
Quantum Information Theory
Solutions 3

HS 13
Dr. J.M Renes

Exercise 3.1 Smooth min-entropy in the i.i.d. limit

Let (Xi, Yi) be a sequence of n i.i.d pairs of random variables, meaning that PX1Y1...XnYn =

P×nXY . Also, let εn = σ2

nδ2
for some δ > 0, and σ2 be the variance of the conditional surprisal

h(X|Y ) = − log2 PX|Y . Use the weak law of large numbers to prove the asymptotic equipartition
lemma:

lim
n→∞

1

n
Hεn

min(X1...Xn|Y1...Yn)Pn = H(X|Y )PXY .

lim
n→∞

1

n
Hεn

max(X1...Xn|Y1...Yn)Pn = H(X|Y )PXY .

In exercise sheet 1 we have shown that Chebyshev’s inequality for i.i.d. variables given by

P

[(
1

n

∑
i

Si − µ
)2

> ν

]
≤ σ2

nν2

Setting Si = hP (xi|yi) = − logPX|Y (xi|yi) we get µ = H(X|Y ) and thus

P

[(
1

n

∑
i

hP (xi|yi)−H(X|Y )

)2

< ν

]
≥ 1− σ2

nν2

for any ν. This knowledge allows us to restrict the set of vector pairs (~x, ~y) to typical outcomes,
namely we introduce a subset Gν of X×n:

Gν =

{
(~x, ~y) ∈ X×n :

(
1

n

∑
i

hP (xi|yi)−H(X|Y )

)2

< ν

}
.

The Chebyshev’s inequality can now be restated simply as

P( ~X,~Y )[Gν ] = P( ~X,~Y )[(~x, ~y) ∈ Gν ] ≥ 1− σ2

nν2
.

Furthermore, let Gcν denote the complement of Gν in X×n. As a next step we choose

Q( ~X,~Y )[(~x, ~y)] =

{
P( ~X,~Y )[(~x, ~y)]/P( ~X,~Y )[Gν ] if (~x, ~y) ∈ Gν
0 if (~x, ~y) ∈ Gcν

.

The distribution Q ~X|~Y is very similar to P ~X|~Y , with exception that it assumes 0 probability for

all unlikely events (those in Gcν), and renormalizes all the others. We can show that the distance
between the two distributions is small, namely

δ(P( ~X,~Y ), Q( ~X,~Y )) =
1

2

∑
(~x,~y)

∣∣∣∣P( ~X,~Y )[(~x, ~y)]−Q( ~X,~Y )[(~x, ~y)]

∣∣∣∣
=

1

2

∑
(~x,~y)∈Gcν

P( ~X,~Y )[(~x, ~y)] +
1

2

∑
(~x,~y)∈Gν

P( ~X,~Y )[(~x, ~y)]

(
1

P( ~X,~Y )[Gν ]
− 1

)

=
1

2
(1− P( ~X,~Y )[Gν ]) + P( ~X,~Y )[Gν ]

(
1

P( ~X,~Y )[Gν ]
− 1

)
= 1− P( ~X,~Y )[Gν ] =

σ2

nν2

1



In particular, we can now evaluate the “smooth” min-entropy for any fixed ε > 0 and ν > 0:

1

n
Hεn

min( ~X|~Y ) ≥ 1

n
Hmin( ~X|~Y )Q (1)

= min
(~x,~y)∈X×n

1

n
hQ(~x|~y)

= − 1

n
log max

(~x,~y)∈X×n
Q ~X|~Y (~x|~y)

= − 1

n
log max

(~x,~y)∈Gν
Q ~X|~Y (~x|~y)

= − 1

n
log max

(~x,~y)∈Gν
P ~X|~Y (~x|~y)− 1

n
logP( ~X,~Y )[Gν ]

= min
(~x,~y)∈Gν

1

n

∑
i

hP (xi|yi)

≥ H(X|Y )−
√
ν

The first inequality is a consequence of the fact that our Q ~X|~Y is not necessarily optimal (as a

matter of fact, it could be shown that it actually is). We have ignored the term 1
n logP( ~X,~Y )[Gν ],

because it is very small, since P( ~X,~Y )[Gν ] ≈ 1 . Now, when we apply the n→∞ limit, we need

to choose ν wisely, so that both
√
ν → 0 and ε = σ2

nν2
→ 0. This can be achieved, for example,

by choosing nu = logn√
n

.

Now we will briefly outline how to calculate limn→∞
1
nH

ε
max( ~X|~Y )

Consider P( ~X,~Y )[Gν ] =
∑

(~x,~y)∈Gν P( ~X,~Y )[(~x, ~y)]. One can rearrange the definition of the typical
set to show that

PXi|Yi(xi|yi) ≥ 2−n[H(X|Y )+
√
ν],

Let us define a set Xy = { ~X : ( ~X, ~Y ) ∈ Gν}. Then

1 =
∑
~x

Q ~X|~Y (~x) ≥
∑
~x

P ~X|~Y (~x) ≥ |Xy|PXi|Yi(xi|yi)

Therefore, by solving the above inequality for |Xy| we find that

Hmax[ ~X|~Y ]Q = − log max
y
|Xy| ≤ n(H|Y +

√
ν))

Finally,
Hε

max[ ~X|~Y ]P ≤ Hmax(Xn)Q ≤ n(H(X|Y ) +
√
ν).

Taking the limits as with Hmin gives the desired result

Exercise 3.2 Data Processing Inequality

Random variables X, Y , Z form a Markov chain X → Y → Z if the conditional distribution
of Z depends only on Y : p(z|x, y) = p(z|y). The goal in this exercise is to prove the data
processing inequality, I(X : Y ) ≥ I(X : Z) for X → Y → Z.

1. First show the chain rule for mutual information: I(X : Y Z) = I(X : Z) + I(X : Y |Z),
which holds for arbitrary X,Y, Z. The conditional mutual information is defined as

I(X : Y |Z) =
∑
z

p(z)I(X : Y |Z = z) =
∑
z

p(z)
∑
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
.
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First observe that p(x,y|z)
p(y|z) = p(x,y,z)

p(y,z) = p(x|y, z), which means I(X:Y |Z) = H(X|Z) −
H(X|Y Z). Then

I(X:Y Z) = H(X)−H(X|Y Z) = H(X) + I(X:Y |Z)−H(X|Z) = I(X:Z) + I(X:Y |Z).

2. Next show that in a Markov chain X → Y → Z, X and Z are conditionally independent
given Y ; that is, p(x, z|y) = p(x|y)p(z|y).

p(x, z|y) =
p(x, y, z)

p(y)
=
p(x, y)p(z|x, y)

p(y)
=
p(x|y)p(y)p(z|y)

p(y)
= p(x|y)p(z|y).

3. By expanding the mutual information I(X : Y Z) in two different ways, prove the data
processing in equality.

There are only two ways to expand this expression:

I(X:Y Z) = I(X:Z) + I(X:Y |Z) = I(X:Y ) + I(X:Z|Y ).

Since X and Z are conditionally independent given Y , I(X:Z|Y ) = 0. Meanwhile,
I(X:Y |Z) ≥ 0, since it is a mixture (over Z) of positive quantities I(X:Y |Z = z). There-
fore I(X:Y ) ≥ I(X:Z).

Exercise 3.3 Fano’s Inequality

Given random variables X and Y , how well can we predict X given Y ? Fano’s inequality bounds
the probability of error in terms of the conditional entropy H(X|Y ). The goal of this exercise
is to prove the inequality

Perror ≥
H(X|Y )− 1

log |X|
.

1. Representing the guess of X by the random variable X̂, which is some function, possibly
random, of Y , show that H(X|X̂) ≥ H(X|Y ).

The random variables X, Y , and X̂ form a Markov chain, so we can use the data processing
inequality. It leads directly to H(X|X̂) ≥ H(X|Y ).

2. Consider the indicator random variable E which is 1 if X̂ 6= X and zero otherwise. Using
the chain rule we can express the conditional entropy H(E,X|X̂) in two ways:

H(E,X|X̂) = H(E|X, X̂) +H(X|X̂) = H(X|E, X̂) +H(E|X̂) (2)

Calculate each of these four expressions and complete the proof of the Fano inequality.
Hint: For H(E|X̂) use the fact that conditioning reduces entropy: H(E|X̂) ≤ H(E). For
H(X|E, X̂) consider the cases E = 0, 1 individually.

H(E|X, X̂) = 0 since E is determined from X and X̂. H(E|X̂) ≤ H(E) = h2(Perror)
since conditioning reduces entropy.

H(X|E, X̂) = H(X|E = 0, X̂)p(E = 0) +H(X|E = 1, X̂)p(E = 1)

= 0(1− Perror) +H(X|E = 1, X̂)Perror ≤ Perror log |X|
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Putting this together we have

H(X|Y ) ≤ H(X|X̂) ≤ h2(Perror) + Perror log |X| ≤ 1 + Perror log |X|,

where the last inequality follows since h2(x) ≤ 1. Rearranging terms gives the Fano
inequality.
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