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1 Introduction

Renormalization is one of the most important concepts of quantum field theories.
Many quantum field theories contain divergences and to obtain any reasonable
results, one has to find a way to handle these divergences. Renormalization of
a quantum field theory is the procedure of dealing with these divergences to get
finite results for observable physical quantities occurring in the theory. We will
investigate the concept of renormalization in the framework of φ4 theory. Along
the way, we will encounter the concept of a running coupling λ(p), which means
that λ depends on the momentum scale, p. This dependence is not arbitrary but
happens in a well-defined way through the β-function β(λ). The development
of the β-function not only determines the behavior of λ(p) with varying p but
also the limits p → ∞ and p → 0. If a coupling constant goes to zero for large
momentas, this is called asymptotic freedom, which is a further very important
concept. Afterwards, we will consider the nonlinear σ-model as an example of
an asymptotically free theory. In the end, we will point out the consequences of
asymptotic freedom and renormalization on quantum chromodynamics. Let us
start with an introduction of some formalism and definitions.

1.1 Generating functionals and n-point functions

A free scalar field φ describing the free propagation of particles is described by
the Klein-Gordon Lagrangian

L0 =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (1)

As we have seen in the first talk ’Euclidean path integral formalism’1, in this case
of a free field the generating functional of n-point functions is given by

Z0[J ] = exp
[
− i

2

∫
J(x)∆F (x− y)J(y)d4xd4y

]
, (2)

where J(z) is a source of the field φ(z) and ∆F is the Feynman propagator,
obeying

(� +m2 − iε)∆F (x) = −δ4(x). (3)

This equation can easily be calculated inverted in momentum space which leads
to

∆F (p) =
1

p2 −m2 + iε
(4)

1But we are considering Minkowski space expressions here instead of Euclidean ones.
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We can expand Eq. (2)

Z0[J ] = 1 +
(
− i

2

) ∫
J(x)∆F (x− y)J(y)d4xd4y

+
1

2!

(
− i

2

)2[∫
J(x)∆F (x− y)J(y)d4xd4y

]2
(5)

+
1

3!

(
− i

2

)3[∫
J(x)∆F (x− y)J(y)d4xd4y

]3
+ · · · ,

which can represented diagrammatically using the rules

= i∆F (x− y), (6)

= iJ(z), (7)

as

Z0[J ] =1 +
(1

2

) ∫
d4x1d

4y1

+
1

2!

(1

2

)2
∫

d4x1d
4y1d

4x2d
4y2

+
1

3!

(1

2

)3
∫

d4x1d
4y1d

4x2d
4y2d

4x3d
4y3 + · · · , (8)

where xi and yi label the external points (sources). Having this diagrammatic
representation, it is straightforward to evaluate the n-point functions defined as

τ(x1, . . . , xn) :=
1

in
δnZ0[J ]

δJ(x1) · · · δJ(xn)

∣∣∣
J=0

. (9)

These functional derivatives can be calculated from Eq. (2). But we can also see
the impact of these derivatives in the diagrammatic expansion as canceling one
cross and evaluating the external point at a certain point, which can be seen in
the following most simple example:(1

i

δ

δJ(x1)

)(
− i

2

∫
J(x)∆F (x− y)J(y)d4xd4y

)
=

∫
i∆F (x1 − z)iJ(z)d4z(1

i

δ

δJ(x1)

)(1

2

∫
d4xd4y

)
=

∫
d4z

Let us consider the example of the two-point function τ(x, y), we do two deriva-
tivens and set then J = 0. Therefore, each diagram which contains still a cross
labelling a source is zero. As we have two derivatives, only the diagram with one
line and two crosses gives a contribution. If we take symmetry into account, we
find directly

τ(x, y) = = i∆F (x− y). (10)
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So the 2-point function for free particles is a propagation of a particle between
the two points. To see this in more detail, we may use that

τ(x1, . . . , xn) = 〈0|T (φ(x1) · · ·φ(xn))|0〉, (11)

which was also introduced in the first talk ’Euclidean path integral formalism’.
Using this identity for the 2-point function, we see that the 2-point function is
equal to the vacuum-expectation value of the time-ordered (T ) product of the
field at x and y. This can be written as

τ(x, y) =θ(x0 − y0)〈0|φ(x)φ(y)|0〉+ θ(y0 − x0)〈0|φ(y)φ(x)|0〉 (12)

and decomposing the field into a creating (φ(−)) and an annihilating part (φ(+)),
φ(x) = φ(+)(x) + φ(−)(x), as

τ(x, y) =θ(x0 − y0)〈0|φ(+)(x)φ(−)(y)|0〉+ θ(y0 − x0)〈0|φ(+)(y)φ(−)(x)|0〉, (13)

from this we can interpret that the particle gets created at the earlier time at the
corresponding coordinate and propagates to the later space-time point and gets
annihilated there.
If we consider the one-point function τ(x), diagrammatically one cross gets can-
celled and by setting J = 0 everything vanishes because in every term there is
still a cross present.
Considering the 4-point function, we can find

τ(x1, x2, x3, x4) = (14)

=(i∆F (x1 − x4))(i∆F (x2 − x3)) + (i∆F (x1 − x3))(i∆F (x2 − x4))

+ (i∆F (x1 − x2))(i∆F (x3 − x4))

=τ(x1, x4)τ(x2, x3) + τ(x1, x3)τ(x2, x4) + τ(x1, x2)τ(x3, x4).

We see that in the free particle case the 4-point function is a sum of products of
2-point function, this is generalized by Wick’s theorem:

τ(x1, . . . , x2n) =
∑
perms

τ(xp1 , xp2) · · · τ(xp2n−1 , xp2n). (15)

So far, we did only consider the free field case with free propagation of particles.
However, more interesting things appear not until interactions are present. If
we have interactions described by a Lagrangian Lint(φ), one can derive2 that the
generating functional is given by

Z[J ] = N exp

(
i

∫
Lint

(1

i

δ

δJ(x)

)
d4x

)
Z0[J ], (16)

2Lewis H. Ryder, Quantum field theory, p.196ff
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where N is a normalization constant and the generating functional is constructed
by functional derivatives acting on the free generating functional Z0[J ]. We do
not investigate this now any further but refer to the following section, Sec. 2.1,
where we consider this generating functional for the φ4 interaction Lagrangian.
However, it is important to point out the following: A not normalized generating
functional contains vacuum diagrams, which are diagrams without external legs
as for example:

In contrast, in a normalized generating functional all these vacuum diagrams
cancel out. Therefore, a normalized generating functional contains only diagrams
with external legs. If we consider the 4-point function of φ4 theory to first order,
which we will reconsider in the next section, we recognize that there are two kinds
of diagrams:

τ(x1, x2, x3, x4) = 3
[ ]

+ 3(−iλ)
[ ]

+ (−iλ)
[ ]

. (17)

While in the third diagram all external points are connected (connected diagram),
in the first two diagrams not all external points are connected with each other
and thus such diagrams are called disconnected diagrams.
The disconnected diagrams are not that important as they describe the indepen-
dent propagation of two particles without scattering. As we are more interested
in connected diagrams, it is useful to introduce another generating functional
W , which only generates the connected contributions to the n-point functions,
defined by

Z[J ] = eiW [J ] or W [J ] = −i lnZ[J ]. (18)

We can define in an analogous way to the n-point functions τ(x1, . . . , xn), Eq. (9),
the irreducible n-point functions φ(x1, . . . , xn) by

φ(x1, . . . , xn) =
1

in
δnW [J ]

δJ(x1) · · · δJ(xn)

∣∣∣
J=0

. (19)

It can be proven generally3 that φ(x1, . . . , xn) contains exactly the irreducible
(connected) contributions from τ(x1, . . . , xn). Let us just consider the 2-point
and 4-point functions to make this reasonable:

φ(x1, x2)=
1

i2
δ2W [J ]

δJ(x1)δJ(x2)

∣∣∣
J=0

=
( i

Z[J ]

δ2Z[J ]

δJ(x1)δJ(x2)
− i

Z[J ]2
δZ[J ]

δJ(x1)

δZ[J ]

δJ(x2)

)∣∣∣
J=0

,

as we have
δZ[J ]

δJ(x)

∣∣∣
J=0

= 0 and Z[0] = 1,

φ(x1, x2) = i
δ2Z[J ]

δJ(x1)δJ(x2)

∣∣∣
J=0

= −iτ(x1, x2). (20)

3J. Zinn-Justin, (1997), section 6.1.1.
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Thus, we find iφ(x1, x2) = τ(x1, x2), which means that the 2-point functions are
equal what is obvious as there are no disconnected two-point diagrams possible.
Calculating the same for the 4-point function, we find

iφ(x1, x2, x3, x4) =τ(x1, x2, x3, x4)− τ(x1, x2)τ(x3, x4)

− τ(x1, x3)τ(x2, x4)− τ(x1, x4)τ(x2, x3), (21)

where we see now that from the whole 4-point function τ(x1, x2, x3, x4) the indi-
vidual propagations of two particles (e.g. τ(x1, x2)τ(x3, x4)) have been subtracted
to obtain the irreducible part. This happens generally for any n-point function
such that φ(x1, . . . , xn) contains exactly all connected diagrams of τ(x1, . . . , xn).
It is also covenient to talk about Green’s functions, which have a simple relation
to the n-point functions:

G(n)(x1, . . . , xn) := τ(x1, . . . , xn), (22)

G(n)
c (x1, . . . , xn) := iφ(x1, . . . , xn), (23)

where the subscript c just stands for connected. We now introduce one further
classification. Instead of introducing this very general, we just consider an exam-
ple to see the two types of diagrams to be classified. We again use an example
of φ4 theory, which we will consider in the next section in detail, namely the
connected two-point function4

As we can see there are diagrams, which can be built up by diagrams of lower
order, e.g. the first diagram of order g2 is just twice the diagram of order g, the
first diagram of order g3 is just three times the order g diagram, the following
diagrams of order g3 are obviously also built up from lower order diagrams, while
the last three diagrams of order g3 can not be divided into lower order diagrams.
We call the first ones 1-particle reducible graphs, which have the property that
they can be divided into two subdiagrams by cutting one internal line while the
1-particle irreducible (1 PI) graphs may not be divided. It is in general true that
1-particle reducible diagrams can be built up by 1-particle irreducible diagrams.
To see that, we define the self-energy part5 as the sum of all 1 PI graphs:

4Coupling constant g instead of λ.
5The self-energy is a fundamental concept and will be of interest later.
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Using the bare propagator G0(p) = i/(p2−m2) and the self-energy function Σ(p),
we can write the complete propagator (two-point function) as

G(2)
c (p) =G0(p) +G0(p)

Σ(p)

i
G0(p) +G0(p)

Σ(p)

i
G0(p)

Σ(p)

i
G0(p) + · · ·

=G0

(
1 +

Σ(p)

i
G0 +

Σ(p)

i
G0

Σ(p)

i
G0 + · · ·

)
=G0

(
1− Σ(p)

i
G0

)−1

=
[
G−1

0 (p)− Σ(p)

i

]−1

=
i

p2 −m2 − Σ(p)
. (24)

It is remarkable to see that the complete propagator is the same as the bare
propagator simply corrected by the self-energy part. This shows the importance
of the self-energy part, because normally the physical mass is defined as the pole
of the propagator and thus the self-energy modifies the bare mass to a physical,
measurable mass. To make clear again that this simple result includes all possible
diagrams, we can write the full propagator diagrammatically as a power series:

where it should be easy to see that all the combinations from the sums in the
self-energy part give all possible diagrams.
Now, that we have introduced the whole formalism of n-point functions, gener-
ating functionals and self-energy, let us start with the consideration of φ4 theory.

2 φ4 theory

2.1 General properties

The φ4 theory is one of the simplest theories describing a scalar field but still it
shows many interesting features occuring also in more complex theories. We will
consider the concept of renormalization in detail at the φ4 theory. The name of
this theory comes from the form of the interaction term in the Lagrangian

Lint = − λ
4!
φ4, (25)
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where λ is a coupling constant, the factor 4! is due to symmetry reasons and the
φ to the fourth power (quartic6 interaction) leads to interaction which involves
four times the field (this property we will also see explicitly in the Feynman dia-
grams where at the interaction vertices always four lines meet).
The whole Lagrangian is given by this interaction part and the free field La-
grangian, Eq. (1)

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (26)

Considering now the whole Lagrangian, we see that it is important to have a
positive coupling constant to have a repulsive interaction potential, because for
a negative λ the generating functional Z would not converge as φ→∞.
As we have seen in Sec. (1.1), to calculate n-point functions we need the gen-
erating functional. The normalized generating functional is given by Eq. (16)
as

Z[J ] =
exp[i

∫
Lint(1

i
δ

δJ(z)
)dz] exp[− i

2

∫
J(x)∆F (x− y)J(y)dxdy]

{exp[i
∫
Lint(1

i
δ

δJ(z)
)dz] exp[− i

2

∫
J(x)∆F (x− y)J(y)dxdy]}

∣∣∣
J=0

. (27)

This expression is calculated to order g in App. A. To write down this expression,
we use the diagrammatic rules in coordinate space

→ i∆F (x− y), (28)

→ i∆F (0) = i∆F (x− x), (29)

→ −iλ and integration over z (30)

→ iJ(x) (31)

The generating functional is then given by

Z[J ] =

[
1 +

(−iλ)

4!

∫ (
6 +

)
dz

]
exp
(
− i

2

∫
J∆FJ

)
. (32)

The 2-point function, defined as

τ(x1, x2) := − δ2Z[J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

, (33)

may be calculated to

τ(x1, x2) =i∆F (x1 − x2) +
(−iλ)

2
i∆F (0)

∫
dzi∆F (z − x1)i∆F (z − x2) +O(λ2)

= +
(−iλ)

2
+O(g2), (34)

6quartic=bi-quadratic
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which is done in detail in App. A. Analogously, the 4-point function, defined as

τ(x1, x2, x3, x4) :=
δ4Z[J ]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣
J=0

, (35)

can be calculated as

τ(x1, x2, x3, x4) =3

[ ]
+ 3(−iλ)

[ ]
+ (−iλ)

[ ]
(36)

+(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]

+(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]
+O(λ3)

As we see, the first two diagrams are disconnected and thus of less importance
while the third one gives us the first scattering contribution, which is just the
simple 4-vertex interaction characteristic for φ4 theory. We will be considering
the last term of second order in much details in the context of renormalization
because this term is divergent.
It is usful to work in momentum space rather than in coordinate space. We
consider the simple 4-vertex diagram to see how to transform to Fourier space:

−iλ =− iλ
∫

d4zi∆F (x1 − z)i∆F (x2 − z)i∆F (x3 − z)i∆F (x4 − z)

=− iλ
∫

d4z

∫
d4p1

(2π)4
i∆F (p1)e

−ip1(x1−z)
∫

d4p2

(2π)4
i∆F (p2)e

−ip2(x2−z)∫
d4p3

(2π)4
i∆F (p3)e

−ip3(x3−z)
∫

d4p4

(2π)4
i∆F (p4)e

−ip4(x4−z)

=− iλ
∫

d4p1

(2π)4

d4p2

(2π)4

d4p3

(2π)4

d4p4

(2π)4
i∆F (p1)e

−ip1x1 i∆F (p2)e
−ip2x2

i∆F (p3)e
−ip3x3 i∆F (p4)e

−ip4x4 (2π)4δ(4)(p1 + p2 + p3 + p4)

Using the expression for ∆F (p), Eq. (4), we can read off the Feynman rules in
momentum space:

for each propagator → i

p2 −m2 + iε
and

∫
d4p

(2π)4
,

for each vertex → −iλ(2π)4δ(4)(p1 + p2 + p3 + p4), (37)

for each external point → e−ipx,
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where the delta function takes care of energy-momentum conservation at each
vertex. These delta functions together with the integrations over all momentas
reduce to integrations over independent momentas.

2.2 Symmetry properties

Before analyzing a physical system any further, it is always important to consider
the symmetry properties. If we consider the Lagrangian of our φ4 theory, we
recognize that it has a global Z2 symmetry mapping

φ→ −φ. (38)

One consequence of this is that all n-point functions for odd n vanish:

τ(x1, . . . , xn) =〈0|T (φ(x1) . . . φ(x3))|0〉
=〈0|T ((−φ(x1)) . . . (−φ(x3)))|0〉
=(−1)n〈0|T (φ(x1)φ(x2)φ(x3))|0〉 = 0 for odd n. (39)

The generalization from one scalar field to a set of N real scalar field, has a
Lagrangian of the form

L =
1

2
(∂µφ

i)2 − 1

2
m2(φi)2 − λ

4!
[(φi)2]2. (40)

It is obvious that this Lagrangian has a further symmetry, namely O(N) symme-
try.

2.3 n-point functions

2.3.1 Primitive divergences

We will now consider two important diagrams which contribute to the 2- resp.
4-point function. As we will see, their contribution is divergent and we will
examine how to deal with those divergences. We call these divergences primitive
as those diagrams diverge per se. In contrast, we will see diagrams which diverge
only because they contain diverging primitive subdiagrams and would not diverge
without these diverging subdiagrams.
Starting with the 2-point function, Eq. (34), we see that the first modification
from the free particle propagation is the one-loop diagram

= λ

∫
d4q

(2π)4

1

q2 −m2
, (41)

which has two powers of q in the denominator and obtains four powers of q in
the numerator from integration and therefore is quadratically diverging at large
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q (ultra-violet divergence).
Considering the 4-point function, Eq. (36), we recognize that there is no divergent
diagram to order λ, but one can find the first diverging diagram of order λ2, also
given by a divergent one-loop diagram

=λ2

∫
d4q1
(2π)4

d4q2
(2π)4

δ(4)(q1 + q2 − p1 − p2)

(q2
1 −m2)(q2

2 −m2)

=λ2

∫
d4q

(2π)8

1

(q2 −m2)((p1 + p2 − q)2 −m2)
. (42)

This expression is logarithmically diverging at large q because there are four pow-
ers of q both in the denominator and in the numerator (from integration).
We considered exactly these two diagrams because they are the divergent dia-
grams which are lowest order in the coupling constant λ. Although higher order
diagrams also diverge, their contribution is small compared to the ones above due
to the higher order in the coupling constant λ.

2.3.2 Loop-Expansion

However, we should now remark the following: If we compare the additional
contributions we have calculated, we see that they are of different order in λ.
The contribution to the 2-point function is of order λ, which means that the
correction is (1+O(λ)). The additional contribution to the 4-point function is of
order λ2, but the correction is also (1 +O(λ)). But although we are considering
different order λ contribution, we are considering identical order contribution in
the number of loop. It is important to note that an expansion in the number of
loops has more physical relevance than an expansion in powers of λ. As could be
shown, a diagram with L loops would be of order ~L−1 if we would not set ~ = 1.
So an expansion in loops is equal to an expansion in powers of ~ which is just an
expansion around the classical theory.

2.3.3 Superficial degree of divergence

It is important to analyze the degree of divergence of a particular diagram in
general. As we will see, only 2-point and 4-point functions can be primitively
divergent while all divergences in higher n-point functions just appear if they
contain divergent 2-point or 4-point functions. Thus, if we are able to renor-
malize the divergent 2-point and 4-point function, also all divergencies in higher
n-point functions disappear. If each n-point function would have its own primi-
tive divergencies, we would not be able to renormalize the theory.
Because of this internal divergencies we are not able to determine a general de-
gree of divergence but a superficial degree of divergence which will confirm the
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statement above. From the Feynman rules of φ4 theory, Eq. (37), we see that
each propagator (internal line) contributes q2 to the denominator. Each vertex
contributes an integration over d-dimensional momentum space (in d space-time
dimensions) together with a delta function for momentum conservation. Thus,
integration will only take place over independent momentas, which is equal to the
number of loops of the particular diagram. Summing up the superficial degree of
divergence of a diagram with L loops and I internal lines is

D = dL− 2I. (43)

This formula gives D = 2 and D = 0 for the diagrams above.
It is our goal to express D in terms of the number of external lines E and the order
of the diagram n (number of vertices). We have I internal momentas which are
constrained by n momentum conservation conditions and an overall momentum
conservation. Thus, we have I − n+ 1 independent momentas which is equal to
the number of loops:

L = I − n+ 1. (44)

In φ4 theory, each vertex has 4 legs, we have 4n legs in total which are connected
by internal and external lines:

4n = E + 2I. (45)

Using eqs. (43), (44), and (45), we find

D = d−
(d

2
− 1
)
E + n

(
d− 4

)
(46)

which simplifies in the case d = 4 to

D = 4− E. (47)

This is in accordance with the statement above that all diagrams with n > 4
are not diverging superficially. However, to make this point more clear, let us
consider three examples of 6-point functions:

The first diagram (a) is converging as could be shown by writing down the cor-
responding expression, while the others (b and c) are diverging because they
contain internal 2-point or 4-point functions which let them diverge.
After this analysis, it should be clear why we will only consider 2-point and
4-point functions with the goal to renormalize them.
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2.3.4 Dimensional analysis

Furthermore, it is important to see that space-time dimensionality has impor-
tant consequences to the renormalizability of our theory. Thus, we analyze the
dimensionality of the quantities we are dealing with. Starting with the action

S =

∫
ddxL (48)

which is dimensionless (in units with ~ = 1), we find that

[L] = L−d (L is a length). (49)

Considering the kinetic energy term (∂µφ∂µφ) and using [∂µ] = L−1, we have

[φ] = L1−d/2. (50)

If we now consider the interaction term λφ4 and suppose [λ] = L−δ, we find that

δ = 4− d. (51)

We conclude that in 4 dimensions, our coupling constant λ is dimensionless. We
have to remark that this is important for the following reason: If we substitute
Eq. (51) into Eq. (46), we have

D = d−
(d

2
− 1
)
E − nδ, (52)

from which we see that a coupling constant of a renormalizable theory has to
have a mass dimension7 δ ≥ 0 because otherwise higher order diagrams would
have increasing divergences and we could forget about renormalization8. For our
φ4 theory, this is the case for d > 4 and the theory is non-renormalizable.

2.4 Renormalization

2.4.1 Renormalized Perturbation Theory

As we have seen in Sec. 2.3.1, in φ4 theory there are diverging 2-point and 4-point
diagrams. We will now see how we can renormalize the theory to give finite results
for all measurable quantities: mass m, coupling constant λ, and field-strength φ.
In the following, it is important to distinguish between bare quantities, which
we consider so far and which we will indicate by a subscript B, and measurable
quantities. If we consider the complete propagator, Eq. (24),

G(2)(p) =
i

p2 −m2
B − Σ(p)

, (53)

7It is more common to talk in mass units (mass−1 = length for ~ = 1)
8This is the reason, why e.g. a term 1

m4 (FµνFµν)2 may not occur in the QED Lagrangian,
what we have seen in the last talk ’Yang-Mills theory and the QCD Lagrangian’.
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we see that the pole of this propagator is not at m anymore but at m̃ defined by,

m̃2 −m2
B − Σ(m̃) = 0. (54)

We can now expand the complete propagator around m̃,

G(2)(p) =
iZ

p2 − m̃2
+ terms regular at p2 = m̃2, (55)

where Z is the residuum of the pole. This Z is a probability amplitude9 and we
should normalize this probability amplitude to 1, which can be done by consid-
ering a renormalized field φr:

φ = Z1/2φr (56)

Using this definition of the renormalized field, we can write

L =
1

2
Z(∂µφr)

2 − 1

2
m2
BZφ

2
r −

λB
4!
Z2φ4

r. (57)

Still, bare mass mB and bare coupling constant λB appear in the Lagrangian. To
introduce the physically measurable mass m and coupling constant λ, we define

δZ = Z − 1, δm = m2
BZ −m2, δλ = λBZ

2 − λ, (58)

and rewrite the Lagrangian as

L =
1

2
(∂µφr)

2 − 1

2
m2φ2

r −
λ

4!
φ4
r

+
1

2
δZ(∂µφr)

2 − 1

2
δmφ

2
r −

δλ
4!
φ4
r, (59)

where in the first line, we have now the same Lagrangian as in Eq. (26), but now
with the physical quantities. In the second line, there are counterterms of the
same form as the original terms of the Lagrangian.
It is important to note that we did not add these counterterm but rather split the
bare quantities in the physical quantities and in additional parts which appear as
counterterms. However, so far we just introduced quantities m and λ which have
to be defined properly. These necessary conditions are called renormalization
conditions :
We define the renormalized full propagator, which we considered above, as

=
i

p2 −m2
+ (terms regular at p2 = m2) (60)

9Z = |〈λ0|φ(0)|Ω〉|2, where Ω is the vacuum state and λ0 is an exact one-particle state.
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which includes two conditions: First of all, the pole of the propagator defines
the physical mass and additionally the residuum at this pole is fixed. The other
condition concerns the 4-point function, more precisely the full 4-point function
with amputated external legs, the 4-point vertex function

Γ(4)(p1, p2, p3, p4) = G(4)(p1, p2, p3, p4)G
(2)−1

(p1)G
(2)−1

(p2)G
(2)−1

(p3)G
(2)−1

(p4).

This condition is not unique, as we are free to choose a condition certain mo-
mentas pi. It is convenient to introduce the Mandelstam variables s = (p1 + p2)

2,
t = (p1 + p3)

2, and u = (p1 + p4)
2, which are important variables in experiments.

Using this, we can postulate the second condition

=− iλ at s = 4m2, t = u = 0, (61)

Together with the new Lagrangian we have new Feynman rules

=
i

p2 −m2
(62)

=− iλ (63)

=i(p2δZ − δm) (64)

=− iδλ (65)

where we instead of demanding integrations over all momentas and a delta func-
tion for energy-momentum conservation at each vertex, we just demand integra-
tion over each independent momentum. The first two rules have the same form
as the original rules, but now they contain the physical mass and the physical
coupling constant.
If we evaluate diagrams contributing to the 2- and 4-point functions, we still
find divergent contributions. However, we are now able to compensate them by
contributions originating from the counterterms. The counterterms are chosen in
such a way that the renormalization conditions are fulfilled.
This procedure, using Feynman rules with counterterms, is known as renormalized
perturbation theory. Let us now make use of this procedure by renormalization
of φ4 theory to one-loop order.

2.4.2 Renormalization to one-loop order

We start the renormalization by considering the 4-point vertex function

Γ(4) = + + . (66)
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If we define p = p1 + p2, the second contribution can be written as

=
(−iλ)2

2

∫
d4k

(2π)4

i

k2 −m2

i

(k + p)2 −m2

≡(−iλ)2 · iV (p2). (67)

The next two diagrams are identical and using the Mandelstam variables, the
whole 4-point function to one loop order can be expressed as

Γ(4)(p1, p2, p3, p4) = −iλ+ (−iλ)2[iV (s) + iV (t) + iV (u)]− iδλ. (68)

Reconsidering the renormalization condition Γ(4)(s = 4m2, t = 0, u = 0) = −iλ,
we find

δλ = −λ2[V (4m2) + 2V (0)]. (69)

V (p2) is a divergent quantity in 4 space-time dimensions as we have already seen.
However, it turns out that it can be computed explicitly using dimensional regu-
larization, which means that we perform the momentum integral in d dimensions,
where it is not divergent. Then, we consider the limit d→ 4 and recognize that
the diagram has a simple pole in 4− d. The result (calculated in App. B) is

V (p2) = − 1

32π2

(2

ε
− γ −

∫ 1

0

dx log
[m2 − x(1− x)p2

4π

])
, (70)

where ε = 4 − d and γ is the Euler-Mascheroni constant10. Using Eq. (69), we
have

δλ =
λ2

32π2

(6

ε
− 3γ −

∫ 1

0

dx
(

log
[m2 − x(1− x)4m2

4π

]
+ 2 log

[m2

4π

]))
(71)

Now, both δλ and V (p2) are divergent but using Eq. (68) we find the finite result

Γ(4)(p1, p2, p3, p4) =− iλ− iλ2

32π2

∫ 1

0

dx
(

log
[ m2 − x(1− x)s

m2 − x(1− x)4m2

]
+ log

[m2 − x(1− x)t

m2

]
+ log

[m2 − x(1− x)u

m2

])
, (72)

which is valid to one loop order. So far, δZ and δm are not determined and we
have to compute the two-point function to determine them. Making use of the
self-energy Σ,

=
Σ(p2)

i
, (73)

10γ = 0.577
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the full two-point function is given by a geometric series

=
i

p2 −m2 − Σ(p2)
(74)

To maintain the renormalization conditions for the propagator, Eq. (60), this is
equivalent to fulfill the two conditions

Σ(p2)
∣∣∣
p2=m2

= 0 and
d

dp2
Σ(p2)

∣∣∣
p2=m2

= 0. (75)

To maintain these conditions, we calculate the self-energy to one loop order and
adjust δZ and δm as required,

Σ(p2)

i
= + (76)

=− iλ

2

∫
d4k

(2π)4

i

k2 −m2
+ i(p2δZ − δm). (77)

As the first term is independent of p2, we have δZ = 0. To determine δm, we
have to calculate the first term using dimensional regularization and find a result
similar to the one for the 4-point diagram and by setting

δm = −λ
2

∫
d4k

(2π)4

i

k2 −m2
= − λm

2

32π2

(2

ε
+ (1− γ)− log

[m2

4π

])
, (78)

we have Σ(p2) = 0 for all p2. The first nonzero contribution to Σ(p2) and δZ are
of order λ2, which occur when we consider second order diagrams.

It is important to note that at each order of loops all divergencies can be canceled
by adjustment of counterterms to render the renormalization condition valid. The
procedure is totally selfconsistent: On the one side, in each order we have to in-
clude the counterterm contributions according to the Feynman rules. On the
other side, in each order additional contributions to the counterterms occur.
A theory is renormalizable if all divergencies can be canceled in each order of per-
turbation theory by counterterms of the same form as the original Lagrangian.
So far, we have only considered 2-point and 4-point functions and renormalized
them. What concerns higher n-point functions, we have discussed that their di-
vergences originate from internal diverging 2-point and 4-point functions. As we
have renormalized these divergences, higher n-point functions include renormal-
ized 2-point and 4-point functions which are not divergent. Thus, we do not have
to worry about divergences in higher n-point functions.
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2.5 Callan-Symanzik equation

We have now seen how the φ4 theory can be renormalized. We will now derive
a flow equation for the coupling constant, which determines how the coupling
constant changes with changing momentas.
We again consider the situation of our φ4 theory. However, the flow equation we
will determine is valid for all dimensionless coupling theories. For simplicity, we
assume that the mass term m2 has been adjusted to zero. In the last section,
we used a set of renormalization condition, eqs. (60) and (61), which for m2 = 0
lead to singularities.11 As we have the freedom to choose an appropriate renor-
malization condition. We can choose the conditions at a spacelike momentum p
with p2 = −M2:

= 0 at p2 = −M2 (79)

d

dp2

( )
= 0 at p2 = −M2 (80)

=− iλ at s = t = u = −M2 (81)

The parameter M is called the renormalization scale12. It is important to note
that we have chosen the renormalization scale M arbitrary. The same theory
could have been defined at another scale M ′. Same theory here means that the
bare, unrenormalized Green’s functions

〈Ω|T (φ(x1)φ(x2) · · ·φ(xn))|Ω〉 (82)

are the same. The renormalized Green’s functions are related to the bare Green’s
function by

〈Ω|T (φr(x1)φr(x2) · · ·φr(xn))|Ω〉 = Z−n/2〈Ω|T (φ(x1)φ(x2) · · ·φ(xn))|Ω〉. (83)

Another renormalization scale M ′ would lead other renormalized Green’s func-
tions with a new renormalized coupling constant λ′ and a new rescaling factor
Z ′. However, the bare Green’s functions do not change, obviously. Let us now
consider the consequences of a shift of M by δM . This is connected with shifts
in the coupling constant and in the rescaling factor:

M →M + δM,

λ→λ+ δλ, (84)

Z →Z + δZ,

11Consider for example the limit m2 → 0 in Eq. (71) and Eq. (72).
12In the case of nonzero mass, we could choose the same renormalization conditions with a

large momentum scale M , such that m could be treated as perurbation.
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from which follows

φr →(1 + δη)φr, (85)

where δη = δZ/Z. As we know, the Green’s function G(n) contains n field
components, from which follows

G(n) →(1 + δη)nG(n) ≈ (1 + nδη)G(n). (86)

We know that the Green’s functions depend on M and λ and thus we can connect
the shifts by calculating the shift in the Green’s function

dG(n) =
∂G(n)

∂M
δM +

∂G(n)

∂λ
δλ = nδηG(n), (87)

where we used in the last step the result of Eq. (86). Defining the dimensionless
parameters

β =
M

δM
δλ and γ = − M

δM
δη, (88)

we find the famous Callan-Symanzik equation[
M

∂

∂M
+ β(λ)

∂

∂λ
+ nγ(λ)

]
G(n)({xi};M,λ) = 0, (89)

where the dependence of our dimensionless parameters only on λ comes from
dimensional analysis.
The functions β and γ can be calculated to desired order in λ by considering two
n-point functions to this order in λ. Let us first consider the two-point function

G(2)(p) = . (90)

In a massless φ4 theory the one vertex contribution vanishes and thus the first
nontrivial contributions to G(2) are of order λ2. This has the important conse-
quence that γ is at least of order λ2.
Considering now the 4-point function, we have

G(4) = (91)

=
[
iλ+ (−iλ)2

(
iV (s) + iV (t) + iV (u)

)
− iδλ

]
·
∏

i=1,...,4

i

p2
i

(92)

The counterterm δλ has to be determined to fulfill the renormalization condition
and one can find

δλ =(−iλ)2 · 3V (−M2) (93)

=
3λ2

2(4π)2

[ 1

2− d/2
− log(M2) + finite

]
. (94)
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To find the β-function, we have to apply the Callan-Symanzik equation to the
renormalized 4-point function and consider only the leading terms.[

M
∂

∂M
+ β(λ)

∂

∂λ
+ 4γ(λ)

]
G(4)(p1, p2, p3, p4) =0

3iλ2

16π2
+ β(λ)(−i) + 4γ(λ)(−iλ) =0 (95)

As γ(λ) is at least of order λ2, this equation can only be satisfied if

β(λ) =
3λ2

16π2
+O(λ3). (96)

2.6 β-function and triviality of φ4 theory

From the definition of the β-function, Eq. (88), we have

β(λ) = M
∂λ

∂M
, (97)

which determines the behavior of the coupling constant with changing momentum
scale M . This flow of the coupling constant is the reason for speaking from a
running coupling. Let us first consider two examples of possible behaviors of the
running coupling. If we suppose that β(λ) has the form

we see that there are two zeros of the β-function at 0 and λ0. Considering a value
of λ below λ0, we have

M
∂λ

∂M
> 0 (98)

and λ moves towards λ0 with increasing momentum. If we consider a coupling
λ > λ0, we have

M
∂λ

∂M
< 0 (99)

and λ decreases towards λ0 with increasing momentum. Thus, λ0 is an ultra-
violet stable fixed point. On the other hand, λ = 0 is an infra-red fixed point :
Consider a small λ, in this case for decreasing momentum, λ decreases to zero.
If we consider the following behavior
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we again have two fixed points. If we consider a coupling λ between zero and
λ0, we have for decreasing momentum an increasing coupling and thus an infra-
red stable fixed point λ0. On the other side, for increasing momentum λ tends
towards zero and thus for large momenta the coupling constant vanishes. This
behavior is known as asymptotic freedom, which will be of interest later on.
These two exemplary considerations have the purpose to show how the β-function
determines the running coupling. We now turn back to the situation in φ4 theory,
where we found

β(λ) =
3λ2

16π2
+O(λ3). (100)

For small λ the behavior of the β-function is determined by the quadratic λ term
and therefore the coupling constant is increasing with increasing momenta. The
question now is if there is a nontrivial zero of the β-function which would lead to a
stable point as in the first example considered above. However, with increasing λ
the quadratic term is not dominating anymore and the behavior of the β-function
can not be calculated in perturbation theory anymore. A possibility to examine
the behavior of the coupling constant for large momentas is to consider the φ4

theory on a lattice and to do numerical calculations. From this examination, we
can conclude that there is no ultra-violet fixed point in φ4 theory. This is known
as the triviality of φ4 theory which describes that the coupling constant grows
with growing momentas.

3 Nonlinear Sigma Model

We will now consider the nonlinear σ-model as another example of a scalar field,
whose structure is very different from the structure of φ4 theory. We will make
use of the concepts which we have introduced in discussing the φ4 theory. As we
will see, the nonlinear σ-model is asymptotically free for d = 2 what has certain
consequences. We will also see that the asymptotic freedom of the nonlinear σ-
model is restricted to the case d = 2.
Considering scalar fields φi in two space-time dimensions with a Lagrangian

L = fij({φl})∂µφi∂µφj, (101)
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we recognize that the fields are dimensionless ([L] = (mass)2, [∂µφ
i∂µφj] =

(mass)2, [φ] = 1) and that thus all coupling constants are dimensionless. There-
fore, any theory of this form is renormalizable, for any possible function fij({φl}).
To restrict these possibilities to choose, we impose that the scalar fields φi form
a N -dimensional unit vector, φi = ni(x) with

N∑
i=1

|ni(x)|2 = 1 (102)

together with a O(N)-symmetry of the field components. Restricted by those
conditions, the most general choice for f is a constant. All possible interactions
would be restricted by O(N)-symmetry to a form c|~n|r and as |~n| = 1, this would
be just a constant c which does not change any n-point function. Thus, the most
general Lagrangian with ~n(x) and O(N)-symmetry is

L =
1

2g2
|∂µ~n|2. (103)

Although, these Lagrangian is very different from the φ4-Lagrangian, there is
a connection between the two theories: If we consider the mass term m in the
φ4-Lagrangian of N scalar fields φi as a parameter and allow m2 < 0, we find,
using m2 = −µ2, the Lagrangian

L =
1

2
∂µφ

i∂µφi +
1

2
µ2[φi]2 − λ

4!
[(φi)2]2, (104)

which is the Lagrangian of the linear σ-model, which is a good model to describe
spontaneous symmetry breaking. This Lagrangian can be rewritten (rescale λ→
6λ) as

L =
1

2
∂µφ

i∂µφi − λ

4

(
(φi)2 − µ2

λ

)2

+
µ4

4λ

=
1

2
κ2∂µφ̃

i∂µφ̃i − λ

4
κ2
(

(φ̃i)2 − 1
)2

+ const, (105)

where we defined κ = µ2/λ and φi = κφ̃i. If we now let the mass parameter µ go
to infinity, µ→∞, while keeping κ constant, also λ→∞ and if we now consider
the potential term in our Lagrangian

V ({φi}) =
λ

4

(
(φi)2 − µ2

λ

)2

+ µ2κ

4
, (106)

we see that to minimize the potential, the field is forced to the unit sphere,∑
i |φ̃i|2 = 1, which then leads to the nonlinear σ-model.

Let us make here one more remark about the connection between the φ4 model
and the nonlinear σ-model: In the most general Lagrangian for the nonlinear
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σ-model, Eq. (103), we included a constant g by a factor 1/g2 in front of the
kinetic term, which should be our coupling constant in this model. To see, why
we introduced g by a factor 1/g2, let us consider Eq. (105): if we consider the
definition of κ, we recognize that deriving the nonlinear σ-model from the φ4

Lagrangian, the coupling constant λ which appeared in the interaction term λφ4

appears now in front of the kinetic term in the form 1/λ2. This is the reason why
g in our model is a coupling constant.
Coming back to the nonlinear σ-model, we can parametrize ~n by πk with

ni =(π1, . . . , πN−1, σ) (107)

where σ =(1− ~π)1/2. (108)

The configuration with πk = 0 corresponds to a uniform state of spontaneous
symmetry breaking in the N direction. From the parametrization follows

|∂µ~n|2 = |∂µ~π|2 +
(~π · ∂µ~π)2

1− ~π2
(109)

and the Lagrangian takes the form

L =
1

2g2

[
|∂µ~π|2 +

(~π · ∂µ~π)2

1− ~π2

]
, (110)

which can be expanded in powers of πk

L =
1

2g2
|∂µ~π|2 +

1

2g2
(~π · ∂µ~π)2 +

1

2g2
~π2(~π · ∂µ~π)2 + . . . . (111)

3.1 Feynman rules

This Lagrangian leads to the following Feynman rules

=
ig2

p2
δij (112)

=− i

g2
[(p1 + p2) · (p3 + p4)δ

ijδkl + (p1 + p3) · (p2 + p4)δ
ikδjl

+ (p1 + p4) · (p2 + p3)δ
ilδjk] (113)

and additional vertices for all even numbers of πk fields. To motivate these
rules, let us remark the following: The first rule just originates from the kinetic
term and is very similar to the propagator in φ4 theory except that there is no
mass term in the Lagrangian and thus there is no mass term in the denominator
of the propagator. The 4-vertex is also similar to the 4-vertex in φ4 except the
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appearance of momentas. An interaction term (1/2g2)(~π·~π)2 = (1/2g2)(πl·πl)(πk·
πk) would just give the same vertex but without momentas, which would be the
same as a φ4 4-vertex. The real interaction term (1/2g2)(πl · ∂µπl)(πk · ∂µπk)
contains two additional derivatives which just leads to the the presence of the
momentum factors.

3.2 Callan-Symanzik equation and β-function

As we have dimensionless coefficients in our Lagrangian, this theory can be made
finite by renormalization of the coupling constant g and rescaling of the fields πk

and σ.
Instead of going through the whole renormalization procedure, we make use of the
fact that our renormalizable theory has to fulfill the Callan-Symanzik equation
for some functions β and γ. Thus, we will now calculate these functions β and γ
to show that the nonlinear σ-model is asymptotically free. The Callan-Symanzik
equation [

M
∂

∂M
+ β(g)

∂

∂g
+ nγ(g)

]
G(n) = 0 (114)

has to be fulfilled by all Green’s functions G(n) with n fields πk and σ. We will
calculate β and γ to leading order in perturbation theory (one-loop order).
The first Green’s function to consider is

G(1) = 〈σ(x)〉, (115)

which is nonvanishing because we do not have the Z2 symmetry which we found
when we considered the φ4 theory. Due to translation invariance, we find

〈σ(x)〉 = 〈σ(0)〉 = 1− 1

2
〈~π2(0)〉+ . . . = 1− 1

2
+ . . . . (116)

Thus, we have to calculate

〈πk(0)πl(0)〉 = =

∫
ddk

(2π)d
ig2

k2 − µ2
δkl

=

∫
ddkE
(2π)d

g2

k2
E + µ2

δkl, (117)

where we have introduced a little mass µ as infrared cutoff and in a second step
transformed to a Euclidean momentum integral. We can make use of the identity
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Eq. (150) and find (d = 2− ε)

〈πk(0)πl(0)〉 =
g2

(4π)d/2
Γ(1− d

2
)

(µ2)1−d/2 δ
kl

=
g2

(4π)1−ε/2
Γ( ε

2
)

(µ2)ε/2
δkl

ε→0
=

g2

4π

(2

ε
− γ +O(ε)

)(
1− ε

2
log(µ2)

)
δkl

=
g2

4π

(2

ε
− γ − log(µ2)

)
δkl. (118)

As we can see, this expression is diverging for ε → 0. We now have to perform
a renormalization. Instead of using the renormalization scheme which we used
above, we can use the modified minimal subtraction scheme (MS scheme), where
we subtract from the result a term of the same form with an arbitrary mass M
(renormalization scale) instead of µ and find

〈πk(0)πl(0)〉 =

(
(−1)d

g2

(4π)d/2
Γ(1− d

2
)

(µ2)1−d/2 δ
kl

)
−

(
(−1)d

g2

(4π)d/2
Γ(1− d

2
)

(M2)1−d/2 δ
kl

)

=
g2

4π

[(2

ε
− γ − log(µ2)

)
− (

2

ε
− γ − log(M2)

)]
δkl. (119)

Thus we find

〈πk(0)πl(0)〉 =
g2

4π
log
(M2

µ2

)
δkl (120)

and inserting this into Eq. (116)

〈σ〉 =1− 1

2

(N − 1)g2

4π
log
(M2

µ2

)
+O(g4). (121)

Applying the Callan-Symanzik equation to these one-point function, we obtain
to leading order

−(N − 1)g2

4π
− β(g)

(N − 1)g

4π
log
(M2

µ2

)
+ γ(g) = 0. (122)

To find the functions β and γ to lowest order, we have to consider a second
n-point function: For simplicity, we consider the two-point function

〈πk(p)πl(−p)〉 = + · · ·

=
ig2

p2
δkl +

ig2

p2
(−iΠkl)

ig2

p2
+ · · · , (123)
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where Πkl is the contribution of the loop. This can be calculated (using the
Feynman rules) in a very similar way as in Eq. (118). Here, we have to apply
again the MS scheme and find

〈πk(p)πl(−p)〉 =
i

p2
δkl
(
g2 − g4

4π
log
(M2

µ2

)
+O(g6)

)
. (124)

Applying now the Callan-Symanzik equation to this two-point function, we find

0 =
[
M

∂

∂M
+ β(g)

∂

∂g
+ 2γ(g)

]
〈πk(p)πl(−p)〉

=
iδkl

p2

[
− g

4

2π
+ β(g) · 2g + 2γ(g) · g2 +O(g6)

]
. (125)

Combining eqs. (122) and (125), we can eliminate γ(g) and find the equation

−(N − 1)g4

2π
+
g4

2π
− β(g)

(N − 1)g3

2π
log
(M2

µ2

)
− 2β(g)g = 0, (126)

which determines β(g) to leading order:

β(g) = −(N − 2)g3

4π
+O(g5). (127)

Inserting this in Eq. (122), we find γ(g) to leading order as

γ(g) =
g2(N − 1)

4π
+O(g4). (128)

It is important to note now the dependence of β(g) on N . At N = 2, the β-
function vanishes, not only to order g3 but to all orders. This is easy to see if we
consider the Lagrangian of this case in detail. As we have only two components,
we can parametrize them by π1 = sin θ and thus σ = cos θ. Thus, the Lagrangian
(Eq. (110)) simplifies considerably:

L =
1

2g2
|∂µ sin θ|2 +

1

2g2

(sin θ · ∂µ sin θ)2

1− (sin θ)2
=

1

2g2
(∂µθ)

2. (129)

It is easy to see that the case N = 2 (called XY-model) does not need a renor-
malization and thus the β-function is zero. In the case N > 2, we have a negative
β-function. Thus our theory is asymptotically free, which means that the cou-
pling constant goes to zero as the momentum becomes large. This consideration
just includes first orders of perturbation theory. To show the asymptotic freedom
in general, we would also have to consider regions of large coupling which can
not be treated by perturbation theory.
It is interesting to note that the asymptotic freedom of the nonlinear σ-model is
restricted to the case d = 2. For dimensions higher than 2, 2 < d < 4, there is
an ultra-violet stable fixed point which tends towards zero for d→ 2.
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4 QCD

So far, we have investigated two models of field theories: the φ4 theory and
the nonlinear σ-model. The motivation for doing that was the following: We
studied the φ4 theory and its renormalization as the φ4 theory is the simplest
example of a scalar field theory and thus the best candidate to introduce the
formalism of renormalization and the concepts of β-function and running coupling
constant. Then the nonlinear σ-model was presented as a simple example of an
asymptotically free theory. In fact, we are interested in studying the asymptotic
freedom of quantum chromodynamics, its β-function and the running coupling
flow. However, to perform this task is accompanied by mathematical challenges
due to the non-Abelian nature of QCD. Thus, our approach had the advantage
that we could consider more easy examples and thus focus on the ideas behind the
techniques. Concerning QCD, we will now just consider the result of the whole
renormalization calculations and the physical importance of asymptotic freedom
for strong interactions.

4.1 Parton model

Quantum chromodynamics describes the strong interactions between the con-
stituents of the nuclei, which are responsible for nuclear bonding. In fact, it is
interesting to see that, at first, strong interactions showed mysterious properties
which could not be described by common field theories (before the developement
of QCD). Then, it was recognized that asymptotic freedom was a requirement for
a theory to be able to describe these properties. As non-Abelian gauge theories
are asymptotically free in four-dimensional space-time, they were candidates for
theories describing strong interactions.
Let us investigate these mysterious properties and the connected models in more
details as this will also give us a physical unterstanding of these interactions.
The parton model was put forward by Bjorken and Feynman and describes the
proton as a loosely bound assemblage of a small number of constituents, called
partons. These partons are quarks, charged fermions, and also neutral species re-
sponsible for the binding. One of the obscure properties was that these quarks do
not exist as isolated species. Also, there are some complications due to the fact
that strong interactions are strong as it is not possible to work perturbatively in
this case. However, the most important point is that it is important that strong
interactions turn themselves off, when the momentum transfer is large.
This feature is exactly provided by a theory with asymptotic freedom. Because
asymptotic freedom means that the coupling for large momentas is small which
is equivalent to the vanishing of large momentum transfer. Therefore, only a
asymptotically free theory could describe strong interactions and quantum chro-
modynamics was developed as a non-Abelian gauge theory, where the quarks of
the model are bound together by interacting vector bosons, called gluons.
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4.2 β-function of QCD

The Lagrangian of QCD is the famous Yang-Mills Lagrangian

L = ψ̄(iD/−m)ψ − 1

4
(F a

µν)
2, (130)

with the field strength tensor of the gauge bosons

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (131)

where Aaµ is a component of the gauge boson field (gluon field, a ∈ {1, · · · , 8})
and fabc is the structure constant of the gauge symmetry, in the case of QCD
SU(3).
Without going in any details of calculation, we state that the β-function in the
case of a SU(N) gauge theory with nf different fermions is given as

β(g) = − g3

(4π)2

(11

3
N − 2

3
nf

)
. (132)

It is interesting to note that the sign of the β-function depends on the ratio of
the number of fermions nf and N (from the symmetry SU(N)), where we have
N = 3 for QCD. For a small enough number nf , β is negative and the theory is
asymptotically free, which is for QCD the case if nf ≤ 16. Using the β-function,
the running coupling can be calculated to

g2(k) =
g2
0

1 +
g20

(4π)2
(11

3
N − 2

3
nf ) log( k2

M2 )
, (133)

which tends to zero at large momentum. Experimental measurements show that
coupling constant gets small for values of k of about 1 GeV. This means that the
strong interactions disappear for distances smaller than about 0.1 fm, which is
roughly the size of light hadrons. Which means that the constituents of hadrons
cannot interact via strong interactions.
As we have discussed above, the asymptotic freedom is a necessary condition for
a theory to be able to describe strong interactions. However, this asymptotic
freedom and the effect on the running coupling for long distances is worth to be
discussed in more details because it is rather different from electrodynamics.
In electrodynamics, it is easy to understand the direction of the coupling constant
flow: The vacuum behaves as a dielectric medium due to electron-positron pair
creation, which decreases the effective charge of the electron at large distances.
In non-Abelian gauge theories, the fermions still produce such an effect as can
be seen from the positive contribution to the β-function originating from the
fermions. However, the non-Abelian gauge bosons produce a dominating antis-
creening effect. To understand this effect, we study a simplified example:
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Working in Coulomb gauge, ∂iA
ai = 0, we have transversely polarized photons

as field quantas. Considering the Coulomb potential of the field Aa0 which is
described by an analogue of Gauss’s law in this non-Abelian case with covariant
form

DiE
ai = gρa, (134)

where the covariant derivative acting on a field in adjoint representation is defined
as

(Dµφ)a = ∂µφ
a + gfabcAbµφ

c, (135)

Eai = F a0i and ρa is the charge density of the fermions, where a is a index for the
color of charge. To make a further simplification, we choose SU(2)-symmetry,
because in this case the structure constant simplifies to fabc = εabc:

(Dµφ)a = ∂µφ
a + gεabcAbµφ

c. (136)

We now want to compute the Coulomb potential of a point charge of magnitude
+1 with orientation (color) a = 1. We want to solve Eq. (134) for Eai and do
this iteratively. First we rewrite the equation as

∂iE
ai = gδ(3)(x)δa1 + gεabcAbiEci (137)

It is important to see that in this non-Abelian theory not only a charge density
is a source of the electric field (first term), but also the common presence of a
vector potential and an electric field (second term) is a source of electric fields.
The first term implies a 1/r2 electric field of color a = 1 radiating from x = 0.
We now consider a point in space where this field crosses a bit of vector potential
Abi arising as fluctuation of the vacuum. Let us consider a vector potential A2i

which points in some diagonal direction to the electric field as shown in the figure
below.

If we now consider a = 3,

∂iE
3i = gε321A2iE1i = −gA2iE1i < 0, (138)

we find a sink of the field E3i at this location, as shown in figure below.

30



Considering now the influence of this field E3i on the field E1i, we find

∂iE
1i =gδ(3)(x) + gε123A2iE3i

=gδ(3)(x) + gA2iE3i. (139)

This means that we have to consider the orientation of A2i and E3i in more detail.
We see that closer to the origin the fields are parallel and thus there is a source for
E1i, farther away, the fields are antiparallel and thus there is a sink, as indicated
in the next figure.

This is an induced electric dipole which is oriented with the positive charge to-
wards the original charge. Thus, this amplifies the original charge instead of
screening it and therefore the effect of the charge gets stronger at larger dis-
tances.
The detailed balance between this antiscreening effect and screening effects has to
be investigated in more details and it can be found that the antiscreening effect is
12 times larger. This simplified example should just show how such antiscreening
can occur. As we have seen, this antiscreening originates from the second term of
the covariant derivative which is peculiar for a non-Abelian gauge theory. So the
coupling constant grows at large distances for non-Abelian gauge theories. This
leads to the effect of confinement as charges cannot be separated as the coupling
between them grows with distance. On the other hand, for large momentas the
coupling constant decreases towards zero which leads to asymptotic freedom.

A Generating functional of φ4 theory

To obtain the normalized generating functional of φ4 theory to order λ, we have
to expand the expression

exp
[
i

∫
Lint

(1

i

δ

δJ(z)

)
dz
]

exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
(140)
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to first order in λ:[
1− iλ

4!

∫ (1

i

δ

δJ(z)

)4

dz +O(λ2)
]

exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
. (141)

To order λ0, we just have the free particle generating functional Z0[J ]. To calcu-
late the order λ contribution, we have to perform four times a functional deriva-
tive:(1

i

δ

δJ(z)

)
exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
= −

∫
∆F (z − x)J(x)dx exp

[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
,(1

i

δ

δJ(z)

)2

exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
=
{
i∆F (0) +

[∫
∆F (z − x)J(x)dx

]2}
exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
,

(1

i

δ

δJ(z)

)3

exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
=
{
−3i∆F (0)

∫
∆F (z − x)J(x)dx−

[∫
∆F (z − x)J(x)dx

]3}
exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
,(1

i

δ

δJ(z)

)4

exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
=
{
−3[∆F (0)]2 + 6i∆F (0)

[∫
∆F (z − x)J(x)dx

]2
+
[∫

∆F (z − x)J(x)dx
]4}

exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]
.

This can be written using the diagrammatic rules as(1

i

δ

δJ(z)

)4

exp
[
− i

2

∫
J∆FJ

]
=
{

3 + 6 +
}

exp
[
− i

2

∫
J∆FJ

]
. (142)

We have now found the contributions to order g, however we should now normalize
our functional which is done by the expression in the denominator:

exp
[
i

∫
Lint

(1

i

δ

δJ(z)

)
dz
]

exp
[
− i

2

∫
J(x)∆F (x− y)J(y)dxdy

]∣∣∣
J=0

. (143)
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This expression can be evaluated to first order by just setting any source terms
to zero and we are left with terms without external legs and thus without sources
(vacuum diagrams):

1 +
(−iλ)

4!

∫ (
3

)
dz. (144)

We can now use eqs. (142) and (144) to obtain the normalized generating func-
tional to order λ:

Z[J ] =

[
1 + (−iλ)

4!

∫ {
3 + 6 +

}
dz +O(λ2)

]
exp
[
− i

2

∫
J∆FJ

]
1 + (−iλ)

4!

∫ (
3

)
dz +O(λ2)

=
[
1 +

(−iλ)

4!

∫ {
6 +

}
dz +O(λ2)

]
exp
[
− i

2

∫
J∆FJ

]
, (145)

where the vacuum diagram has disappeared which is always the case for normal-
ized generating functionals.
We now can calculate the 2-point function of φ4 theory from this generating
functional. From the definition , Eq. (9), we find

τ(x1, x2) = − δ2

δJ(x2)δJ(x1)

∣∣∣
J=0

and recognize that we have to differentiate the generating functional two times
with respect to the source terms and then set the sources to zero. Thus, we see
that the term containing four sources may not contribute to the 2-point function
and we are left with two terms: The first is just the free generating functional
and thus contributes a free propagator i∆F (x1 − x2). The second one, of order
λ, can be written as

λ

4
∆F (0)

∫
dxdy∆F (z − x)J(x)∆F (z − y)J(y) exp

(
− i

2

∫
J∆FJ

)
(146)

and we have to perform two differentiations (as we will set J = 0 after two
differentiations, we see that differentiations of the exponential functions vanish
in the end):

1

i

δ

δJ(x1)

( )
= −iλ

2
∆F (0)

∫
dydz∆F (z − x1)∆F (z − y)J(y) exp

(
− i

2

∫
J∆FJ

)
+ terms which give no contribution, (147)

1

i

δ

δJ(x2)

1

i

δ

δJ(x1)

( )
=−λ

2
∆F (0)

∫
dz∆F (z − x1)∆F (z − x2) exp

(
− i

2

∫
J∆FJ

)
+ terms which give no contribution. (148)
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Summing up, we find

τ(x1, x2) =i∆F (x1 − x2) +
(−iλ)

2
i∆F (0)

∫
dzi∆F (z − x1)i∆F (z − x2) +O(λ2)

= +
(−iλ)

2
+O(λ2) (149)

In an analogous way, we can also calculate the 4-point function and any other
n-point function.

B Calculation of V (p2)

We calculate V (p2) in d space-time dimensions:

V (p2) =
i

2

∫
ddk

(2π)d
1

(k2 −m2)

1

((k + p)2 −m2)

i

2

∫
ddk

(2π)d

∫ 1

0

dx
1

[k2 + 2xkp+ xp2 −m2]2
,

where we used 1
ab

=
∫ 1

0
dz

[az+b(1−z)]2 . We make the substitution l = k+ xp and find

V (p2) =
i

2

∫ 1

0

dx

∫
ddl

(2π)d
1

[l2 + x(1− x)p2 −m2]2
.

We can now change from d-dim. Minkowski space to d-dim. Euclidean space by
substituting l0E = −il0 and obtain

V (p2) = −1

2

∫ 1

0

dx

∫
ddlE
(2π)d

1

[l2E − x(1− x)p2 +m2]2
,

where we can make use of the identity∫
ddlE
(2π)d

1

(l2E + ∆)n
=

1

(4π)d/2
Γ(n− d/2)

Γ(n)

1

∆n−d/2 (150)

which leads to

V (p2) = −1

2

∫ 1

0

dx
Γ(2− d/2)

(4π)d/2
1

[m2 − x(1− x)p2]2−d/2
. (151)

We now want to consider the limit d → 4. Putting ε = 4 − d, Γ(2 − d/2) =
Γ(ε/2) = 2

ε
− γ +O(ε), where γ = 0.5772 is the Euler-Mascheroni constant. On

the other hand, we have a term aε/2 ≈ 1 + ε
2

log(a) + . . . and therefore

V (p2) = − 1

32π2

(2

ε
− γ −

∫ 1

0

dx log
[m2 − x(1− x)p2

4π

])
, (152)
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