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Exercise 3.1 Smooth min-entropy in the i.i.d. limit

Let (X;,Y;) be a sequence of n i.i.d pairs of random variables, meaning that Px,v,. x,y, =
Py Also, let e, = 5—522 for some & > 0, and o2 be the variance of the conditional surprisal
h(X|Y) = —log, Px|y. Use the weak law of large numbers to prove the asymptotic equipartition
lemma:
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In exercise sheet 1 we have shown that Chebyshev’s inequality for i.i.d. variables given by
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Setting S; = hp(wily:) = —log Px|y (wily:) we get u = H(X[Y') and thus
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for any v. This knowledge allows us to restrict the set of vector pairs (¥, %) to typical outcomes,
namely we introduce a subset G, of X'*™:

G, = {( e XX < th xlyi) — (X|Y)>2 < y}.

The Chebyshev’s inequality can now be restated simply as
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Furthermore, let GS denote the complement of G, in X*". As a next step we choose
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The distribution b % is very similar to P with exception that it assumes 0 probability for

X|Y>
all unlikely events (those in G¢), and renormalizes all the others. We can show that the distance
between the two distributions is small, namely
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In particular, we can now evaluate the “smooth” min-entropy for any fixed ¢ > 0 and v > 0:
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The first inequality is a consequence of the fact that our @ b 3% is not necessarily optimal (as a
matter of fact, it could be shown that it actually is). We have ignored the term % log P( V) Gu],
because it is very small, since P( .7 [Gv] = 1. Now, when we apply the n — oo limit, we need

to choose v wisely, so that both v/ — 0 and € = 1;'722 — 0. This can be achieved, for example,
logn
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by choosing nu =

Now we will briefly outline how to calculate lim,, Hﬁlax()_f Y)

Consider P, g 3 9] = Xz eq, P()?,?)[(f, )]. One can rearrange the definition of the typical
set to show that
PXi|Yi(xi’yi) > 2*”[H(X|Y)+\/ﬂ7

Let us define a set X, = {X : (X,Y) € G,}. Then
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Therefore, by solving the above inequality for |, | we find that
Hinax| X|Y]g = —log max || < n(H[Y +v/v))

Finally,
Hf [X]Y]p < Hiax(X™)g < n(H(X|Y) + Vv).
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Taking the limits as with Hpi, gives the desired result

Exercise 3.2 Data Processing Inequality

Random wvariables X, Y, Z form a Markov chain X — Y — Z if the conditional distribution
of Z depends only on Y: p(z|z,y) = p(z|y). The goal in this exercise is to prove the data
processing inequality, (X :Y) > I(X : Z) for X -Y — Z.

1. First show the chain rule for mutual information: I(X :YZ)=1(X : Z)+ I(X : Y|Z),
which holds for arbitrary X,Y, Z. The conditional mutual information is defined as

(X :Y|Z) = Zp I(X:Y|Z=2z)= Zp pry!)logm



First observe that pz(f(cl’;‘/z‘f) = pé?;fj) = p(z|y, 2), which means I(X:Y|Z) = H(X|Z) —
H(X|YZ). Then

I(X:YZ)=H(X)-H(X|YZ)=H(X)+ I(X:Y|Z) - H(X|Z) = I(X:2) + I(X:Y|Z).

2. Next show that in a Markov chain X — Y — Z, X and Z are conditionally independent
given Y ; that is, p(z, z|y) = p(z|y)p(z|y).
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3. By expanding the mutual information I1(X : YZ) in two different ways, prove the data
processing in equality.

There are only two ways to expand this expression:
I(X:YZ)=1(X:2)+ [(X:Y|Z)=1(X:Y)+ I(X:Z]Y).

Since X and Z are conditionally independent given Y, I(X:Z|Y) = 0. Meanwhile,
I(X:Y|Z) > 0, since it is a mixture (over Z) of positive quantities I(X:Y|Z = z). There-
fore I(X:Y) > I(X:2).

Exercise 3.3 Fano’s Inequality

Given random variables X and Y, how well can we predict X given Y ? Fano’s inequality bounds
the probability of error in terms of the conditional entropy H(X|Y). The goal of this exercise

1s to prove the inequality
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1. Representing the guess of X by the random variable X’, which is some function, possibly
random, of Y, show that H(X|X) > H(X|Y).

The random variables X, Y, and X form a Markov chain, so we can use the data processing
inequality. It leads directly to H(X|X) > H(X|Y).

2. Consider the indicator random variable E which is 1 if)? # X and zero otherwise. Using
the chain rule we can express the conditional entropy H(E, X|X) in two ways:

H(E,X|X)=H(E|X,X)+ H(X|X) = HX|E,X) + H(E|X) (2)

Calculate each of these four expressions and complete the proof of the Fano inequality.
Hint: For H(E|X) use the fact that conditioning reduces entropy: H(E|X) < H(E). For
H(X|E, X) consider the cases E = 0,1 individually.

H(E\X,X') = 0 since E is determined from X and X. H(E])?) < H(E) = ha(Perror)
since conditioning reduces entropy.

H(X|E,X)=H(X|E=0,X)p(E=0)+H(X|E=1,X)p(E=1)
— 0(1 - Perror) + H(X|E = ]-a)?)Perror S Perror 10g |X|



Putting this together we have
H(X|Y) S H(Xp?) S hQ(Perror) + Perror log ’X‘ S 1+ Perror 10g ’X‘v

where the last inequality follows since ho(x) < 1. Rearranging terms gives the Fano
inequality.



