
Finite temperature QCD: formulation and symmetries

Roman Mani

Tutor: Aleksi Kurkela

May 11, 2009



Contents

1 Finite temperature in the Euclidean path integral 2
1.1 Partition function of the grand canonical ensemble . . . . . . . . . . . . . . 2
1.2 Path integral representation of the partition function for bosons . . . . . . . 3
1.3 Partition function for systems with H quadratic in π . . . . . . . . . . . . . 5
1.4 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thermal Green‘s functions and propagators in finite temperature field theory 11

2 Polyakov loop and center symmetry 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Actions and gauge transformations on the lattice . . . . . . . . . . . . . . . 14
2.3 Center symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The Polyakov loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Physical meaning of the Polyakov loop . . . . . . . . . . . . . . . . . . . . . 17
2.6 Some simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



1 Finite temperature in the Euclidean path integral

1.1 Partition function of the grand canonical ensemble

The grand canonical ensemble is used to describe systems in contact with a heat reservoir
at temperature T and a particle reservoir. The system can exchange energy as well as
particles with these reservoirs. In this ensemble the temperature, the chemical potential
and the volume are kept fixed. In a relativistic quantum system, where particles can be
destroyed and created, it is most straightforward to compute observables in the grand
canonical ensemble. Consider a grand canonical ensemble described by a Hamiltonian
H and n conserved charges N̂i, i = 1, · · · , n, which commute with H. From statistical
quantum mechanics we know that the density matrix of the grand canonical ensemble is
given by

ρ̂ = exp
[
−β(H − µiN̂i)

]
(1)

where we sum over i. The inverse temperature is given by β = T−1 and µi are chemical
potentials corresponding to the conserved charges. The density matrix is the operator,
which is diagonal with respect to the basis {|n〉} where |n〉 are energy eigenstates. The
eigenvalues are the relative probabilities for the occurrence of the n‘th eigenstate.
The partition function of the system is then given by

Z = Trρ̂ (2)

and the ensemble average of an operator Â is

〈A〉 =
Trρ̂Â
Trρ̂

(3)

The trace operation means that we sum over all diagonal matrix elements of an operator
in a given basis of the Hilbert space the operator is acting on. Let {|n〉} be a basis of the
Hilbert space and Â an operator acting on that space, then

TrÂ =
∑
n

〈n|Â|n〉 (4)

If we consider a non-discrete set of basis elements, we would replace the sum by an inte-
gral. The partition function is the most important function in thermodynamics because it
contains all thermodynamic information like pressure, entropy, particle number and energy
given by

P =
∂(T lnZ)

∂V

Ni =
∂(T lnZ)
∂µi
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S =
∂(T lnZ)

∂T
E = −PV + TS + µiNi

F = −T lnZ (5)

1.2 Path integral representation of the partition function for bosons

We want to derive a path integral representation of the partition function for bosonic
systems in quantum mechanics. Let q = {qα} denote the coordinate degrees of freedom of
the system and |q〉 the simultaneous eigenstates of the corresponding operators {q̂α}, i.e.

q̂α|q〉 = qα|q〉, α = 1, · · · , k (6)

The partition function is given by

Z = Tre−βH =
∫
dq〈q|e−βH |q〉 (7)

where the integration measure is

dq =
k∏

α=1

dqα (8)

and the Hamiltonian H is a function of the position and momentum operators. We will
specify the structure of the Hamiltonian later on. The trace here means that we integrate
over q, which we will denote by q(0) in the following. We now set β = εN to write

Z =
∫
dq〈q| e−εHe−εH · · · e−εH︸ ︷︷ ︸

N times

|q〉 (9)

and insert a complete set of states in between of each exponential:∫ N−1∏
i=0

dq(i)〈q(N)|e−εH |q(N−1)〉〈q(N−1)|e−εH |q(N−2)〉 · · · 〈q(1)|e−εH |q(0)〉|q(0)=q(N) (10)

For Hamiltonians of the form1

H =
1
2

k∑
α=1

p̂2
α + V (q̂) (11)

with the momenta p̂α canonically conjugated to q̂α, we can evaluate the matrix elements
appearing in (10). Using the Baker-Hausdorff formula eAeB = eA+B+ 1

2
[A,B]··· we can ap-

proximate the following matrix elements (ε small)

〈q(i+1)|e−εH |q(i)〉 ≈ 〈q(i+1)|e−ε/2
P
α p̂

2
α |q(i)〉e−εV (q(i)) (12)

1Actually, the following calculation holds for any Hamiltonian of the form H(p̂, q̂) = P1(p̂)+P2(q̂) where
Pi are polynomials.
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To evaluate the remaining matrix element we insert, similarly as before, a complete set of
momentum eigenstates to the right of the exponential. With

〈q|p〉 =
k∏

α=1

1√
2π
eipαqα (13)

we have

〈q(i+1)|e−εH |q(i)〉 ≈ e−εV (q(i))

∫
dp(i)

k∏
α=1

exp

{
−ε

[
1
2
p(i)
α

2 − ip(i)
α

(
q

(i+i)
α − q(i)

α

ε

)]}
(14)

with the integration measure

dp(i) =
k∏
δ=1

dp
(i)
δ

2π
(15)

Putting all together we arrive at the path integral form of the partition function

Z = lim
N→∞ε→0Nε=β

∫
Dq

∫
Dpe

PN−1
i=0

P
α ip

(i)
α (q

(i+1)
α −q(i)

α )−εH(q(i),p(i))|q(N)=q(0) (16)

with the measure

DqDp =
N−1∏
i=0

∏
α

dq
(i)
α dp

(i)
α

2π
(17)

and the formal continuum limit∫
periodic

Dq

∫
Dpe

R β
0 dτ [

P
α ipα(τ)q̇α(τ)−H(q(τ),p(τ))] (18)

Note that the Hamiltonian in (16) is now a function of the eigenvalues of the momentum
and position operators. Before, it was a function of the operators. The subscript ”periodic”
means that the coordinates at τ = 0 and τ = β have to be identified (periodic boundary
conditions). If we also consider conserved charges, we simply make the replacement H →
H − µiNi.
The generalization to field theory is immediate. We replace qα(τ) by a scalar field φ(~x, τ)
and pα(τ) by the conjugate momentum π(~x, τ) of the field. That means, that we go over
to a system with infinitely many degrees of freedom. ~x labels these degrees of freedom and
replaces the label α. The Hamilonian H is now given by

H =
∫
d3xH(φ, π) (19)

where H is the Hamiltonian density. The equivalent path integral form for fields is

Z =
∫

[dπ]
∫
periodic

[dφ]

× exp
[∫ β

0 dτ
∫

d3x
(

iπ ∂φ(x,τ)
∂τ −H(π, φ) + µN (π, φ)

)]
(20)
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where

[dπ][dφ] = lim
N→∞

(
N∏
i=1

dπidφi/2π

)
(21)

The conserved charge density N is a consequence of Noether‘s theorem, which states that
whenever a Lagrangian has a global continuous symmetry there is an associated conserved
current.
The most important point here to notice is that the integration

∫
periodic[dφ] over the field

is constrained such that the field is periodic in imaginary time: φ(x, 0) = φ(x, β).
This means that we have compactified euclidean space-time because euclidean space-time
now has a finite extension in the time direction. We can imagine cutting space-time (in
two dimensions) at τ = 0 and τ = β and stick both ends of this strip together such that
we are left with a cylinder.

1.3 Partition function for systems with H quadratic in π

The phase-space path integral (20) contains integrations over momenta. If the Hamiltonian
density is quadratic in these momenta, we can explicitly integrate over these momenta. This
leads to a configuration space path integral. Consider a Hamiltonian density of the form

H = π2 +
1
2

(∇φ)2 +
1
2
m2φ2 + U(φ) (22)

with potential U(φ) describing interactions. Discretizing the partition function and plug-
ging in (22) yields:

Z = lim
N→∞

(
N∏
i=1

∫ ∞
−∞

dπi
2π

∫
periodic

dφi

)
exp
{ N∑
j=1

∫
d3x
[
iπj(φj+1 − φj)

−∆τ
(
1/2π2

j + 1/2(∇φj)2 + 1/2m2φ2
j + U(φj)

)]}
(23)

Because of the position space integration in the exponent we must replace
∫

d3x by a sum
over little cubes. This means that we discretize position space as well. We divide it into
M3 little cubes of length a. Then V = L3 and L = aM . (a→ 0, M →∞)
We then have

Z = lim
N→∞

(
N∏
i=1

∫ ∞
−∞

dπi
2π

∫
periodic

dφi

)
exp
{ N∑
j=1

M3∑
i=1

a3
[
iπj(φj+1 − φj)

−∆τ
(
1/2π2

j + 1/2(∇φj)2 + 1/2m2φ2
j + U(φj)

)]}
(24)
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Since the momentum integrations are products of gaussian integrals we can use the following
formula to proceed∫

RN
exp(−1

2
xAx + iξx)dNx = (2π)N/2(detA)−1/2 exp

[
−1

2
ξA−1ξ

]
(25)

In our case A is the N ×N identity matrix times a3∆τ and ξj = a3(φj+1 − φj). Applying
this formula to (24) yields

Z ∝ lim
N,M→∞

(2π)−M
3N/2

(
N∏
i=1

∫
periodic

dφi

)
exp
{

∆τ
N∑
j=1

∫
d3x
[
−1

2

(
φj+1 − φj

∆τ

)2

−1/2(∇φj)2 − 1/2m2φ2
j − U(φj)

]}
(26)

Going to the continuum limit we finally arrive at the expression

Z = N ′
∫
periodic

[dφ] exp

(
−1

2

∫ β

0
dτ
∫

d3x

[(
∂φ

∂τ

)2

+ (∇φ)2 +m2φ2 + 2U(φj)

)]
(27)

or with LE = 1
2

(
∂φ
∂τ

)2
+ 1

2(∇φ)2 + 1
2m

2φ2 + U(φj) the euclidean Lagrangian density

Z = N ′
∫
periodic

[dφ] exp
(
−
∫ β

0
dτ
∫

d3xLE
)

:= N ′
∫
periodic

[dφ]e−SE (28)

In this expression, the constant N ′ is irrelevant because the multiplication of the partition
function by a constant does not change the thermodynamics. The expectation values are
only shifted by a constant. Furthermore, we have defined the exponent in (28) to be SE ,
the euclidean action.
This is a remarkable result. The partition function is a weighted sum over all field config-
urations that live on a euclidean space time surface compactified along the time direction,
the cylinder mentioned earlier. The radius of this cylinder gets bigger and bigger as the
temperature is lowered.
To evaluate the remaining path integral we can expand the field and integrate SE by parts2.
We now consider a non interacting field (U(φ) = 0)

SE =
1
2

∫ β

0
dτ
∫

d3xφ

(
− ∂2

∂τ2
−∇2 +m2

)
φ (29)

φ(x, τ) =
(
β

V

)1/2 ∞∑
n=−∞

∑
p

ei(px+ωnτ)φn(p) (30)

2Because of the periodicity of φ, the boundary terms vanish
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Because the field is periodic in time, the temporal Fourier transform turns into a Fourier
series. The sum over the momenta p can be interpreted as a discretized Fourier transform.3

We will later go back to the continuum.
Because of the periodicity φ(x, β) = φ(x, 0) we have to set ωn = 2πn/β = 2πnT . These
frequencies are called Matsubara frequencies. Plugging (30) into (29) gives

SE =
β

V

1
2

∫ β

0
dτ
∫

d3x

∞∑
n,n′=−∞

∑
p,p′

ei(px+ωnτ)(ω2
n + ω2)φn(p)φn′(p′)ei(p′x+ωn′τ) (31)

with ω = (p2 + m2)1/2. The field is real, such that φ−n(−p) = φ∗n(p). Equation (31) can
thus be evaluated further4

SE =
1
2
β2

∞∑
n=−∞

∑
p

(ω2
n + ω2)φn(p)φ∗n(p) (32)

The term in brackets in the sum will turn out to be the inverse propagator in frequency
momentum space (see section 1.5). We again use (25) with A = β2(ω2

n + ω2) to arrive at

Z =
∏
n

∏
p

[
β2(ω2

n + ω2)
]−1/2 (33)

Using some mathematical tricks and neglecting a β independent piece we can express the
logarithm of the partition function as

lnZ =
∑
p

(
−βω

2
− ln(1− e−βω)

)
(34)

or going to the continuum

lnZ = V

∫
d3p

(2π)3

(
−βω

2
− ln(1− e−βω)

)
(35)

This is the known expression for lnZ for bosons but including the zero-point energy.

1.4 Fermions

In this section we first look at a simple example of a fermionic system with one degree of
freedom. The main difficulty is that creation and annihilation operators for fermions satisfy
anticommutation relations in contrast to commutation relations for bosons. Consider a
system whose Hilbert space only consists of the vacuum state |0〉 and the one particle state
|1〉 = â†|0〉. |0〉 is annihilated by the operator â. The creation and annihilation operators,

3We could also have put an integral, it is just more convenient to evaluate the partition function.
4The integrals vanish unless p = −p′ and n = −n′. In the latter case the value of the integral is β/V
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â, â† satisfy the anticommutation relation {â, â†} = 1, whereas all other anticommutators
vanish. A general operator acting on this space has the form

Â = K00 +K10â
† +K01â+K11â

†â (36)

The Kij are not the matrix elements of Â. The matrix is given by(
K00 K01

K10 K00 +K11

)
(37)

We need an expression for the trace of an operator and the product of operators,
in terms of an integral over Grassmann variables. Define the generators a and a∗ of a
Grassmann algebra satisfying {a, a∗} = {a, a} = {a∗, a∗} = 0.
We replace the operators â and â† in (36) by the generators a and a∗ and multiply with
ea
∗a = 1 + a∗a to get the matrix form of Â

A(a∗, a) = ea
∗a(K00 +K10a

∗ +K01a+K11a
∗a)

= (K00 +K10a
∗ +K01a+K11a

∗a) +K00a
∗a

= A00 +A10a
∗ +A01a+A11a

∗a (38)

where the Aij now really are the matrix elements of Â. We also define the normal form

Ã(a∗, a) = K00 +K10a
∗ +K01a+K11a

∗a (39)

Next, we find using the Grassmann integration rules that

TrÂ =
∫
dada∗ea

∗aA(a∗, a) (40)

or equivalently

TrÂ =
∫
da∗dae−a

∗aA(a∗,−a) (41)

The matrix elements of the product Ĉ = ÂB̂ are given by the coefficients of

C(a∗, a) =
∫

db∗db e−b
∗bA(a∗, b)B(b∗, a) (42)

where a, a∗, b, b∗, db,db∗ are all anticommuting variables. Eq. (41) gives rise to antiperiodic
boundary conditions in the path integral form of the partition function. We will see that
later.
We can also have two sets of operators {âi} and {âi†} (i = 1, 2, · · · , n) with {âi, â†i} = δij
(all other anticommutators vanish) and the associated Grassmann generators {ai} and
{a∗i }. with {ai, a∗j} = {ai, aj} = {a∗i , a∗j} = 0, (i, j = 1, · · · , n).
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Now we are ready to find the path integral representation of the grand canonical par-
tition function for fermions in a simple model. We consider a Hamiltonian of the form

Ĥ = E â†â (43)

and a number operator
N̂ = â†â (44)

and divide the time interval [0, β] into N intervals of length ε = β/N to write

Z = Trρ̂ = Tre−β(Ĥ−µN̂) = Tr (e−ε(Ĥ−µN̂))N = Tr (e−ε(E−µ)â†â)N := Tr ρ̂Nε (45)

The matrix form of ρ̂ε is given by

ρε(a∗, a) = ea
∗aρ̃ε(a∗, a) = ea

∗ae(e−ε(E−µ)−1)a∗a ≈ ea∗ae−ε(E−µ)a∗a (46)

where the approximation is valid for small ε. Using the fact that ea
∗
i aj commutes with

ea
∗
man for arbitrary i, j,m, n (and also ea

∗
i ajea

∗
man = ea

∗
i aj+a

∗
man), we can write

ρε(a∗i , ai−1) = ea
∗
i ai−1(1−ε(E−µ)) (47)

We can calculate the matrix form ρ(a∗N , aN ) of ρ̂Nε using the formula for the products:

ρ(a∗N , aN ) =
∫ N−1∏

i=1

da∗i daie
−a∗i aiρε(a∗N , aN−1)ρε(a∗N−1, aN−2) · · · ρε(a∗1, a0)|a0=aN

=
∫ N−1∏

i=1

da∗i dai

(
ea
∗
NaN−1(1−ε(E−µ))

)
ea
∗
i ai−1(1−ε(E−µ))−a∗i ai |a0=aN (48)

Finally we compute the trace to get

Z = Trρ̂ =
∫
da∗NdaNe

−a∗NaNρ(a∗N ,−aN ) =
∫ N∏

i=1

da∗i daie
a∗i ai−1(1−ε(E−µ))−a∗i ai |a0=−aN

(49)
Here, we see that the integration is such that a0 = −aN , which means that we have
antiperiodic boundary conditions. After relabeling ai → ai+1 and rewriting, we get

Z =
∫ N∏

i=1

da∗i daie
−a∗i (ai+1−ai)−ε(E−µ)a∗i ai |a1=−aN+1 (50)

which reads after going to the continuum (N →∞, ε→ 0, Nε = β)∫
antip

[da∗][da]e−
R β
0 dτ(a∗ ∂a

∂τ
+H−µN) (51)
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where H(a∗, a) = E a∗a is the Hamiltonian and N(a∗, a) = a∗a is the conserved charge.
This expression can be generalized to arbitrarily many degrees of freedom and to field
theory. We replace the Grassmann variables by Grassmann valued fields ψα(~x, τ) and
ψ∗α(~x, τ) where ~x labels the infinitely many degrees of freedom. The corresponding path
integral for fields reads∫

antiper
[dψ∗][dψ] exp

[
−
∫ β

0
dτ

∫
d3x

(
ψ∗(x)

∂

∂τ
ψ(x) +H(ψ,ψ∗)− µN (ψ,ψ∗)

)]
(52)

As an example, we consider the Hamiltonian density for the free Dirac field

H = ψ̄(~γE · ∇+m)ψ (53)

and the corresponding euclidean Lagrangian density

LE = ψ̄( 6∂ +m)ψ (54)

where 6∂ = γEµ ∂µ and ψ̄ = ψ∗γE4 . The euclidean gamma matrices are related to the Dirac
gamma matrices through γE4 = γ0, γEi = −iγi satisfying {γEµ , γEν } = 2δµν . This Lagrangian
has a global U(1) symmetry. It is invariant under ψ → ψe−iα and the associated Noether
current is jµ = ψ̄γEµ ψ. Since (γE4 )2 = 1, we find the conserved charge density

N = j4 = ψ∗ψ (55)

The partition function can again be expressed as a path integral

Z =
∫
antiper

[dψ∗][dψ] exp
[
−
∫ β

0
dτ

∫
d3xψ∗γE4

(
γE4

∂

∂τ
+ ~γE · ∇+m− µγE4

)
ψ

]
(56)

In order to calculate the path integral (56) we expand Ψ(x, τ) like we did for bosons.

ψα(x, τ) = (1/V )1/2
∑
n

∑
p

ei(p·x+ωnτ)ψα;n(p) (57)

where α is a Lorentz index. Here we set the Matsubara frequencies ωn = (2n + 1)π/β
because of the antiperiodicity of the fields. We can now insert (57) into (56) and we get

Z =

[∏
n

∏
p

∏
α

∫
dψ∗α;n(p) dψα;n(p)

]
e−SE

SE =
∑
n

∑
p

ψ∗α;n(p)Dαβψβ;n(p)

D = β[(iωn − µ) + iγE4 ~γ
E · p +mγE4 ] (58)
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where SE is the euclidean action in frequency momentum space.
The Grassmann valued fields anti-commute among each other. To handle this situation we
use an important formula ∫

dη†1dη1 · · · dη†NdηNeη
†Dη = detD (59)

Here ηi and η†i are all Grassmann variables and D is a N ×N matrix.
We can now evaluate (58) which simply gives:

Z = det(−D) (60)

In the end we get the result

lnZ = 2V
∫

d3p

(2π)3

[
βω + ln

(
1 + e−β(ω−µ)

)
+ ln

(
1 + e−β(ω+µ)

)]
(61)

where the −µ term corresponds to contributions from antiparticles and the µ term to those
from particles. There are two main differences between bosons and fermions. First, for
fermions, we must integrate over Grassmann variables. Therefore Z = detD in contrast
to Z = (detD)−1/2. This difference is responsible for the Bose-Einstein factor 1− e−βω in
contrast to the Fermi factor 1 + e−βω.
The second main difference, is that fermion fields are antiperiodic in euclidean time,
whereas bosonic fields are periodic.

1.5 Thermal Green‘s functions and propagators in finite temperature
field theory

Let φ(x) be a real scalar field whose dynamics is governed by a Hamiltonian H. We know
that at zero temperature, the Green’s functions are given by the ground state expecta-
tion value of time ordered products of the field operators φ̂(x). The analogue at finite
temperature are the thermal Green‘s functions defined by

〈φ(x1) · · ·φ(xn)〉 = Z−1Tr[e−βHT (φ̂(x1) · · · φ̂(xn))] (62)

which reduces to the zero temperature Green‘s functions in the limit β → ∞. The inter-
pretation is that all eigenstates of the Hamiltonian are excited with a probability given
by the Boltzmann factor when the system is placed in contact with a heat bath. The
expression for the Green‘s function for fermions is almost the same. We only replace the
field operators φ̂ by fermionic field operators ψ̂ and define the time ordering operator T as
follows:

T (ψ̂(τ1)ψ̂(τ2)) = ψ̂(τ1)ψ̂(τ2)θ(τ1 − τ2)− ψ̂(τ2)ψ̂(τ1)θ(τ2 − τ1) (63)
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Examining the Green’s functions for φ̂ and ψ̂ directly verifies that the fields are periodic
or antiperiodic respectively. We can use the cyclic property of the trace and the imaginary
Heisenberg time evolution φ̂(y, β) = eβH φ̂(y, 0)e−βH to find

〈φ(x, τ)φ(y, 0)〉 = Z−1Tr[e−βH φ̂(x, τ)φ̂(y, 0)]
= Z−1Tr[φ̂(y, 0)e−βH φ̂(x, τ)]
= Z−1Tr[e−βHeβH φ̂(y, 0)e−βH φ̂(x, τ)]
= Z−1Tr[e−βH φ̂(y, β)φ̂(x, τ)]
= Z−1Tr[e−βHT(φ̂(y, β)φ̂(x, τ)])
= 〈φ(x, τ)φ(y, β)〉 (64)

This implies that
φ(y, 0) = φ(y, β) (65)

The same calculations give ψ(y, 0) = −ψ(y, β) for fermionic fields.
The thermal Green‘s functions can be obtained from a generating functional

Z[J ] =
∫
periodic

[dφ] e−SE+
R β
0 dτ

R
d3x Jφ (66)

by taking functional derivatives with respect to the source J at J = 0. An expectation
value of an operator can be expressed as

〈O〉 =

∫
periodic[dφ]O(φ)e−SE

Z[J = 0]
(67)

For the free neutral scalar field, (66) can be integrated (gaussian integral):

Z[J ] = Z[0]e
1
2

R
β d4x

R
β d4y J(x)∆(x−y)J(y) (68)

where ∫
β

d4x =
∫ β

0
dτ
∫

d3x (69)

and ∆(x− y) is the inverse operator (the propagator) of −
(
∂
∂τ

)2 −∇2 +m2 or simply the
thermal Green‘s function 〈φ(x), φ(y)〉. The propagator is periodic in the euclidean time
direction

∆(~x, 0) = ∆(~x, β) (70)

and therefore also has a Fourier expansion

∆(x) =
1
β

∑
n

∫
d3p

(2π)3
∆̃(ωn,p)ei(ωnτ+p·~x) (71)
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The propagator in frequency momentum space is found to be

∆̃(ωn,p) =
1

ω2
n + p2 +m2

(72)

and

∆(x) =
1
β

∑
l

∫
d3p

(2π)3

ei(ωnτ+p·~x)

ω2
n + p2 +m2

(73)

When we compare this to the T = 0 propagator in euclidean space time5

∆(x) =
∫

d4p

(2π)4

eip·z

p2 +m2
(74)

this suggests that we can get, in general, finite temperature expressions from those at T = 0
by making the substitutions

p4 → ωn ωn = 2πn/β∫
dp4

2π
f(p4) → 1

β

∑
n

f(ωn)∫
d4x →

∫
β

d4x (75)

We have seen that in the action for fermions, the chemical potential appears in the kinetic
term in the form ∂τ − µ which in frequency momentum space takes the form i(ωn + iµ).
This suggests that the fermion propagator at finite temperature is obtained by replacing
the fourth component of a momentum as follows

p4 → ωn + iµ ωn = (2n+ 1)π/β (76)

2 Polyakov loop and center symmetry

2.1 Introduction

In this section we want to study the static quark-antiquark potential at finite temperature.
Static means, that the quarks are infinitely heavy and therefore their motion is frozen. In
this section we will use lattice gauge theory.
At zero temperature the potential can be determined by studying the Wilson loop for large
euclidean times. Since the lattice has a finite extension in the time direction, we cannot go
to large euclidean times. To solve this problem we will consider the Polyakov loop instead.

5Here p2 = p2
4 + p2
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2.2 Actions and gauge transformations on the lattice

The SU(N) gauge action which describes the gauge bosons is given by

SG =
1
2

Tr
∫

d4xFµνFµν (77)

where Fµν is the field strength tensor defined by

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (78)

where the matrices Aν represent the gauge field and belong to the Lie algebra of SU(N). If
we want the fermionic action to be invariant under local SU(N) gauge transformationsG(x)
we should replace the ordinary four-derivative by the covariant derivative Dµ = ∂µ + igAµ.
The fermionic (Dirac) action

∫
d4xψ̄(γµDµ + M)ψ is then invariant under the following

local transformations

Ψ(x) → G(x)Ψ(x)
Ψ̄(x) → Ψ̄(x)G−1(x)

Aµ(x) → G(x)Aµ(x)G−1(x)− i
g
G(x)∂µG−1(x) (79)

The lattice is a division of space time into discrete points separated by the lattice constant
a. They are called sites and can be labeled by a four vector n = (n1, n2, n3, n4) with
integer values (n4 in euclidean time). On the lattice, it is necessary to have a gauge
invariant expression for Ψ̄(x)Ψ(y) because we want to replace the covariant derivative by
finite differences of the fields. The expression above is certainly not invariant under local
SU(N) transformations, but we can introduce the so called link variables given by

Uµ(n) = Peig
R n+µ̂
n dzνAν(z) (80)

where µ̂ is a vector of lenght a pointing along the µ direction and P denotes path ordering.6

The link variables (or links) are again elements of SU(N). Under a gauge transformation,
the links transform as

Uµ(n)→ G(n)Uµ(n)G−1(n+ µ̂) (81)

The gauge invariant expression replacing Ψ̄(n)Ψ(n+ µ̂) now is

Ψ̄(n)Uµ(n)Ψ(n+ µ̂) (82)

If we now construct any path on the lattice and consider the path ordered product of
link variables, we see that it transforms as follows

U(n,m) = U(n, n+ µ̂)U(n+ µ̂, n+ µ̂+ ρ̂) · · ·U(n+ · · · ,m)→ G(n)U(n,m)G−1(m) (83)
6The path ordering is introduced because SU(N) is a non abelian group. It ensures that the link

transforms according to (81).
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We also want to have a gauge invariant expression for the gauge action on the lattice. In
order to do so, we mention, that the trace of a closed loop is gauge invariant because of
the cyclic property of the trace operation:

TrU(n, n)→ Tr
[
G(n)U(n, n)G−1(n)

]
= TrU(n, n) (84)

We can express the gauge action (77) on the lattice by closed loops around so called
plaquettes of the lattice. A plaquette in the µ−ν plane are the four links forming a square
with corners n, n+ µ̂, n+ µ̂+ ν̂, n+ ν̂. The plaquette variables are then

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) (85)

and it can be shown that the action (77) on the lattice is

SG = β
∑
n,µ<ν

[1− Tr(Uµν(n) + U †µν(n))/2N ] (86)

which is gauge invariant because of (84). Here, β = 2N/g2.

2.3 Center symmetry

The lattice action (also in continuum) of the SU(N) gauge theory is not only invariant
under periodic gauge transformations. It also possesses the so called center symmetry.
The center C ⊂ G of a group G consists of all elements z ∈ G for which zgz−1 = g ∀g ∈ G
7. For SU(N) it is given by the identity matrix times exp(2πil

N ), where l = 0, 1 · · ·N − 1.
Consider multiplying all time-like oriented link variables in a euclidean time slice, e.g.
n4 = 0 by an element of the center

U4(~n, 0)→ zU4(~n, 0) (87)

Let us look at a plaquette

Ui4(~n, 0) = Ui(~n, 0)U4(~n+ î, 0)U †i (~n, 1)U †4(~n, 0)

→ Ui(~n, 0)zU4(~n+ î, 0)U †i (~n, 1)U †4(~n, 0)z† (88)

Multiplying the second and the fourth link by z does not change anything, because z
commutes with all link variables and zz† is the identity. Since the action is composed of
plaquettes, it is invariant.

7This means that the elements of the center commute with all group elements
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Figure 1: Example of a center transformation. The links pointing in time direction are
multiplied by an element z of the center in a time slice. Here the slice is n4 = 1. All
plaquettes Uµν with ν = 4 are invariant under these transformations but the Polyakov loop
is not.

2.4 The Polyakov loop

As mentioned before, the potential of a static quark-antiquark pair at zero temperature
can be determined by examining the ground state expectation value of the Wilson loop for
large euclidean times. At finite temperature, due to the finite extension of the lattice in
the euclidean time direction, we have to consider another quantity, namely the Polyakov
loop. It is the trace of the product of the link variables along a loop, winding around the
euclidean time direction. Consider such a loop, located on a spatial lattice site ~n

L(~n) =
1
N

Tr
Nτ−1∏
n4=0

U4(~n, n4) (89)

Here Nτ = β/a is the number of lattice sites along the temporal direction. Clearly, this
expression is invariant under periodic gauge transformations

Tr
Nτ−1∏
n4=0

U4(~n, n4)→ Tr
Nτ−1∏
n4=0

G(~n, n4)U4(~n, n4)G−1(~n, n4 + 1) = Tr
Nτ−1∏
n4=0

U4(~n, n4) (90)

due to the cyclic property of the trace and G(~n, 0) = G(~n,Nτ ). The Polyakov loop is
a trace of a special unitary matrix. It can get values in the complex plane. The most
peripheral values are plotted in fig. 2.

Since the Polyakov contains one link which transforms non-trivially under center trans-
formations it is not invariant unless it is zero. This suggests that there exist two phases,
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Figure 2: The most peripheral values of the Polyakov loop in the complex plane are plotted
for N=2,3,4,5. If the system is in the deconfined phase the Polyakov loop takes values in
the corners.

one which respects the center symmetry and the other which spontaneously breaks it. If
the expectation value of the polyakov loop is zero, 〈L〉 = 0, we say that the system is in
the confined phase. We will see later why we have chosen that name. If 〈L〉 6= 0 we say
that it is in the deconfined phase. If the center symmetry is spontaneously broken, there
should be N distinct possible values for 〈L〉, with

〈L〉 = e2πil/NL0 (l = 0, 1, · · · , N − 1) (91)

Because the action is invariant, all these possible values occur with equal probability. Such
expectation values minimize the action and the phase of the Polyakov loop clusters around
any of these values. The expectation value therefore serves as an order parameter for
distinguishing a confined from a deconfined phase. Numerical calculations show that there
are indeed two phases separated by a phase transition. The confining phase is realized at low
temperatures and the deconfining at high temperatures. The unbroken phase is disordered.
At the critical temperature the system starts to form domains corresponding to the distinct
values, the expectation value of the Polyakov loop can get. As the temperature is raised
further the domains grow. Applying a ”magnetic field” will flip the domains, resulting in
a non vanishing expectation value for the Polyakov loop. It remains in this deconfining
minimum after turning off the field again.

2.5 Physical meaning of the Polyakov loop

What is the physical meaning of the Polyakov loop? To answer this question we go back to
the continuum formulation and consider a system consisting of an infinitely heavy quark
coupled to a gauge potential with a Hamiltonian H. For simplicity we consider the U(1)
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gauge group. Let |s〉 denote the states containing the heavy quark, and |s′〉 the states
which do not. Then the partition function of the infinitely heavy quark in a heat bath of
gluons is given by:

Z =
∑
s

〈s|e−βH |s〉 (92)

We can now create the quark located at ~x and time x4 = 0 by applying creation operators
to the states |s′〉. The partition function now is8

Z = N
∑
s′

〈s′|Ψ(~x, 0)e−βHΨ†(~x, 0)|s′〉

= N
∑
s′

〈s′|e−βHΨ(~x, β)Ψ†(~x, 0)|s′〉 (93)

The factor N takes care of the normalization of the quark state. The time evolution of Ψ
is given by the Dirac equation. Since we are dealing with an infinitely heavy quark, the
spatial derivatives can be neglected9. The evolution therefore is given by (after multiplying
by γ4):

(∂τ − ieA4(~x, τ))Ψ(~x, τ) = 0 (94)

This equation has a formal solution

Ψ(~x, β) = eie
R β
0 dτA4(~x,τ)Ψ(~x, 0) = L(~x)Ψ(~x, 0) (95)

where L(~x) = eie
R β
0 dτA4(~x,τ) is the Polyakov loop for U(1)10. Inserting this into (93) yields

Z = N
∑
s′

〈s′|e−βHL(~x)Ψ(~x, 0)Ψ†(~x, 0)|s′〉 (96)

The operator Ψ(~x, 0)Ψ†(~x, 0) only gives rise to an (infinite) constant, which is cancelled by
the normalization factor. Intuitively, inserting L(~x) into the expression for the partition
function Tre−βH of the pure gauge theory, corresponds to including a single static quark.
A way to interpret the Polyakov loop is to relate it to the free energy of the system. For
that purpose, we go back to Eq. (96) and use the thermodynamic relation

Z = e−βF (97)

which gives
e−βFq = Tr[exp(−βH)L(~x)] (98)

8eβHΨ(~x, 0)e−βH = Ψ(~x, β)
9We dropped the mass term since it only gives rise to an extra phase which is cancelled.

10The SU(N) case follows by path ordering. L(~x) = Peie
R β
0 dτA4(~x,τ)
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This is the free energy of the entire system of gluons plus quark. To obtain the free energy
difference ∆Fq between the system with quark and without quark, we have to divide the
expression by the partition function of the pure gauge theory (this means with gluons only)

Z = Tre−βH (99)

and we get the expectation value of the Polyakov loop

e−β∆Fq = 〈L〉 (100)

We immediately see that if the expectation value of the Polyakov loop vanishes, the free
energy of the quark is infinite. If the quark is very heavy but finitely heavy the expectation
value is forced onto the real axis.
We can also consider creating a quark and an antiquark at some different spatial points ~x
and ~x′. The free energy of this system, obtained in a similar way, reads11

e−β∆Fqq̄ = 〈L(~x)L†(~x′)〉 (101)

One can show that
〈L(~x)L†(~x′)〉 → |〈L〉|2 (|~x− ~x′| → ∞) (102)

which also means that if L vanishes, we have an increasing free energy with increasing
separation of the quarks. This signals confinement.
On the other hand, if 〈L〉 6= 0, the free energy approaches a finite constant for large
separations. We interpret this as signaling deconfinement. But this is what we expect.
The coupling gets weaker and weaker as the temperature is raised (asymptotic freedom),
hence deconfinement is plausible at high temperatures.

Let us look at a system containing Nq quarks and Nq̄ antiquarks. Then the generaliza-
tion of (101) is

e−β∆FNqNq̄ = 〈L(~x1) · · ·L(~xNq)L
†(~x′1) · · ·L†(~x′Nq̄)〉 (103)

which transforms as follows under center transformations:

e−β∆FNqNq̄ → e−β∆FNqNq̄ e2πil(Nq−Nq̄)/N (104)

In the confined phase the center symmetry is not broken and the expression above should
not change, too. This means that, unless Nq−Nq̄ is a multiple integer of N , the free energy
of an assembly of quarks and antiquarks must be infinite. For SU(3) it is therefore only
possible to form assemblies if the number of quarks minus the number of antiquarks is an
integer multiple of 3.

11Because we consider an antiquark we have to consider a Polyakov loop oriented in the opposite direction,
traveling backwards in euclidean time. That is why we put a dagger.
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2.6 Some simulations

In order to do simulations on computers, one must choose appropriate temporal and spatial
extensions of the lattice. The simulation should be insensitive to the finite spatial extension
of the lattice. If we would choose a lattice which has the same number of lattice sites along
the temporal direction as along the spatial, physics would also be insensitive to periodic
boundary conditions (temperature). Therefore, the temporal extension must be much
smaller than the spatial. The temperature is given by

T =
1

Nτa
(105)

where a is the lattice spacing and Nτ is the number of lattice sites along the temporal di-
rection. It can be shown that the lattice spacing is related to the coupling β (which appears
in the lattice gauge action eqn. (86)). Hence, it is possible to vary the temperature, by
varying the coupling. The following simulations show evidence that SU(3) gauge theories
exhibit a phase transition. Fig. 3. shows the expectation value of the Polyakov loop as

Figure 3: Absolute value and susceptibility of the Polyakov loop as a function of the
coupling. This simulation has been performed on a 163 × 6 lattice. Figure taken from [3].

a function of the coupling β. This simulation has been performed on a 163 × 6 lattice.
It is clearly visible, that at low temperatures (which correspond to small couplings) the
Polyakov loop is almost zero signaling confinement. Above the critical coupling the order
parameter has increased to a finite value. The system is in the deconfined phase. The
inset shows the susceptibility of the Polyakov loop which is its variance. Fig. 5. shows the
distribution of real and imaginary parts of Polyakov loops for different couplings. In the
deconfined center symmetric phase, the points are distributed around the origin.
Near the critical coupling the distribution broadens. It does not cluster around a specific
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Figure 4: Absolute value and phase of the Polyakov loop as a function of simulation time
near the critical coupling. Horizontal lines show that the system is in the deconfined phase.
This simulation has been performed on a 163 × 6 lattice. Figure taken from [3].

value because the Polyakov loop tunnels from one value to another during the simulation,
showing coexistence of the two phases. This is shown in Fig. 4. It shows the phase and the
absolute value of the Polyakov loop as a function of time during the simulation performed
near the critical coupling. The horizontal lines show that the phase of the Polyakov loop
resides at one of the three values. Thus we are in the deconfined phase. There, the abso-
lute value does not vanish. In the remaining time intervals the system is in the unbroken
confined phase and the phase angle changes wildly.
At higher couplings, the Polyakov loop clusters around a non-vanishing value, which means
that the system is in the center symmetry broken deconfined phase.

Figure 5: Distribution of the real and imaginary part of the Polyakov loop. Top left
and right: confined phase at lower couplings. The data is distributed around the origin.
Bottom left: The distribution broadens near the critical coupling showing coexistence of
the phases. Bottom right: Above the critical coupling the Polyakov loop clusters around
one value of the center and is in the deconfined phase. Figure taken from [3].
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