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Classical mechanics

◮ Lagrangian mechanics. Principle of least action:

δS [L] = 0.

◮ Hamiltonian mechanics. Hamilton’s canonical equations

q̇ =
∂H(q, p)

∂p
,

ṗ = −
∂H(q, p)

∂q
.
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Canonical quantization

◮ Classical variables, Poisson brackets:

{qi , pj} = δij

◮ Quantum operators, Lie brackets:

[X ,P] = i~

◮ Away from the principle of least action.

◮ Feynman: Path integrals founded on the principle of least
action, but in this case the action of each possible trajectory
plays a crucial role.
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Real time

◮ Pictures:
◮ Schrödinger
◮ Heisenberg
◮ Interaction

◮ Time evolution, Schrödinger equation

i
∂ψ(x , t)

∂t
= Hψ(x , t)

|ψ(t)〉 = e−iH(t−t0) |ψ(t0)〉

◮ Probability amplitude for a particle to move from y to x

within time interval t:

〈x | e−iHt |y〉
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Euclidean space-time

◮ Free particle, H ≡ H0 = ~p2

2m

〈x | e−iH0t |y〉 =
( m

2πit

)
1
2
exp

(

i
m

2t
(x − y)2

)

◮ Particle in a potential, H = H0 + V (x), define:

Uǫ ≡ exp (−iHǫ) ∼= Wǫ,

〈x |Wǫ |y〉 =
( m

2πiǫ

)
1
2
exp

(

i
m

2ǫ
(x − y)2 − i

ǫ

2
(V (x) + V (y))

)

◮ Wǫ as the approximated time evolution operator if ǫ = t
N

is
small, because

exp (−i (H0 + V ) t) = lim
N→∞

Wǫ
N .
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◮ Inserting N − 1 complete sets of position eigenstates:
〈

x
∣

∣

∣
e−iHt

∣

∣

∣
y
〉

= lim
N→∞

∫

dx1 · · · dxN−1 〈x |Wǫ |x1〉 · · · 〈xN−1|Wǫ |y〉.
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◮ Rewrite as
〈

x
∣

∣

∣
e−iHt

∣

∣

∣
y
〉

=

∫

Dxe iSǫ ,

◮ where

Dx = lim
N→∞

( m

2πiǫ

)
N
2

dx1 · · · dxN−1

◮ and

Sǫ =
m

2ǫ

(

(x − x1)
2 + . . .+ (xN−1 − y)2

)

−ǫ

(

1

2
V (x) + V (x1) + . . .+ V (xN−1) +

1

2
V (y)

)
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◮ Sǫ → S , the action:

S =

∫ t

0
dt ′

(m

2
ẋ2 − V (x)

)

◮ Quantum mechanics amplitude as integral over all paths
weighted by e iS .

◮ Quantum mechanical operators
⇒ infinite-dimensional integral.

◮ Green functions:

G (q′, t ′; q, t) =

∫

dq′′G (q′, t ′; q′′, t ′′)G (q′′, t ′′; q, t)
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Euclidean time

◮ Goal: Substitute e iS with a real, non oscillating and
non-negative function.

◮ Define imaginary (or Euclidean) time τ as

t = −iτ, τ > 0.

◮ Probability amplitude:

〈x | e−Hτ |y〉 =

∫

Dxe−SE ,

◮ where

SE =

∫ t

0
dτ ′

(m

2
ẋ2 + V (x)

)

is the Euclidean action.
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◮ Every path is weighted by e−SE .

◮ Action

S =

∫ t

0
dt ′

(m

2
ẋ2 − V (x)

)

and Euclidean action

SE =

∫ t

0
dτ ′

(m

2
ẋ2 + V (x)

)

are related by
S |t=−iτ = iSE ,

substitution d
dt

= i d
dτ

and dt ′ = −idτ ′.
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◮ Classical mechanics: The path is given by δSE = 0

◮ Quantum mechanics: All paths are possible.

◮ The paths which minimize SE , this means near δSE = 0, are
the most likely.

◮ Physical units: exp (−SE/~)

◮ Classical limit: ~ → 0 ⇒ least action.
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Vacuum’s expectation values

◮ Goal: Elegant expression for 〈0|A |0〉.
◮ Let |n〉 be the energy eigenstates, then

◮

Tr
(

e−HτA
)

=

∞
∑

n=0

e−Enτ 〈n|A |n〉

◮ and

Z (τ) = Tr
(

e−Hτ
)

=

∞
∑

n=0

e−Enτ

◮ For τ → ∞ the term E0 dominates the sums, this means

〈0|A |0〉 = lim
τ→∞

Tr
(

e−HτA
)

Z (τ)

◮ Mean in a canonical statistical ensemble.
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Example: Correlation functions

◮

〈x(t1) · · · x(tn)〉 ≡ 〈0| x(t1) · · · x(tn) |0〉

◮ Continued analytically to Euclidean times τk = itk

◮

〈x(t1) · · · x(tn)〉 = lim
τ→∞

1

Z (τ)

∫

Dx x (τ1) · · · x (τn) exp (−SE [x (τ)])

where

Z (τ) =

∫

Dx exp (−SE [x (τ)]).
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Euclidean space-time

◮ Goal: Show that, using the imaginary time, we move from a
Minkowski to a Euclidean space.

◮ We define the time coordinate x4 as

x0 = −ix4, x4 ∈ R.

◮

(

x0, x1, x2, x3
)

→ Minkowski (signature (−1, 1, 1, 1))
(

x1, x2, x3, x4
)

→ Euclidean, because g
(

x4, x4
)

= 1.
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Why quantum field theory?

◮ Quantum mechanics and special relativity ⇒ problems
◮ Negative energy states (E 2 = p2 + m2)
◮ Assume existence of antiparticles.

◮ Quantum field theory:
◮ Wave functions replace by field operators.
◮ Field operators can create and destroy an infinite number of

particles
⇒ QFT can deal with many particle system.
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Wightman and Schwinger functions

◮ Define the Wightman function as the n-point correlation
functions:

W (x1, . . . , xn) = 〈0|φ (x1) · · ·φ (xn) |0〉

◮ Wightman functions can be continued analytically into a
region of the complex plane

◮ Define the Schwinger functions as

S
(

. . . ;~xk , x
4
k ; . . .

)

≡ W
(

. . . ;−ix4
k ,~xk ; . . .

)

,

for x4
1 > x4

2 > . . . > x4
n .
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Why quantum field theory?
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◮ Schwinger functions in Euclidean space
⇒ Wightman functions in Minkowski space.

W (x1, . . . , xn) = lim
ǫk→0,ǫk−ǫk+1>0

S
(

. . . ;~xk , ix
0
k + ǫk ; . . .

)
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Why quantum field theory?
Wightman and Schwinger functions
Time-ordered Green functions
Wick rotation

◮ Advantages:

◮ Schwinger functions obey to simpler properties.
◮ From symmetry property we build the representation in terms

of functional integrals.
(Path integral formalism in quantum field theory)
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Why quantum field theory?
Wightman and Schwinger functions
Time-ordered Green functions
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Time-ordered Green functions

◮ We define the Time-ordered Green functions as

τ (x1, . . . , xn) = 〈0|Tφ (x1) · · ·φ (xn) |0〉 ,

where T is the time ordering operator.

◮ For the 2-point function we have

τ (x) ≡ τ (x , 0) =

{

W (x) , x0 > 0

W (−x) , x0 < 0.

◮ W (x) is analytic in the lower half complex plane.
◮ W (−x) is analytic in the upper half complex plane.
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Wick rotation

◮ Counter-clockwise rotation

◮ Generalization:

τ (x1, . . . , xn) = lim
φ→π

2

S
(

. . . ;~xk , e
iφx0

k ; . . .
)
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Path integral formalism in quantum field theory

◮ Symmetry of Euclidean correlation functions
⇒ Euclidean fields commute

◮ Like classical fields.
◮ Random variables, not operators

◮ Expectation values:

〈F [φ]〉 =

∫

dµF [φ]

◮ For Euclidean functional integral:

dµ =
1

Z
e−S[φ]

∏

x

dφ (x)

◮ Combining, like the Euclidean path integral formalism.
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Bosonic field theory

◮ Goal: Find explicitly the expression for the Euclidean
correlation 〈φ (x1) · · ·φ (xn)〉 in Euclidean functional integral
formalism.

◮ From the Gaussian integrals we find

Z0 (J) ≡
1

Z0

∫

dkφ exp

(

−
1

2
(φ,Aφ) + (J, φ)

)

= exp

(

1

2

(

J,A−1J
)

)

where J is an arbitrary vector and

Z0 ≡

∫

dkφ exp

(

−
1

2
(φ,Aφ)

)

.
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Bosonic field theory
Interacting field

◮ For a free field we have

Z [J] ≡ Z0 [J] = exp

(

1

2

∫

d4xd4yJ (x) G (x , y) J (y)

)

,

where G (x , y) is the propagator that satisfies

(

� + m2
)

G (x , y) = δ (x − y) .

◮ The correlation functions are given by

〈φ (x1) · · ·φ (x2n)〉 =
δnZ [J]

δJ (x1) · · · δJ (xn)

∣

∣

∣

∣

J=0

.
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Interacting field

◮ We move from a discrete to a continuous representation, this
means

◮ φi → φ (x) ,
◮

∂

∂Ji
→ δ

δJ(x) .

◮ Comparing

Z0 [J] = exp

(

1

2
(J,GJ)

)

,

Z0 [J] = exp

(

1

2

(

J,A−1J
)

)

,

we find A → G−1 = � + m2.

◮

1

2
(φ,Aφ) →

1

2

(

φ,G−1φ
)

=
1

2

(

φ,
(

� + m2
)

φ
)

= S0 [φ] .
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◮ Inserting in the Gaussian integrals we find

Z0 [J] =
1

Z0

∫

∏

x

dφ (x) exp (−S0 + (J, φ)),

where

Z0 =

∫

∏

x

dφ (x) exp

(

−
1

2

(

φ,
(

� + m2
)

φ
)

)

.

◮ Infinite-dimensional integral ⇒ not well defined.
◮ Define the measure

dµ0 (φ) =
1

Z0
D [φ] e−S0(φ),

where
D [φ] ≡

∏

x

dφ (x).
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◮ Using this functional approach we find the correlation
functions

〈φ (x1) · · ·φ (xn)〉 =

∫

dµ0 (φ)φ (x1) · · ·φ (xn) =

1

Z0

∫

∏

x

dφ (x) e−S0[φ]φ (x1) · · ·φ (xn).
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Interacting field

◮ We neglect the problems associated with divergences and
renormalization.

◮ Euclidean action

S [φ] = S0 [φ] + SI [φ] ,

where SI describes the interaction part.
◮ From Gaussian functional integral we find

Z [J] =
1

Z

∫

∏

x

dφin (x) e−S[φ]+(J,φ)

where

Z =

∫

∏

x

dφin (x) e−S[φ],

and φin is the free field.
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Connection with perturbative expansion

◮ Goal: Deduce the rules of perturbation theory from functional
integral.
(Feynman rules)

◮ Consider a scalar field with a quartic self-interaction given by

SI [φ] =
g

4!

∫

d4x φ (x)4.

◮ We start to expand e−SI in the functional expression for an
interacting field.
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◮ We find the functional integral

Z [J] =
Z0

Z
exp

(

SI

[

δ

δJ (x)

])

exp

(

1

2
(J,G0J)

)

.

◮ For the associated correlations functions we find

G (x1, . . . , xn) =
Z0

Z

δ

δJ (x1)
. . .

δ

δJ (xn)
exp

(

SI

[

δ

δJ (x)

])

· exp

(

1

2
(J,G0J)

)∣

∣

∣

∣

J=0

.
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Graphical interpretation of the last equation:

◮ Expand the exponential of SI

[

δ
δJ(x)

]

◮ Each derivative δ

δJ(xi )
is indicated by an external point from

which emerges a line

◮ Each factor −g
∫

d4x
(

δ

δJ(xi )

)4

is indicated by an internal

vertex, from which emerges four lines.

◮ Expand exp
(

1
2 (J,G0J)

)

◮ Internal lines
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◮ We can normalize the generating functional to Z (0) = 1,
using

Z

Z0
= exp

(

−SI

[

δ

δJ (x)

])

exp

(

1

2
(J,G0J)

)
∣

∣

∣

∣

J=0

.

◮ Graphical interpretation:
◮ No external points.
◮ Vacuum graphs.
◮ These terms cancel out in the graphical representation of

Green’s functions.

◮ Cancel out only vacuum graphs, but not all internal loops
(divergences)
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◮ This divergences imply that the functional Z [J] is not
well-defined.

◮ Regularization allows us to evaluate this functional integral,
separating the divergent part.

◮ Renormalization absorbs the divergences by a redefinition of
the parameter of the theory.

◮ The renormalized values of the parameters are considered as
the physical ones.

◮ Renormalizable theory: at every order in perturbation theory,
only a finite number of parameters needs to be renormalized.
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