Exercise 1. Canonical purifications

Given a state (density operator) ρ on \mathcal{H}_A , consider the state $|\psi\rangle_{AB}$ on $\mathcal{H}_A \otimes \mathcal{H}_B$, defined as

$$|\psi\rangle_{AB} = \left(\sqrt{\rho_A} \otimes V_{A' \to B}\right) |\Omega\rangle_{AA'}, \qquad |\Omega\rangle_{AA'} = \sum_k |k\rangle_A \otimes |k\rangle_{A'}, \tag{1}$$

where $\mathcal{H}_{A'} \simeq \mathcal{H}_A$, dim $(\mathcal{H}_B) \ge \dim(\mathcal{H}_A)$, and $V_{A' \to B}$ is an isometry from A' to B (i.e. $V^{\dagger}V = \mathbb{1}_{A'}$).

- (a) Show that $|\psi\rangle_{AB}$ is a purification of ρ_A .
- (b) Show that every purification of ρ can be written in this form for some $V_{A' \to B}$.

Exercise 2. Decompositions of density matrices

Consider a mixed state ρ with two different pure state decompositions

$$\rho = \sum_{k=1}^{d} \lambda_k |k\rangle \langle k| = \sum_{l=1}^{d} p_l |\phi_l\rangle \langle \phi_l|, \qquad (2)$$

the former being the eigendecomposition so that $\{|k\rangle\}$ is an orthonormal basis, and the latter involving arbitrary (normalized) states $|\phi_l\rangle$.

- (a) Show that the probability vector $\vec{\lambda}$ majorizes the probability vector \vec{p} , which means that there exists a doubly stochastic matrix T_{jk} such that $\vec{p} = T\vec{\lambda}$. The defining property of doubly stochastic, or bistochastic, matrices is that $\sum_k T_{jk} = \sum_j T_{jk} = 1$. Hint: Observe that for a unitary matrix U_{jk} , $T_{jk} = |U_{jk}|^2$ is doubly stochastic.
- (b) The uniform probability vector $\vec{u} = (\frac{1}{d}, \dots, \frac{1}{d})$ is invariant under the action of an $d \times d$ doubly stochastic matrix. Is there an ensemble decomposition of ρ such that $p_l = \frac{1}{d}$ for all l?

Hint: Try to show that \vec{u} is majorized by any other probability distribution.

Exercise 3. Generalized measurement by direct (tensor) product

Consider an apparatus whose purpose is to make an indirect measurement on a two-level system, A, by first coupling it to a three-level system, B, and then making a projective measurement on the latter. B is initially prepared in the state $|0\rangle_B$ and the two systems interact via the unitary U_{AB} as follows:

$$|0\rangle_A|0\rangle_B \to \frac{1}{\sqrt{2}} \left(|0\rangle_A|1\rangle_B + |0\rangle_A|2\rangle_B\right),\tag{3}$$

$$|1\rangle_A|0\rangle_B \to \frac{1}{\sqrt{6}} \left(2|1\rangle_A|0\rangle_B + |0\rangle_A|1\rangle_B - |0\rangle_A|2\rangle_B\right).$$
(4)

- (a) Calculate the measurement operators acting on A corresponding to a measurement on B in the canonical basis $\{|0\rangle_B, |1\rangle_B, |2\rangle_B\}$.
- (b) Calculate the corresponding POVM elements. What is their rank? Onto which states do they project?
- (c) Suppose A is in the state $|\psi\rangle_A = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)_A$. What is the state after a measurement, averaging over the measurement result?