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Formalism and definitions

Introduction

I Renormalization is one of the most important concepts of
quantum field theories.

I We start with considering the renormalization of φ4 theory
and encounter the following concepts:

I running coupling λ(p)
I beta-function β(λ)
I asymptotic freedom

I We then see the nonlinear σ-model as an example of an
asymptotically free theory.

I In the end, we consider the consequences of renormalization
and asymptotic freedom on QCD.
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Formalism and definitions

I A free scalar field φ describing the free propagation of
particles is described by the Klein-Gordon Lagrangian

L0 =
1

2
∂µφ∂

µφ− 1

2
m2φ2.

I In this case, the generating functional of n-point functions is

Z0[J] = exp
[
− i

2

∫
J(x)∆F (x − y)J(y)d4xd4y

]
,

where J(z) is the source of the field φ(z) and ∆F is the
Feynman propagator, obeying

(� + m2 − iε)∆F (x) = −δ4(x)→ ∆F (p) =
1

p2 −m2 + iε
.

David Oehri Asymptotic freedom and the beta-function



Outline
Introduction
φ4 theory

Nonlinear Sigma Model
QCD

Formalism and definitions

I We can expand the generating functional:

Z0[J] = 1 +
(
− i

2

) ∫
J(x)∆F (x − y)J(y)d4xd4y

+
1

2!

(
− i

2

)2[∫
J(x)∆F (x − y)J(y)d4xd4y

]2

+
1

3!

(
− i

2

)3[∫
J(x)∆F (x − y)J(y)d4xd4y

]3
+ · · ·

I This can be represented diagrammatically using the rules:

= i∆F (x − y)

= iJ(z)
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I Rules:

= i∆F (x − y)

= iJ(z)

I Diagrammatic representation:

Z0[J] =1 +
(1

2

) ∫
d4x1d4y1

+
1

2!

(1

2

)2
∫

d4x1d4y1d4x2d4y2

+
1

3!

(1

2

)3
∫

d4x1d4y1d4x2d4y2d4x3d4y3

+ · · · ,

where xi and yi label the external points (sources).
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I n-point functions are defined as

τ(x1, . . . , xn) :=
1

in
δnZ0[J]

δJ(x1) · · · δJ(xn)

∣∣∣
J=0

.

I Let us see how the functional derivative acts in our graphical
picture:

( 1

i

δ

δJ(x1)

)(
−

i

2

∫
J(x)∆F (x − y)J(y)d4xd4y

)
=

∫
i∆F (x1 − z)iJ(z)d4z

( 1

i

δ

δJ(x1)

)( 1

2

∫
d

4xd4y
)

=

∫
d

4z
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Z0[J] =1 +
( 1

2

) ∫
d

4x1d
4y1

+
1

2!

( 1

2

)2
∫

d
4x1d

4y1d
4x2d

4y2

+ · · ·

I τ(x , y) = = i∆F (x − y)

I τ(x1, x2, x3, x4) =

=(i∆F (x1 − x4))(i∆F (x2 − x3))

+ (i∆F (x1 − x3))(i∆F (x2 − x4))

+ (i∆F (x1 − x2))(i∆F (x3 − x4))

=τ(x1, x4)τ(x2, x3) + τ(x1, x3)τ(x2, x4)

+ τ(x1, x2)τ(x3, x4)
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I So far, we have considered a free scalar field φ described by
the Klein-Gordon Lagrangian.

I If we have an additional interaction described by a Lagrangian
Lint(φ), the generating functional is:

Z [J] = N exp

(
i

∫
Lint

(1

i

δ

δJ(x)

)
d4x

)
Z0[J],

where N is a normalization constant.

I We will use this generating functional in the next section for
the φ4 interaction.
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I If we consider the 4-point function of the φ4 theory to first
order,

τ(x1, x2, x3, x4) = 3
[ ]

+ 3(−iλ)
[ ]

+ (−iλ)
[ ]

,

we see that there are two types of diagrams:
I Connected diagrams → all external points connected to each

other.
I Disconnected diagrams → not all external points connected to

each other.

David Oehri Asymptotic freedom and the beta-function



Outline
Introduction
φ4 theory

Nonlinear Sigma Model
QCD

Formalism and definitions

I Without going into any details, we state:
I There is a generating functional W , which generates only the

connected part of the n-point functions, φ(x1, . . . , xn)
I Example:

iφ(x1, x2, x3, x4) =τ(x1, x2, x3, x4)− τ(x1, x2)τ(x3, x4)

− τ(x1, x3)τ(x2, x4)− τ(x1, x4)τ(x2, x3)

I It is convenient to talk about Green’s functions which are
directly related to n-point functions:

I G (n)(x1, . . . , xn) := τ(x1, . . . , xn)
I G

(n)
c (x1, . . . , xn) := iφ(x1, . . . , xn)

David Oehri Asymptotic freedom and the beta-function



Outline
Introduction
φ4 theory

Nonlinear Sigma Model
QCD

Formalism and definitions

I Let us introduce one further classification:
I Example: connected Green’s function of φ4 theory

I 1-particle reducible graphs can be divided into two subgraphs
by cutting one internal line.

I 1-particle irreducible (1PI) graphs cannot be divided into two
subgraphs by cutting one internal line.
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I Let us use this classification to define the self-energy part as
the sum of all 1 PI graphs:

I Using this self-energy part Σ(p) and the bare propagator (free
2-point function) G0, we can write the full 2-point function as
a graphical expansion:
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I These expansion can be written as

G
(2)
c (p) =G0(p) + G0(p)

Σ(p)

i
G0(p)

+ G0(p)
Σ(p)

i
G0(p)

Σ(p)

i
G0(p) + · · ·

=G0

(
1 +

Σ

i
G0 +

Σ

i
G0

Σ

i
G0 + · · ·

)
=G0

(
1− Σ

i
G0

)−1

=
[
G−1

0 (p)− Σ(p)

i

]−1
=

i

p2 −m2 − Σ(p)
.
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φ4 theory - General properties

I φ4 theory is a simple scalar field theory, where we investigate
the concept of renormalization.

I Name of the theory comes from the interaction Lagrangian

Lint = − λ
4!
φ4.

I λ is a coupling constant, which should be positive,
I factor 4! is due to symmetry reasons,
I φ4 leads to a interaction which involves four times the field.

I The whole Lagrangian is

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4.
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I The normalized generating functional is in general given as

Z [J] =
exp[i

∫
Lint( 1

i
δ

δJ(z) )dz ] exp[− i
2

∫
J(x)∆F (x − y)J(y)dxdy ]

{exp[i
∫
Lint( 1

i
δ

δJ(z) )dz ] exp[− i
2

∫
J(x)∆F (x − y)J(y)dxdy ]}

∣∣∣
J=0

,

which is normalized to obey Z [J = 0] = 1.

I The Feynman rules of φ4 theory are:

→ i∆F (x − y),

→ i∆F (0) = i∆F (x − x),

→ −iλ and integration over z

→ iJ(x)
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I The generating functional can be calculated to any desired
order.

I Making use of the Feynman rules, we write the generating
functional to order g as

Z [J] =

[
1 +

(−iλ)

4!

∫ (
6 +

)
dz

]
exp
(
− i

2

∫
J∆F J

)
.
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I Let us again calculate the 2-point and 4-point functions:

τ(x1, x2) := −
δ2Z [J]

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

=i∆F (x1 − x2) +
(−iλ)

2
i∆F (0)

∫
dzi∆F (z − x1)i∆F (z − x2) +O(λ2)

= +
(−iλ)

2
+O(λ2),

τ(x1, x2, x3, x4) :=
δ4Z [J]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣∣
J=0

=3

[ ]
+ 3(−iλ)

[ ]
+ (−iλ)

[ ]

+(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]

+(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]
+

3

2
(−iλ)2

[ ]

+O(λ3).
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I As it is useful to work in momentum space, one can derive
Feynman rules in momentum space:

for each propagator =
i

p2 −m2 + iε
and

∫
d4p

(2π)4

for each vertex = −iλ(2π)4δ(4)(p1 + p2 + p3 + p4)

for each external point = e−ipx

I in the end only integration over independent momentas.
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Symmetry properties

I Lagrangian has Z2 symmetry: φ→ −φ
I Consequence: all n-point functions for odd n vanish.

I Generalization from one scalar field to a set of N real scalar
fields:

L =
1

2
(∂µφ

i )2 − 1

2
m2(φi )2 − λ

4!
[(φi )2]2.

I This Lagrangian has a further symmetry: O(N) symmetry.
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n-point functions - Primitive divergences

I Diverging contribution to 2-point function

= λ

∫
d4q

(2π)4

1

q2 −m2

is quadratically diverging.

I Diverging contribution to 4-point function

=λ2

∫
d4q1

(2π)4

d4q2

(2π)4

δ(4)(q1 + q2 − p1 − p2)

(q2
1 −m2)(q2

2 −m2)

=λ2

∫
d4q

(2π)8

1

(q2 −m2)((p1 + p2 − q)2 −m2)

is logarithmically diverging.

David Oehri Asymptotic freedom and the beta-function



Outline
Introduction
φ4 theory

Nonlinear Sigma Model
QCD

General properties
n-point functions
Renormalization
Callan-Symanzik equation
β-function and triviality of φ4 theory

n-point functions - Loop-Expansion

I It is important to note that we are performing perturbation
theory. However, we are not performing perturbation series in
λ but in the number of loops. Furthermore, we are then only
considering the lowest order terms in λ as the coupling is
assumed to be small.

I The reason to perform a expansion in the number of loop is
that this expansion is equivalent to an expansion in ~, a
diagram with L loop is of order ~L−1. Thus, an expansion in
loops is an expansion around the classical theory.
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n-point functions - Superficial degree of divergence

I We now analyze the superficial degree of divergence of a
particular diagram.

I Superficial means that this degree of divergence does not take
internal divergences into account.

I The superficial degree of divergences D is given by

D = d −
(d

2
− 1
)

E + n
(

d − 4
)
,

for a diagram with n vertices and E external lines in d
space-time dimensions.

I For d = 4, this simplifies to D = 4− E , such that we have:
I 2-point function has E = 2 and D = 2,
I 4-point function has E = 4 and thus D = 0.
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n-point functions - Dimensional analysis

I [S ] = [
∫

ddx L] = 1(in units with ~ = 1) → [L] = L−d = Md

I [∂µφ∂µφ] = L−d , [∂µ] = L−1 → [φ] = L1−d/2

I Considering the interaction term λφ4 and supposing
[λ] = L−δ = Mδ, we find that δ = 4− d .
→ coupling constant λ in 4 dimensions is dimensionless.

I This is important → superficial degree of divergence:

D =d −
(d

2
− 1
)

E + n
(

d − 4
)

= d −
(d

2
− 1
)

E − nδ.

I For a negative mass dimension, δ < 0, the degree of
divergence increases with increasing n.
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Renormalization

I We have seen that we have diverging 2-point and 4-point
diagrams.

I We will now see how we can renormalize our theory to give
finite results for all measurable quantities:

I mass m
I coupling constant λ
I field-strength φ

I So far, we have always considered bare quantities, which we
will indicate in the following with a subscript B (mB and λB).
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I Let us start by considering the complete propagator

G (2)(p) =
i

p2 −m2
B − Σ(p)

.

I The pole of this propagator not at mB anymore but at m̃
defined by

m̃2 −m2
B − Σ(m̃) = 0.

I We can now expand the complete propagator around m̃,

G (2)(p) =
iZ

p2 − m̃2
+ terms regular at p2 = m̃2.

I Z is a probability amplitude and we should normalize this
probability to 1.

I This can be done by rescaling the field and considering the
renormalized field φr with

φ = Z 1/2φr .
David Oehri Asymptotic freedom and the beta-function
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I We can now include this new renormalized field into the
Lagrangian and find

L =
1

2
Z (∂µφr )2 − 1

2
m2

BZφ2
r −

λB

4!
Z 2φ4

r .

I Still, bare quantities are appearing in our Lagrangian. By
defining

δZ = Z − 1, δm = m2
BZ −m2, δλ = λBZ 2 − λ,

we can write the Lagrangian as

L =
1

2
(∂µφr )2 − 1

2
m2φ2

r −
λ

4!
φ4

r

+
1

2
δZ (∂µφr )2 − 1

2
δmφ

2
r −

δλ
4!
φ4

r .
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I

L =
1

2
(∂µφr )2 − 1

2
m2φ2

r −
λ

4!
φ4

r

+
1

2
δZ (∂µφr )2 − 1

2
δmφ

2
r −

δλ
4!
φ4

r .

I First line: Same as in the original Lagrangian but now with
the physical quantities

I Second line: counterterms of the same form.

I So far, we just split up the original terms in terms containing
the physical observables and counterterms.

I We have not defined these quantities, so far. The conditions
to define them are called renormalization conditions.
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I First renormalization condition:
We define the renormalized full propagator as

=
i

p2 −m2
+ (terms regular at p2 = m2)

which means that
I we define the physical mass as the location of the pole of the

propagator
I we fix the residuum at this pole
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I Second renormalization condition:

I Two definitions:

I The 4-point vertex function is the full 4-point function with
amputated legs:

Γ(4)(p1, p2, p3, p4) =G
(4)
c (p1, p2, p3, p4)(G

(2)
c (p1))−1

(G
(2)
c (p2))−1(G

(2)
c (p3))−1(G

(2)
c (p4))−1.

I It is useful to define the Mandelstam variables
I s = (p1 + p2)2

I t = (p1 + p3)2

I u = (p1 + p4)2

David Oehri Asymptotic freedom and the beta-function
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I Second renormalization condition:
In contrast to the definition of the physical mass m, the
definition of the coupling constant λ is not unique. We define
a condition at a certain triple of Mandelstam variables
(s, t, u), but we could do this also at any other triple:

I

=− iλ at s = 4m2, t = u = 0,
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I New Feynman rules:
Together with the new Lagrangian, we have now new
Feynman rules:

=
i

p2 −m2

=− iλ

=i(p2δZ − δm)

=− iδλ

David Oehri Asymptotic freedom and the beta-function
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I If we now evaluate 2-point and 4-point functions with these
Feynman rules, we will still find divergent diagrams.

I However, we can now adjust our counterterms in such a way
that they cancel these diverging contributions and that the
renormalization conditions are fulfilled.

I This procedure of using counterterms to renormalize a theory
is known as renormalized perturbation theory.

I We will now just see how renormalization of φ4 theory is done
to one-loop order.
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I Let us start with the second renormalization condition and
consider the 4-point vertex function:

Γ(4) = + + .

I Using p = p1 + p2, we can write the second (diverging)
contribution as

=
(−iλ)2

2

∫
d4k

(2π)4

i

k2 −m2

i

(k + p)2 −m2

≡(−iλ)2 · iV (p2).

I Using the Mandelstam variables, we can write

Γ(4)(p1, p2, p3, p4) = −iλ+ (−iλ)2[iV (s) + iV (t) + iV (u)]− iδλ.
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I Comparing this equation,

Γ(4)(p1, p2, p3, p4) = −iλ+ (−iλ)2[iV (s) + iV (t) + iV (u)]− iδλ,

to the second renormalization condition
Γ(4)(s = 4m2, t = 0, u = 0) = −iλ, we find

δλ = −λ2[V (4m2) + 2V (0)].

I The divergent quantity V (p2) may be calculated using
dimensional regularization, which means that we calculate the
integral in d dimensions and then consider the limit d → 4. It
turns out that V (p2) has a simple pole in 4-d.

I However, it is important to see that the divergences in V (s),
V (t), V (u) and in δλ just cancel each other such that the
4-point vertex function is finite and fulfills the renormalization
condition.
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I To determine the counterterms δm and δZ , we consider the
first renormalization condition:
As the full two-point function may be written as

G (2)(p) =
i

p2 −m2 − Σ(p2)
,

the first renormalization condition (containing two conditions)
is equal to the following two conditions:

I Σ(p2)
∣∣∣
p2=m2

= 0

I d
dp2 Σ(p2)

∣∣∣
p2=m2

= 0.
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I Considering the self-energy to one-loop order

Σ(p2)

i
= +

=− iλ

2

∫
d4k

(2π)4

i

k2 −m2
+ i(p2δZ − δm),

we see that the renormalization conditions are fulfilled, if
I δZ = 0
I δm = −λ

2

∫
d4k

(2π)4
i

k2−m2 ,

such that Σ(p2) = 0 for all p2 to one-loop order.
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I Non-zero contributions to δZ and Σ(p2) and also further
contributions to δm and δλ will appear in higher-loop order.

I The procedure is totally self-consistent:
I In higher order perturbation theory, we will always include the

counterterms according to the Feynman rules, on the one side.
I And on the other side, we will have to add additional

contributions to the counterterms in each order.

I It is proven that a theory is renormalizable if all divergencies
can be canceled by counterterms of the same form as the
original terms of the Lagrangian in every order of perturbation
theory.
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Callan-Symanzik equation

I We have now seen how the φ4 theory can be renormalized.

I We will now derive a differential equation for the coupling
constant, which determines how the coupling constant
changes with changing momentas.

I We will again consider the φ4 theory, however this differential
equation will be valid for all dimensionless coupling theories.
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I For simplicity, we assume that the mass has been adjusted to
zero: m2 = 0.

I In this case, we have to choose new renormalization
conditions:

= 0 at p2 = −M2

d

dp2

( )
= 0 at p2 = −M2

=− iλ at s = t = u = −M2

I The parameter M is called the renormalization scale.
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I We have chosen M arbitrary, we could define the same theory
at another scale M ′. Same theory means that we have the
same bare, unrenormalized Green’s functions

〈Ω|T (φ(x1)φ(x2) · · ·φ(xn))|Ω〉.

I The renormalized Green’s functions are related to the bare
Green’s function by (φ = Z 1/2φr )

〈Ω|T (φr (x1)φr (x2) · · ·φr (xn))|Ω〉
= Z−n/2〈Ω|T (φ(x1)φ(x2) · · ·φ(xn))|Ω〉.

David Oehri Asymptotic freedom and the beta-function



Outline
Introduction
φ4 theory

Nonlinear Sigma Model
QCD

General properties
n-point functions
Renormalization
Callan-Symanzik equation
β-function and triviality of φ4 theory

I A shift in the renormalization scale would lead to a shift in the
renormalized coupling constant and to a new rescaling factor:

M →M + δM,

λ→λ+ δλ,

Z →Z + δZ ,

from which follows

φr →

(
1 +

δZ

Z

)
φr → (1 + δη)φr ,

I As the Green’s function G (n) contains n field components:

G (n) →(1 + δη)nG (n) ≈ (1 + nδη)G (n)
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I All these shifts are related:

dG (n) =
∂G (n)

∂M
δM +

∂G (n)

∂λ
δλ = nδηG (n),

I From this we can derive the Callan-Symanzik equation[
M

∂

∂M
+ β(λ)

∂

∂λ
+ nγ(λ)

]
G (n)({xi}; M, λ) = 0

with the dimensionless parameters

β =
M

δM
δλ γ = − M

δM
δη.
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I The Callan-Symanzik equation is very useful.
I We can apply it to Green’s function of a certain order.
I From this, we can determine the β- and γ-function.

I The β-function is of huge importance, because it determines
the development of the coupling constant with changing
momentum scale.

I Without derivation, we state that the β-function of the φ4 to
leading order is given as

β(λ) =
3λ2

16π2
+O(λ3)
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β-function and triviality of φ4 theory

I Let us reconsider the definition of the β-function,

β(λ) = M
∂λ

∂M
,

which determines the behavior of the coupling constant with
changing momentum scale M.

I This flow of the coupling constant is the reason for speaking
from a running coupling.

I Let us first consider two examples of possible behaviors of the
running coupling.

David Oehri Asymptotic freedom and the beta-function



Outline
Introduction
φ4 theory

Nonlinear Sigma Model
QCD

General properties
n-point functions
Renormalization
Callan-Symanzik equation
β-function and triviality of φ4 theory

I Suppose that β(λ) has the form

I There are two zeros of the β-function at 0 and λ0.
I Considering a value of λ below λ0, we have

M
∂λ

∂M
> 0

and λ moves towards λ0 with increasing momentum.
I Considering a coupling λ > λ0, we have

M
∂λ

∂M
< 0

and λ decreases towards λ0 with increasing momentum.
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I Thus, λ0 is an ultra-violet stable fixed point.

I On the other hand, λ = 0 is an infra-red stable fixed point.
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I If we consider the following behavior

we again have two fixed points.

I If we consider a coupling λ between zero and λ0, we have for
decreasing momentum an increasing coupling and thus an
infra-red stable fixed point at λ0.

I On the other side, for increasing momentum λ tends towards
zero and thus for large momenta the coupling constant
vanishes.

I This behavior is known as asymptotic freedom, which will be
of interest later on.
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I These two exemplary considerations have the purpose to show
how the β-function determines the running coupling.

I We now turn back to the situation in φ4 theory, where we
found

β(λ) =
3λ2

16π2
+O(λ3).

I For small λ the behavior of the β-function is determined by
the quadratic λ term and the coupling constant is increasing
with increasing momenta.

I Question: Is there a nontrivial zero of the β-function?
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I Question: Is there a nontrivial zero of the β-function?

I This cannot be examined in perturbation theory for increasing
λ.

I Possibility: Consider the φ4 theory on a lattice and do
numerical calculations.

I From this examination, we can conclude that there is no
ultra-violet fixed point in φ4 theory.

I This is known as the triviality of φ4 theory: coupling constant
λ grows with growing momentas.
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Nonlinear Sigma Model

I We consider N scalar fields φi with a Lagrangian

L = fij({φl})∂µφi∂µφj .

I Dimensional analysis → dimensionless coupling constants
→ theory renormalizable for any possible function fij({φl}).

I Restrict the scalar fields φi form a N-dim. unit vector,
φi = ni (x) with a O(N)-symmetry of the field components.

I Restricted by those conditions the most general choice of
fij({φl}) is a constant and the most general Lagrangian is

L =
1

2g 2
|∂µ~n|2,

where g is the coupling constant.
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I We can parametrize our field by

ni =(π1, . . . , πN−1, σ)

where σ =(1− ~π)1/2.

I Configuration with πk = 0
→ state of spontaneous symmetry breaking in N direction.

I Using this parametrization, we find

L =
1

2g 2

[
|∂µ~π|2 +

(~π · ∂µ~π)2

1− ~π2

]
,

which can be expanded in powers of πk

L =
1

2g 2
|∂µ~π|2 +

1

2g 2
(~π · ∂µ~π)2 +

1

2g 2
~π2(~π · ∂µ~π)2 + . . . .
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Feynman rules

=
ig 2

p2
δij

=− i

g 2
[(p1 + p2) · (p3 + p4)δijδkl

+ (p1 + p3) · (p2 + p4)δikδjl

+ (p1 + p4) · (p2 + p3)δilδjk ]

and additional vertices for all even numbers of πk fields.
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Callan-Symanzik equation and β-function

I As we have dimensionless coefficients in our Lagrangian, this
theory can be made finite by renormalization of the coupling
constant g and rescaling of the fields πk and σ.

I Instead of going through the whole renormalization procedure,
we can make use of the fact that our renormalizable theory
has to fulfill the Callan-Symanzik equation for some functions
β and γ.

I But let us just write down the β-function and discuss its
significance.
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I The β-function for d = 2 is given as

β(g) = −(N − 2)g 3

4π
+O(g 5).

I Obviously the β-function depends on N.

I For N = 2 the β-function vanishes exactly (not only to order
g 3).
This is obvious, because in this case we can parametrize
π1 = sin θ and thus σ = cos θ and the Lagrangian simplifies
considerably:

L =
1

2g 2
|∂µ sin θ|2 +

1

2g 2

(sin θ · ∂µ sin θ)2

1− (sin θ)2
=

1

2g 2
(∂µθ)2.
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I For N > 2, the β-function

β(g) = −(N − 2)g 3

4π
+O(g 5)

is negative and the theory is asymptotically free, which means
that the coupling constant goes to zero as the momentum
becomes large.
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I Asymptotic freedom of the nonlinear σ-model is restricted
d = 2.

I For higher dimensions (2 < d < 4), there is an ultra-violet
stable fixed point which tends towards zero for d → 2.
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QCD - Parton model

I Quantum chromodynamics describes the strong interactions
between the constituents of the nuclei, which are responsible
for nuclear bonding.

I At first, strong interactions showed mysterious properties
which could not be described by common field theories
(before the developement of QCD).

I For example, interactions turn themselves off for large
momentas (small displacements).

I It was recognized that this requires asymptotic freedom.

I As non-Abelian gauge theories are asymptotically free in
four-dimensional space-time, they are possible candidates for
theories describing strong interactions.
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I Parton model is a model put forward by Bjorken and
Feynman:
Describes the proton as a loosely bound assemblage of a small
number of constituents, called partons.

I If one compares the parton model to QCD, partons are
quarks, charged fermions, and also neutral species responsible
for the binding, called gluons.

I These gluons are included in the description by QCD as vector
gauge bosons.
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β-function of QCD

I The Lagrangian of QCD is the famous Yang-Mills Lagrangian

L = ψ̄(iD/−m)ψ − 1

4
(F a
µν)2,

with the field strength tensor of the gauge bosons

F a
µν = ∂µAa

ν − ∂νAa
µ + gf abcAb

µAc
ν ,

where Aa
µ is a component of the gauge boson field (gluon

field, a ∈ {1, · · · , 8}) and f abc is the structure constant of the
gauge symmetry, in the case of QCD SU(3).
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I Without going in any details of calculation, we state that the
β-function in the case of a SU(N) gauge theory with nf

different fermions is given to leading order as

β(g) = − g 3

(4π)2

(11

3
N − 2

3
nf

)
.

I Sign of the β-function depends on the ratio of the number of
fermions nf and N (from the symmetry SU(N)), thus we have
N = 3 for QCD.

I For a small enough number nf , β is negative and the theory is
asymptotically free, which is for QCD the case if nf ≤ 16.
(there are 6 flavours: up, down, strange, charm, bottom, top)
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I Using the β-function, the running coupling can be calculated
to

g 2(k) =
g 2

0

1 +
g2

0
(4π)2 ( 11

3 N − 2
3 nf ) log( k2

M2 )
,

which tends to zero at large momentum.

I This means that the theory is asymptotically free.

I As we have mentioned before, this is an necessary condition to
describe the strong interactions.

David Oehri Asymptotic freedom and the beta-function



Outline
Introduction
φ4 theory

Nonlinear Sigma Model
QCD

Parton model
β-function of QCD

I Let us discuss the behavior of the running coupling in more
detail.

I In electrodynamics:

I The vacuum behaves as a dielectric medium due to
electron-positron pair creation, which decreases the effective
charge of the electron and thus the coupling at large distances.

I In non-Abelian gauge theories, the fermions still produce such
an effect (positive contribution to the β-function)

I However, the non-Abelian gauge bosons produce a dominating
antiscreening effect.
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I To understand this effect, we study a simplified example:

I Coulomb gauge: ∂iA
ai = 0

I Considering the Coulomb potential of the field Aa0 described
by an analogue of Gauss’s law in this non-Abelian case with
covariant form

DiE
ai = gρa,

where the covariant derivative acting on a field in adjoint
representation is defined as

(Dµφ)a = ∂µφ
a + gf abcAb

µφ
c ,

E ai = F a0i and ρa is the charge density of the fermions, where
a is a index for the color of charge.
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I To make a further simplification, we choose SU(2)-symmetry,
because in this case the structure constant simplifies to
f abc = εabc :

(Dµφ)a = ∂µφ
a + gεabcAb

µφ
c .

I We now want to compute the Coulomb potential of a point
charge of magnitude +1 with orientation (color) a = 1.
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I We want to solve iteratively for E ai .

I First we rewrite the equation as

∂iE
ai = gδ(3)(x)δa1 + gεabcAbiE ci

I In this non-Abelian theory,
I not only a charge density,
I but also the common presence of a vector potential and a

electric field

is a source of electric fields.
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I The first term implies a 1/r 2 electric field of color a = 1
radiating from x = 0.

I We now consider a point in space where this field crosses a bit
of vector potential Abi arising as fluctuation of the vacuum,
assume A2i which points in some diagonal direction to the
electric field.
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I If we now consider a = 3,

∂iE
3i = gε321A2iE 1i = −gA2iE 1i < 0,

we find a sink of the field E 3i at this location:
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I Considering now the influence of this field E 3i on the field
E 1i , we find

∂iE
1i =gδ(3)(x) + gε123A2iE 3i

=gδ(3)(x) + gA2iE 3i .

I We have to consider the orientation of A2i and E 3i in more
detail: We see that closer to the origin the fields are parallel
and thus there is a source for E 1i , farther away, the fields are
antiparallel and thus there is a sink.
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I This is an induced electric dipole which is oriented with the
positive charge towards the original charge.

I Thus, this amplifies the original charge instead of screening it
and therefore the effect of the charge gets stronger at larger
distances.

I Comparing screening and antiscreening effects, one can find
that antiscreening is 12 times larger.

I This simplified example should just show how such
antiscreening can occur.

I Antiscreening leads to the effect of confinement.
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I This antiscreening originates from the second term of the
covariant derivative which is peculiar for a non-Abelian gauge
theory.

I So the coupling constant grows at large distances for
non-Abelian gauge theories.

I This is the one direction of coupling constant flow, in the
other direction asymptotic freedom occurs.
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