mu} V^{\mu}_{8} = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} V^{\mu}_{u} = \overline{u} \gamma^{\mu} u \\ V^{\mu}_{d} = \overline{d} \gamma^{\mu} d \\ V^{\mu}_{s} = \overline{s} \gamma^{\mu} s \end{pmatrix} \text{ Are Conserved.}$$

 All quark masses equal ⇒ SU(3)^{Flavour} unbroken. Gell-Mann, Ne'eman: Approximate SU(3)_{Flavour} Symmetry of QCD

Chiral Symmetry Breaking

•
$$\partial_{\mu}V_{b}^{\mu} = i\overline{q}[M, \frac{\lambda_{b}^{F}}{2}]q$$

• λ_3 and λ_8 commute with diagonal Matrices.

$$\begin{pmatrix} \partial_{\mu} V^{\mu} = 0 \\ \partial_{\mu} V^{\mu}_{3} = 0 \\ \partial_{\mu} V^{\mu}_{8} = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} V^{\mu}_{u} = \overline{u} \gamma^{\mu} u \\ V^{\mu}_{d} = \overline{d} \gamma^{\mu} d \\ V^{\mu}_{s} = \overline{s} \gamma^{\mu} s \end{pmatrix} \text{ Are Conserved.}$$

 All quark masses equal ⇒ SU(3)^{Flavour} unbroken. Gell-Mann, Ne'eman: Approximate SU(3)_{Flavour} Symmetry of QCD

Chiral Symmetry Breaking

•
$$\partial_{\mu}V_{b}^{\mu} = i\overline{q}[M, \frac{\lambda_{b}^{F}}{2}]q$$

• λ_3 and λ_8 commute with diagonal Matrices.

$$\begin{pmatrix} \partial_{\mu} V^{\mu} = 0 \\ \partial_{\mu} V^{\mu}_{3} = 0 \\ \partial_{\mu} V^{\mu}_{8} = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} V^{\mu}_{u} = \overline{u} \gamma^{\mu} u \\ V^{\mu}_{d} = \overline{d} \gamma^{\mu} d \\ V^{\mu}_{s} = \overline{s} \gamma^{\mu} s \end{pmatrix} \text{ Are Conserved.}$$

• All quark masses equal \Rightarrow $SU(3)_V^{Flavour}$ unbroken. Gell-Mann, Ne'eman: Approximate $SU(3)_{Flavour}$ Symmetry of QCD

Chiral Symmetry Breaking

•
$$\partial_{\mu}V_{b}^{\mu} = i\overline{q}[M, \frac{\lambda_{b}^{F}}{2}]q$$

• λ_3 and λ_8 commute with diagonal Matrices.

$$\begin{pmatrix} \partial_{\mu} V^{\mu} = 0 \\ \partial_{\mu} V^{\mu}_{3} = 0 \\ \partial_{\mu} V^{\mu}_{8} = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} V^{\mu}_{u} = \overline{u} \gamma^{\mu} u \\ V^{\mu}_{d} = \overline{d} \gamma^{\mu} d \\ V^{\mu}_{s} = \overline{s} \gamma^{\mu} s \end{pmatrix} \text{ Are Conserved.}$$

• All quark masses equal \Rightarrow $SU(3)_V^{Flavour}$ unbroken. Gell-Mann, Ne'eman: Approximate $SU(3)_{Flavour}$ Symmetry of QCD

- Massless Limit: Chiral Components are independent.
- Phase invariance: $U(1)_V \times U(1)_A$, 2 Noether Currents
- Flavour invariance: $SU(3)_V^F \times SU(3)_A^F$, 16 Noether Currents
- Explicit Symmetry Breaking by Quark Masses: Divergences of Noether Currents ∝ Quark Masses.
- Individual Flavour Currents Survive: $\overline{u}\gamma^{\mu}u, \overline{d}\gamma^{\mu}d, \overline{s}\gamma^{\mu}s.$

< ロ > < 同 > < 三 > < 三

- Massless Limit: Chiral Components are independent.
- Phase invariance: $U(1)_V \times U(1)_A$, 2 Noether Currents
- Flavour invariance: $SU(3)_V^F \times SU(3)_A^F$, 16 Noether Currents
- Explicit Symmetry Breaking by Quark Masses: Divergences of Noether Currents ∝ Quark Masses.
- Individual Flavour Currents Survive: $\overline{u}\gamma^{\mu}u, \overline{d}\gamma^{\mu}d, \overline{s}\gamma^{\mu}s.$

イロト イポト イラト イラ

Summary

- Massless Limit: Chiral Components are independent.
- Phase invariance: $U(1)_V \times U(1)_A$, 2 Noether Currents
- Flavour invariance: $SU(3)_V^F \times SU(3)_A^F$, 16 Noether Currents
- Explicit Symmetry Breaking by Quark Masses: Divergences of Noether Currents ∝ Quark Masses.
- Individual Flavour Currents Survive: $\overline{u}\gamma^{\mu}u, \overline{d}\gamma^{\mu}d, \overline{s}\gamma^{\mu}s.$

イロト イポト イラト イラ

- Massless Limit: Chiral Components are independent.
- Phase invariance: $U(1)_V \times U(1)_A$, 2 Noether Currents
- Flavour invariance: $SU(3)_V^F \times SU(3)_A^F$, 16 Noether Currents
- Explicit Symmetry Breaking by Quark Masses: Divergences of Noether Currents ∝ Quark Masses.
- Individual Flavour Currents Survive: $\overline{u}\gamma^{\mu}u, \overline{d}\gamma^{\mu}d, \overline{s}\gamma^{\mu}s.$

イロト イポト イラト イラ

- Massless Limit: Chiral Components are independent.
- Phase invariance: $U(1)_V \times U(1)_A$, 2 Noether Currents
- Flavour invariance: $SU(3)_V^F \times SU(3)_A^F$, 16 Noether Currents
- Explicit Symmetry Breaking by Quark Masses: Divergences of Noether Currents ∝ Quark Masses.
- Individual Flavour Currents Survive: $\overline{u}\gamma^{\mu}u, \overline{d}\gamma^{\mu}d, \overline{s}\gamma^{\mu}s.$

イロト イポト イラト イラト

• Spontaneous Symmetry Breaking - An Intuitive Example

Quantum Mechanical Proof

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Spontaneous Symmetry Breaking An Intuitive Example
- Quantum Mechanical Proof

< ロ > < 同 > < 回 > < 回 > < 回 > <

An Intuitive Example

• 2-Component, Real Field $\tilde{\phi} = (\tilde{\phi}_1, \tilde{\phi}_2)$

 $\mathcal{L} = \frac{1}{2} \partial_\nu \tilde{\phi}_1 \partial^\nu \tilde{\phi}_1 + \frac{1}{2} \partial_\nu \tilde{\phi}_2 \partial^\nu \tilde{\phi}_2 - \frac{\mu^2}{2} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2) - \frac{\lambda}{4!} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2)^2$

- SO(2) Invariance.
- For µ² > 0: Two Massive, Interacting Fields.
- For $\mu^2 < 0$: Minimum at $| ilde{\phi}(x)| = v = \sqrt{-rac{6\mu^2}{\lambda}}.$

・ 同 ト ・ ヨ ト ・ ヨ

An Intuitive Example

• 2-Component, Real Field $\tilde{\phi} = (\tilde{\phi}_1, \tilde{\phi}_2)$

$$\mathcal{L} = \frac{1}{2} \partial_\nu \tilde{\phi}_1 \partial^\nu \tilde{\phi}_1 + \frac{1}{2} \partial_\nu \tilde{\phi}_2 \partial^\nu \tilde{\phi}_2 - \frac{\mu^2}{2} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2) - \frac{\lambda}{4!} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2)^2$$

- SO(2) Invariance.
- For µ² > 0: Two Massive, Interacting Fields.
- For $\mu^2 <$ 0: Minimum at $| ilde{\phi}(x)| = v = \sqrt{-rac{6\mu^2}{\lambda}}.$

< ロ > < 同 > < 三 > < 三

An Intuitive Example

• 2-Component, Real Field $\tilde{\phi} = (\tilde{\phi}_1, \tilde{\phi}_2)$

$$\mathcal{L} = \frac{1}{2} \partial_\nu \tilde{\phi}_1 \partial^\nu \tilde{\phi}_1 + \frac{1}{2} \partial_\nu \tilde{\phi}_2 \partial^\nu \tilde{\phi}_2 - \frac{\mu^2}{2} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2) - \frac{\lambda}{4!} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2)^2$$

• SO(2) Invariance.

● For µ² > 0: Two Massive, Interacting Fields.

• For
$$\mu^2 <$$
 0: Minimum at $| ilde{\phi}(x)| = v = \sqrt{-rac{6\mu^2}{\lambda}}.$

An Intuitive Example

• 2-Component, Real Field $\tilde{\phi} = (\tilde{\phi}_1, \tilde{\phi}_2)$

$$\mathcal{L} = \frac{1}{2} \partial_\nu \tilde{\phi}_1 \partial^\nu \tilde{\phi}_1 + \frac{1}{2} \partial_\nu \tilde{\phi}_2 \partial^\nu \tilde{\phi}_2 - \frac{\mu^2}{2} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2) - \frac{\lambda}{4!} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2)^2$$

- SO(2) Invariance.
- For $\mu^2 > 0$: Two Massive, Interacting Fields.

• For $\mu^2 < 0$: Minimum at $| ilde{\phi}(x)| = v = \sqrt{-rac{6\mu^2}{\lambda}}$.

An Intuitive Example

• 2-Component, Real Field $\tilde{\phi} = (\tilde{\phi}_1, \tilde{\phi}_2)$

$$\mathcal{L} = \frac{1}{2} \partial_\nu \tilde{\phi}_1 \partial^\nu \tilde{\phi}_1 + \frac{1}{2} \partial_\nu \tilde{\phi}_2 \partial^\nu \tilde{\phi}_2 - \frac{\mu^2}{2} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2) - \frac{\lambda}{4!} (\tilde{\phi}_1^2 + \tilde{\phi}_2^2)^2$$

- SO(2) Invariance.
- For $\mu^2 > 0$: Two Massive, Interacting Fields.

• For
$$\mu^2 < 0$$
: Minimum at $|\tilde{\phi}(x)| = \nu = \sqrt{-rac{6\mu^2}{\lambda}}$.

An Intuitive Example

Physical Fields: Perturbations around Minimum

• Choice of Physical Minimum destroys SO(2) Invariance!

An Intuitive Example

Physical Fields: Perturbations around Minimum

$$\tilde{\phi}(\boldsymbol{x}) = \left(\begin{array}{c} \boldsymbol{v} + \phi_1(\boldsymbol{x}) \\ \phi_2(\boldsymbol{x}) \end{array}\right)$$

• Choice of Physical Minimum destroys SO(2) Invariance!

< D > < P > < E > < E</p>

An Intuitive Example

Physical Fields: Perturbations around Minimum

$$ilde{\phi}(x) = \left(egin{array}{c} v + \phi_1(x) \\ \phi_2(x) \end{array}
ight)$$

• Choice of Physical Minimum destroys SO(2) Invariance!

An Intuitive Example

$$\begin{aligned} \mathcal{L} &= \left(\partial_{\nu} \phi_{1}(x) \partial^{\nu} \phi_{1}(x) + \frac{3\mu^{2}}{2} \phi_{1}(x)^{2} \right) \\ &+ \left(\partial_{\nu} \phi_{2}(x) \partial^{\nu} \phi_{2}(x) \right) \\ &+ \left(\text{cubic + quartic} \right) \end{aligned}$$

• One Massive Field (Radial Excitations)

One Massless Field (Rotational Excitations)
 ⇒ Goldstone Boson.

< D > < P > < E > < E</p>

An Intuitive Example

$$\begin{aligned} \mathcal{L} &= \left(\partial_{\nu} \phi_{1}(x) \partial^{\nu} \phi_{1}(x) + \frac{3\mu^{2}}{2} \phi_{1}(x)^{2} \right) \\ &+ \left(\partial_{\nu} \phi_{2}(x) \partial^{\nu} \phi_{2}(x) \right) \\ &+ \left(\text{cubic + quartic} \right) \end{aligned}$$

- One Massive Field (Radial Excitations)
- One Massless Field (Rotational Excitations)
 - \Rightarrow Goldstone Boson.

Quantum Mechanical Proof

Definition of SSB.

- Goldstone's Theorem: In a theory that is spon. broken, each broken generator gives rise to a massless scalar particle.
- Existence of Green functions with Poles at $p^2 = 0$.
- Existence of Massless, Scalar Particles (Goldstone Bosons)

・ 同 ト ・ ヨ ト ・ ヨ

Quantum Mechanical Proof

- Definition of SSB.
- Goldstone's Theorem: In a theory that is spon. broken, each broken generator gives rise to a massless scalar particle.
- Existence of Green functions with Poles at $p^2 = 0$.
- Existence of Massless, Scalar Particles (Goldstone Bosons)

A (a) > A (b) > A

Quantum Mechanical Proof

- Definition of SSB.
- Goldstone's Theorem: In a theory that is spon. broken, each broken generator gives rise to a massless scalar particle.
- Existence of Green functions with Poles at $p^2 = 0$.
- Existence of Massless, Scalar Particles (Goldstone Bosons)

A 30 A 4

Quantum Mechanical Proof

- Definition of SSB.
- Goldstone's Theorem: In a theory that is spon. broken, each broken generator gives rise to a massless scalar particle.
- Existence of Green functions with Poles at $p^2 = 0$.
- Existence of Massless, Scalar Particles (Goldstone Bosons)

• The Vacuum does not have full Symmetry of Lagrangian

- Non-vanishing VEV for Field Operators, Vacuum is Charged.
- Emergence of Massless Bosons: Goldstone Bosons
- # Goldstone Bosons = # Broken Symmetries

< ロ > < 同 > < 三 > < 三

- The Vacuum does not have full Symmetry of Lagrangian
- Non-vanishing VEV for Field Operators, Vacuum is Charged.
- Emergence of Massless Bosons: Goldstone Bosons
- # Goldstone Bosons = # Broken Symmetries

< D > < P > < E > < E</p>

- The Vacuum does not have full Symmetry of Lagrangian
- Non-vanishing VEV for Field Operators, Vacuum is Charged.
- Emergence of Massless Bosons: Goldstone Bosons
- # Goldstone Bosons = # Broken Symmetries

- The Vacuum does not have full Symmetry of Lagrangian
- Non-vanishing VEV for Field Operators, Vacuum is Charged.
- Emergence of Massless Bosons: Goldstone Bosons
- # Goldstone Bosons = # Broken Symmetries

イロト イポト イラト イラト

Outline

• Spontaneous Symmetry Breaking in QCD

The Pions

Masses for the Goldstone Bosons

Outline

• Spontaneous Symmetry Breaking in QCD

- The Pions
- Masses for the Goldstone Bosons

- Spontaneous Symmetry Breaking in QCD
- The Pions
- Masses for the Goldstone Bosons

Spontaneous Symmetry Breaking in QCD

• Attractive Interaction between \overline{q} and q.

• Expect a $\overline{q}q$ Condensate in Ground State: $\langle 0|\overline{q}q|0 \rangle \neq 0$.

Spontaneous Symmetry Breaking in QCD

- Attractive Interaction between \overline{q} and q.
- Expect a $\overline{q}q$ Condensate in Ground State: $\langle 0 | \overline{q}q | 0 \rangle \neq 0$.

Spontaneous Symmetry Breaking in QCD

$$\Phi_{ij} = \overline{q}_j q_i \quad \Pi_{ij} = i \overline{q}_j \gamma^5 q_i \qquad i, j \in \{u, d, s\}$$

Bound States of 2 Fermions: Bosonic Field Operators.

• Parity(
$$\Phi$$
) = +, Parity(Π) = -.

• Hermiticity: $\Phi^{\dagger} = \Phi$, $\Pi^{\dagger} = \Pi$

• Φ and Π are in (1,1) of $SU(3)_{Vector}$.

Spontaneous Symmetry Breaking in QCD

$$\Phi_{ij} = \overline{q}_j q_i \quad \Pi_{ij} = i \overline{q}_j \gamma^5 q_i \qquad i, j \in \{u, d, s\}$$

- Bound States of 2 Fermions: Bosonic Field Operators.
- Parity(Φ) = +, Parity(Π) = -.
- Hermiticity: $\Phi^{\dagger} = \Phi$, $\Pi^{\dagger} = \Pi$
- Φ and Π are in (1,1) of $SU(3)_{Vector}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Spontaneous Symmetry Breaking in QCD

$$\Phi_{ij} = \overline{q}_j q_i \quad \Pi_{ij} = i \overline{q}_j \gamma^5 q_i \qquad i, j \in \{u, d, s\}$$

Bound States of 2 Fermions: Bosonic Field Operators.

• Hermiticity:
$$\Phi^{\dagger} = \Phi$$
, $\Pi^{\dagger} = \Pi$

• Φ and Π are in (1,1) of $SU(3)_{Vector}$.

< D > < P > < E > < E</p>

Spontaneous Symmetry Breaking in QCD

$$\Phi_{ij} = \overline{q}_j q_i \quad \Pi_{ij} = i \overline{q}_j \gamma^5 q_i \qquad i, j \in \{u, d, s\}$$

- Bound States of 2 Fermions: Bosonic Field Operators.
- Parity(Φ) = +, Parity(Π) = -.
- Hermiticity: $\Phi^{\dagger} = \Phi$, $\Pi^{\dagger} = \Pi$
- Φ and Π are in (1,1) of $SU(3)_{Vector}$.

Spontaneous Symmetry Breaking in QCD

- QCD respects Parity.
- $SU(3)_V$ is exact symmetry.
- qq Condensate in Vacuum.

 $\langle 0 | \Phi | 0 \rangle = v \mathbf{1}_{(3 \times 3)} \neq 0 \qquad \langle 0 | \Pi | 0 \rangle = 0$

Spontaneous Symmetry Breaking in QCD

- QCD respects Parity.
- *SU*(3)_V is exact symmetry.
- qq Condensate in Vacuum.

 $\langle 0 | \Phi | 0 \rangle = v \mathbf{1}_{(3 \times 3)} \neq 0 \qquad \langle 0 | \Pi | 0 \rangle = 0$

Spontaneous Symmetry Breaking in QCD

- QCD respects Parity.
- $SU(3)_V$ is exact symmetry.
- qq Condensate in Vacuum.

 $\langle 0 | \Phi | 0 \rangle = \nu \mathbf{1}_{(3 \times 3)} \neq 0 \qquad \langle 0 | \Pi | 0 \rangle = 0$

Spontaneous Symmetry Breaking in QCD

- QCD respects Parity.
- $SU(3)_V$ is exact symmetry.
- qq Condensate in Vacuum.

 $\left< 0 \right| \Phi \left| 0 \right> =
u \mathbf{1}_{(3 imes 3)}
eq 0 \qquad \left< 0 \right| \Pi \left| 0 \right> = 0$

The Pions

$$\pi_a(x) = \frac{1}{2} \operatorname{Tr}(\Pi(x)\lambda_a) = \frac{1}{2} \overline{q}(x) \lambda_a \gamma^5 q(x)$$

- Green function: $G^{\mu}_{ab} = \langle 0 | T[A^{\mu}_{a}(x)\pi_{b}(y)] | 0 \rangle$
- $\frac{\partial}{\partial x^{\mu}}G^{\mu}_{ab} = \delta(x^0 y^0) \langle 0 | [A^{\mu}_a(x), \pi_b(y)] | 0 \rangle = -3i\delta^{(4)}(x y)\delta_{ab}v.$
- Proved: Green Functions with Pole at $p^2 = 0 \Rightarrow$ Goldstone's Theorem

The Pions

$$\pi_a(x) = \frac{1}{2} \operatorname{Tr}(\Pi(x)\lambda_a) = \frac{1}{2} \overline{q}(x)\lambda_a \gamma^5 q(x)$$

• Green function: $G^{\mu}_{ab} = \langle 0 | T[A^{\mu}_{a}(x)\pi_{b}(y)] | 0 \rangle$

•
$$\frac{\partial}{\partial x^{\mu}}G^{\mu}_{ab} = \delta(x^0 - y^0) \langle 0| [A^{\mu}_a(x), \pi_b(y)] | 0 \rangle = -3i\delta^{(4)}(x - y)\delta_{ab}v.$$

• Proved: Green Functions with Pole at $p^2 = 0 \Rightarrow$ Goldstone's Theorem

The Pions

$$\pi_a(x) = \frac{1}{2} \operatorname{Tr}(\Pi(x)\lambda_a) = \frac{1}{2} \overline{q}(x) \lambda_a \gamma^5 q(x)$$

• Green function: $G^{\mu}_{ab} = \langle 0 | T[A^{\mu}_{a}(x)\pi_{b}(y)] | 0 \rangle$

•
$$\frac{\partial}{\partial x^{\mu}}G^{\mu}_{ab} = \delta(x^0 - y^0) \langle 0| [A^{\mu}_a(x), \pi_b(y)] | 0 \rangle = -3i\delta^{(4)}(x - y)\delta_{ab}v.$$

• Proved: Green Functions with Pole at $p^2 = 0 \Rightarrow$ Goldstone's Theorem

The Pions

• $SU(3)_A$ broken \Rightarrow 8 Goldstone Bosons \neq Experiment.

Consider only u,d Quark:

< 同 > < 回 > < 回 >

The Pions

- $SU(3)_A$ broken \Rightarrow 8 Goldstone Bosons \neq Experiment.
- Consider only u,d Quark:

< 同 > < 回 > < 回 >

The Pions

- $SU(3)_A$ broken \Rightarrow 8 Goldstone Bosons \neq Experiment.
- Consider only u,d Quark:

$$\Pi = \begin{pmatrix} \overline{u}\gamma^{5}u & \overline{d}\gamma^{5}u \\ \overline{u}\gamma^{5}d & \overline{d}\gamma^{5}d \end{pmatrix} \Rightarrow$$

$$\begin{pmatrix} \pi_{1} = \frac{1}{2}\mathrm{Tr}(\Pi\sigma_{1}) = \frac{1}{2}(\overline{d}\gamma^{5}u + \overline{u}\gamma^{5}d) \\ \pi_{2} = \frac{1}{2}\mathrm{Tr}(\Pi\sigma_{2}) = \frac{-i}{2}(\overline{d}\gamma^{5}u - \overline{u}\gamma^{5}d) \\ \pi_{3} = \frac{1}{2}\mathrm{Tr}(\Pi\sigma_{3}) = \frac{1}{2}(\overline{u}\gamma^{5}u - \overline{d}\gamma^{5}d) \end{pmatrix}$$

The Pions - Experimental Facts

Triplet under SU(2)_{Vector}

Negative Parity

Spin = 0 √

Not Massless, but lightest Mesons $\sim \sqrt{}$

$$\pi^+ = \overline{d}\gamma^5 u$$
 $\pi^- = \overline{u}\gamma^5 d$ $\pi^0 = \frac{1}{\sqrt{2}}(\overline{u}\gamma^5 u - \overline{d}\gamma^5 d)$

The Pions - Experimental Facts

- Triplet under SU(2)_{Vector}
- Negative Parity $\sqrt{}$
- Spin = 0 √
- Not Massless, but lightest Mesons $\sim \sim \sqrt{10^2}$

$$\pi^+ = \overline{d}\gamma^5 u$$
 $\pi^- = \overline{u}\gamma^5 d$ $\pi^0 = \frac{1}{\sqrt{2}}(\overline{u}\gamma^5 u - \overline{d}\gamma^5 d)$

 $\sqrt{}$

The Pions - Experimental Facts

- Triplet under *SU*(2)_{Vector}
- Negative Parity $\sqrt{}$
- Spin = 0 $\sqrt{}$

Not Massless, but lightest Mesons $\sim \sqrt{}$

$$\pi^{+} = \overline{d}\gamma^{5}u \qquad \pi^{-} = \overline{u}\gamma^{5}d \qquad \pi^{0} = \frac{1}{\sqrt{2}}(\overline{u}\gamma^{5}u - \overline{d}\gamma^{5}d)$$

The Pions - Experimental Facts

- Triplet under SU(2)_{Vector}
- Negative Parity $\sqrt{}$
- Spin = 0 $\sqrt{}$
- Not Massless, but lightest Mesons $\sim \sqrt{}$

 $\pi^{+} = \overline{d}\gamma^{5}u \qquad \pi^{-} = \overline{u}\gamma^{5}d \qquad \pi^{0} = \frac{1}{\sqrt{2}}(\overline{u}\gamma^{5}u - \overline{d}\gamma^{5}d)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Pions - Experimental Facts

- Triplet under SU(2)_{Vector}
- Negative Parity $\sqrt{}$
- Spin = 0 $\sqrt{}$
- Not Massless, but lightest Mesons $\sim \sqrt{}$

$$\pi^+ = \overline{d} \gamma^5 u \qquad \pi^- = \overline{u} \gamma^5 d \qquad \pi^0 = rac{1}{\sqrt{2}} (\overline{u} \gamma^5 u - \overline{d} \gamma^5 d)$$

Masses for the Pions

• SU(2)_{Axial} only Approximate Symmetry.

• Assume: $m_u = m_d = m$ (SU(2)_{Vector} exact)

•
$$\partial_{\mu}A^{\mu}_{b} = i\overline{q}\{M, \sigma^{F}_{b}\}\gamma^{5}q \approx 2m\pi_{b}$$

• Assume: $\langle 0| T[\pi_a(x)\pi_b(y)] |0
angle = C \delta_{ab} \int \frac{i}{p^2 - m_a^2} e^{-ip(x-y)} d^4 p$

Masses for the Pions

- SU(2)_{Axial} only Approximate Symmetry.
- Assume: $m_u = m_d = m$ (SU(2)_{Vector} exact)

•
$$\partial_{\mu}A^{\mu}_{b} = i\overline{q}\{M,\sigma^{F}_{b}\}\gamma^{5}q \approx 2m\pi_{b}$$

• Assume: $\langle 0 | T[\pi_a(x)\pi_b(y)] | 0 \rangle = C \delta_{ab} \int \frac{i}{p^2 - m_a^2} e^{-ip(x-y)} d^4 p$

Masses for the Pions

- SU(2)_{Axial} only Approximate Symmetry.
- Assume: $m_u = m_d = m$ (SU(2)_{Vector} exact)

•
$$\partial_{\mu}A^{\mu}_{b} = i\overline{q}\{M, \sigma^{F}_{b}\}\gamma^{5}q \approx 2m\pi_{b}$$

• Assume: $\langle 0| T[\pi_a(x)\pi_b(y)] |0 \rangle = C \delta_{ab} \int \frac{i}{p^2 - m_a^2} e^{-ip(x-y)} d^4 p$

Masses for the Pions

- SU(2)_{Axial} only Approximate Symmetry.
- Assume: $m_u = m_d = m$ (SU(2)_{Vector} exact)

•
$$\partial_{\mu}A^{\mu}_{b} = i\overline{q}\{M, \sigma^{F}_{b}\}\gamma^{5}q \approx 2m\pi_{b}$$

• Assume: $\langle 0| T[\pi_a(x)\pi_b(y)] | 0 \rangle = C \delta_{ab} \int \frac{i}{p^2 - m_a^2} e^{-ip(x-y)} d^4p$

Masses for the Pions

In Fourier Space:

 $p_{\mu}G^{\mu}_{ab}(p)=2v\delta_{ab}-Crac{2m\delta_{ab}}{p^2-m_a^2}$

• Choose v, C \Rightarrow Move Pole from 0 to m_{π}^2 .

$$m_{Pion}^2 = C rac{m_{Quark}}{v}$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

э

Masses for the Pions

In Fourier Space:

$$p_{\mu}G^{\mu}_{ab}(p)=2v\delta_{ab}-Crac{2m\delta_{ab}}{p^2-m_a^2}$$

• Choose v, C \Rightarrow Move Pole from 0 to m_{π}^2 .

$$m_{Pion}^2 = C rac{m_{Quark}}{v}$$

Masses for the Pions

In Fourier Space:

$$p_{\mu}G^{\mu}_{ab}(p)=2v\delta_{ab}-Crac{2m\delta_{ab}}{p^2-m_a^2}$$

• Choose v,C \Rightarrow Move Pole from 0 to m_{π}^2 .

$$m_{Pion}^2 = C rac{m_{Quark}}{v}$$

Masses for the Pions

In Fourier Space:

$$p_{\mu}G^{\mu}_{ab}(p)=2v\delta_{ab}-Crac{2m\delta_{ab}}{p^2-m_a^2}$$

• Choose v,C \Rightarrow Move Pole from 0 to m_{π}^2 .

$$m_{Pion}^2 = C rac{m_{Quark}}{v}$$

• Vacuum of QCD contains $\overline{q}q$ Condensate.

- SU(2)_{Axial} broken.
- Emergence of 3 Goldstone Bosons = Pion Triplet.
- Explicit Breaking of Chiral Symmetry: Masses for Pions.

< D > < P > < E > < E</p>

- Vacuum of QCD contains $\overline{q}q$ Condensate.
- SU(2)_{Axial} broken.
- Emergence of 3 Goldstone Bosons = Pion Triplet.
- Explicit Breaking of Chiral Symmetry: Masses for Pions.

< D > < P > < E > < E</p>

- Vacuum of QCD contains $\overline{q}q$ Condensate.
- SU(2)_{Axial} broken.
- Emergence of 3 Goldstone Bosons = Pion Triplet.
- Explicit Breaking of Chiral Symmetry: Masses for Pions.

- Vacuum of QCD contains $\overline{q}q$ Condensate.
- SU(2)_{Axial} broken.
- Emergence of 3 Goldstone Bosons = Pion Triplet.
- Explicit Breaking of Chiral Symmetry: Masses for Pions.