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Last week we showed that any single-qubit unitary can be implemented using three rotations
around two axes. We used

U = eiα Rz(β) Ry(γ) Rz(δ), (1)

but the same is true with any other two orthogonal axes.

This week we will show how to implement an arbritary unitary operator, acting on many qubits,
using a quantum circuit composed only of CNOT gates and elementary single-qubit gates,
namely (again) rotations around the three axes,

Rz(θ) =

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
, Ry(θ) =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
, Rz(θ) =

[
e−i

θ
2 0

0 ei
θ
2

]
,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
First we will show a concrete construction that achieves universality, and then we will examine
the size of the circuit and compare it with theoretical lower bounds.

We will use two types of controlled gates. Controlled gates (left) mean apply U if the control
qubit is |1〉, otherwise apply the identity. Multiplexed gates (center and right) mean apply Ui if
the state of the control qubit(s) is |i〉.

For instance, controlled gates with one control qubit have the matrix form

[
1 0
0 U

]
, and multi-

plexed gates with one control qubit correspond to the matrix

[
U0 0
0 U1

]
.

Exercise 1. Universal construction

This is an elegant recursive construction. We will start with an arbitrary unitary U acting on n
qubits, and will successively break it down into gates that act on fewer and fewer qubits, until
we are left with elementary rotations and CNOTs.

(a) The cosine-sine decomposition of 2`× 2` unitary matrices gives us the relation

U =

[
A0 0
0 A1

] [
C −S
S C

] [
B0 0
0 B1

]
, (2)

where A0, A1, B0, B1 are unitary ` × ` matrices, and C and S are real diagonal matrices
such that C2 + S2 = 1.
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Show that we can write

C =


cos θ0

cos θ1
. . .

cos θ`

 , S =


sin θ0

sin θ1
. . .

sin θ`

 , (3)

for some angles θ0, . . . , θ`.

Solution. If C and S are diagonal matrices,

C =


c0

c1
. . .

c`

 , S =


s0

s1
. . .

s`

 ,
then the condition C2 + S2 = 1 becomes

c20 + s20
c21 + s21

. . .

c2` + s2`

 =


1

1

. . .

1

 .
But any two real numbers c and s such that c2 + s2 = 1 can be expressed as the cosine and the sine of an
angle θ.

Show that the cosine-sine decomposition corresponds to the following circuit identity:

Solution. The two matrices

A =

[
A0 0
0 A1

]
, B =

[
B0 0
0 B1

]
correspond to multiplexed gates. For instance, A acts as

A (|0〉 ⊗ |x〉) = |0〉 ⊗A0|x〉
A (|1〉 ⊗ |x〉) = |1〉 ⊗A1|x〉.

To see this, note that

|0〉1 ⊗ |x〉(n−1) = |x〉n =



00

...
1x
...
...
...
...

02n−1



, |1〉1 ⊗ |x〉(n−1) = |2n−1 + x〉n =



00

...

...

...

...
12n−1+x

...
02n−1



,
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where the green subscript indicates the position of the 0 or 1. Also, A can be written as

A =

2n−1−1∑
x,y=0

ax,y0 |x〉〈y|n︸ ︷︷ ︸
A0

+

2n−1−1∑
x,y=0

ax,y1 |2n−1 + x〉〈2n−1
n + y|︸ ︷︷ ︸

A1

=

2n−1−1∑
x,y=0

ax,y0 |0〉〈0|1 ⊗ |x〉〈y|(n−1) +

2n−1−1∑
x,y=0

ax,y1 |1〉〈1|1 ⊗ |x〉〈y|(n−1),

and therefore their product comes

A (|0〉 ⊗ |x′〉) =

2n−1−1∑
x,y=0

ax,y0 |0〉 〈0 |0〉︸ ︷︷ ︸
=1

⊗|x〉〈y |x′〉+

2n−1−1∑
x,y=0

ax,y1 |1〉 〈1 |0〉︸ ︷︷ ︸
=0

⊗|x〉〈y |x′〉

= |0〉 ⊗
2n−1−1∑
x,y=0

ax,y0 |x〉〈y |x
′〉

= |0〉 ⊗A0|x′〉,

A (|1〉 ⊗ |x′〉) =

2n−1−1∑
x,y=0

ax,y0 |0〉 〈0 |1〉︸ ︷︷ ︸
=0

⊗|x〉〈y |x′〉+

2n−1−1∑
x,y=0

ax,y1 |1〉 〈1 |1〉︸ ︷︷ ︸
=1

⊗|x〉〈y |x′〉

= |1〉 ⊗
2n−1−1∑
x,y=0

ax,y0 |x〉〈y |x
′〉

= |1〉 ⊗A0|x′〉.

The middle matrix is a multiplexed rotation of a single qubit, conditioned on the state of the remaining
n− 1 qubits,

R =



cos θ0 − sin θ0
cos θ1 − sin θ1

. . .
. . .

cos θ` − sin θ`
sin θ0 cos θ0

sin θ1 cos θ1
. . .

. . .

sin θ` cos θ`.


This matrix acts as

R (|k〉1 ⊗ |x〉(n−1)) = Rk|k〉1 ⊗ |x〉(n−1), Rx =

[
cos θx − sin θx
sin θx cos θx

]
.

To see this, note that we can write R as

R =

2n−1−1∑
y=0

(cos θy|0〉〈0| ⊗ |y〉〈y| − sin θy|0〉〈1| ⊗ |y〉〈y|+ sin θy|1〉〈0| ⊗ |y〉〈y|+ cos θy|1〉〈1| ⊗ |y〉〈y|)

=

2n−1−1∑
y=0

(cos θy|0〉〈0| − sin θy|0〉〈1|+ sin θy|1〉〈0|+ cos θy|1〉〈1|)⊗ |y〉〈y|

=

2n−1−1∑
y=0

Ry ⊗ |y〉〈y|.

Applying R on a state |k〉 ⊗ |x〉 results in

R(|k〉1 ⊗ |x〉(n−1)) =

2n−1−1∑
y=0

Ry|k〉 ⊗ |y〉 〈y |x〉︸ ︷︷ ︸
=δxy

= Rx|k〉 ⊗ |x〉.

3



We can see that R is a multiplexed rotation: it applies a rotation around the y-axis by an angle θx on the
first qubit if the other n− 1 qubits are in state |x〉.
Note: What about input states that are not diagonal in the computational basis? We can simply expand
them in this basis, and apply the operators linearly.

(b) We will now break down the multiplexed unitary gate using the relation[
U0 0
0 U1

]
=

[
V 0
0 V

] [
D 0
0 D†

] [
W 0
0 W

]
, (4)

where V,D,W are unitary matrices, and D is diagonal. Show that we can write

[
D 0
0 D†

]
=

[
D′ 0
0 D′

]
C-Rz, C-Rz =



eiφ0

. . .

eiφ`

e−iφ0

. . .

e−iφ`


, (5)

where D′ is also unitary and diagonal. This gives us the following circuit identity:

Solution. Notation:

[
A 0
0 B

]
= |0〉〈0| ⊗A+ |1〉〈1| ⊗B is the direct sum of operators A and B, denoted

by A⊕B. You can check that (A⊕B)(Ã⊕ B̃) = (AÃ)⊕ (BB̃), if the matrices have the same size.

If U0 and U1 are unitary matrices, then U1 ⊕ U2 is unitary. Since V ⊕ V and W ⊕W are also unitary, it
follows from Eq. 4 that D ⊕D† must be unitary. This means that D ⊕D† is already of the form C−Rz,
and D′ = 1.

[The following was not asked in the exercise.] Here is how to derive the matrices V , D and W . U1U
†
2 is a

unitary matrix, and therefore has a spectral decomposition

U1U
†
2 = V D̃V †,

where D̃ is the diagonal matrix whose entries are the eigenvalues of U1U
†
2 , and the columns of V are the

corresponding eigenvectors. Now take D :=
√
D̃, and W := DV †U2. We can check that this choice of

matrices works,

(V ⊕ V )(D ⊕D†)(W ⊕W ) = (V DW )⊕ (V D†W )

= (V DDV †U2)⊕ (V DD†V †U2)

= (U1U
†
2U2)⊕ (V V †U2)

= U1 ⊕ U2.

(c) Now we only have to deal with multiplexed rotations Ry and Rz. Show that, for a single
control qubit,

,
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with k = y, z. These identities can be generalized to

Solution. Note: remember that circuits read from left to right and matrix multiplication is the other
way around. The factor of 2 for instance in Rz(2α) is there so the rotation matrices don’t have factors of
1/2 floating around.

We start with Rz. We want to find the rotation angles α and β such that

Rz(2φ0)⊕Rz(2φ1) = cnot (1⊗Rz(2α)) cnot (1⊗Rz(2β)).

On the left-hand side we have

Rz(2φ0)⊕Rz(2φ1) =


e−iφ0

eiφ0

e−iφ1

eiφ1

 ,
and, on the right-hand side,

cnot (1⊗Rz(2α)) cnot (1⊗Rz(2β)) =

=


1 0
0 1

0 1
1 0



e−iα

eiα

e−iα

eiα




1 0
0 1

0 1
1 0



e−iβ

eiβ

e−iβ

eiβ



=


e−i(α+β)

ei(α+β)

ei(α−β)

e−i(α−β)

 .
This means we have to pick α, β such that α+ β = φ0 and −α+ β = φ1; in other words,

α =
φ0 − φ1

2
, β =

φ0 + φ1

2
.

For Ry we need to satisfy

Ry(2φ0)⊕Ry(2φ1) = cnot (1⊗Ry(2α)) cnot (1⊗Ry(2β))

On the left-hand side, we have

Ry(2φ0)⊕Ry(2φ1) =


cosφ0 − sinφ0

sinφ0 cosφ0

cosφ1 − sinφ1

sinφ1 cosφ1

 ,
and, on the right-hand side,

cnot (1⊗Ry(2α)) cnot (1⊗Ry(2β)) =

=


1 0
0 1

0 1
1 0




cosα − sinα
sinα cosα

cosα − sinα
sinα cosα




1 0
0 1

0 1
1 0




cosβ − sinβ
sinβ cosβ

cosβ − sinβ
sinβ cosβ



=


cosα cosβ − sinα sinβ − sinα cosβ − cosα sinβ
sinα cosβ + cosα sinβ cosα cosβ − sinα sinβ

cosα cosβ + sinα sinβ sinα cosβ − cosα sinβ
− sinα cosβ + cosα sinβ cosα cosβ + sinα sinβ



=


cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

cos(−α+ β) − sin(−α+ β)
sin(−α+ β) cos(−α+ β)

 .
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Again, we have to choose α, β such that α+β = φ0,−α+β = φ1. To summarize, we obtained the identities

Rz(2φ0)⊕Rz(2φ1) = cnot (1⊗Rz(φ0 − φ1)) cnot (1⊗Rz(φ0 + φ1)),

Ry(2φ0)⊕Ry(2φ1) = cnot (1⊗Ry(φ0 − ψ1)) cnot (1⊗Ry(φ0 + φ1)).

Exercise 2. Circuit size

Now we will see how large a circuit we need to implement an arbritary unitary operation. In
particular, we will look at the number of CNOT gates necessary. We start with the theoretical
lower bound on the number of gates, and then we see if the construction from Exercise 1 performs,
compared to that bound.

(a) Show that the dimension of the space of unitary matrices acting on n qubits (such that
the global phase is irrelevant), SU(2n), is 4n − 1. This tells us that, in order to achieve
universality, a quantum circuit of n qubits must take 4n − 1 parameters.

Solution. A unitary acting on n qubits corresponds to a matrix of 2n×2n complex entries. That accounts

for 2×4n real parameters. However, the unitarity condition, UU† = U† = 1, imposes a system of 4n linear

equations on the matrix entries. This leaves room for 2 × 4n − 4n = 4n free parameters. If we want to

implement any unitary up to the global phase (one real parameter less), we need to a circuit with 4n − 1

free parameters.

(b) Prove the following circuit identities:
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Solution. For the top identity, we have

cnot (1⊗Rx(2α)) =


1 0
0 1

0 1
1 0




cosα −i sinα
−i sinα cosα

cosα −i sinα
−i sinα cosα



=


cosα −i sinα
−i sinα cosα

−i sinα cosα
cosα −i sinα

 ,

(1⊗Rx(2α)) cnot =


cosα −i sinα
−i sinα cosα

cosα −i sinα
−i sinα cosα




1 0
0 1

0 1
1 0



=


cosα −i sinα
−i sinα cosα

−i sinα cosα
cosα −i sinα

 = cnot (1⊗Rx(2α)). X

For the middle identity,

cnot (Rz(2α)⊗ 1) =


1 0
0 1

0 1
1 0



e−iα

e−iα

eiα

eiα



=


e−iα

e−iα

0 eiα

eiα 0



(Rz(2α)⊗ 1) cnot =


e−iα

e−iα

eiα

eiα




1 0
0 1

0 1
1 0



=


e−iα

e−iα

0 eiα

eiα 0

 = cnot (1⊗Rx(2α)). X

Finally, the bottom identity is trivial, (U2)(U1) = (U2U1). Indeed, it only tells us how to read circuits and

write them as multiplication of matrices, from right to left.

(c) Those identities allow us to compress the unitary gates that are applied after a CNOT.
For instance,

Each CNOT only brings at most 4 new parameters. Show that the number of independent
parameters implemented in an n-qubit circuit with cn CNOTs is at most 3n+ 4cn.

Prove that the minimum number of CNOT gates necessary to implement an arbritary
n-qubit unitary operation is given by

cn ≥
1

4
(4n − 3n− 1).
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Solution. Let’s show (with pictures!) how each CNOT only allows for 4 new free parameters.

So, we implement at most 3 elementary rotations per qubit in the beginning of the computation (to initialize
each qubit), and then 4 new elementary rotations per cnot gate used. The minimum number of elementary
rotations in a circuit with n qubits and cn cnot gates is 3n + 4cn. This corresponds to the number of
free parameters in the circuit. In order to implement a unitary that acts on n qubits, we need 4n − 1 free
parameters, so the total number of cnots is

4n − 1 = p ≤ 3n+ 4cn ⇒ cn ≥
1

4
(4n − 3n− 1).

(d) Show that the number of CNOT gates used in the decomposition of Exercise 1 also scales
as 4n.

Solution. The generalization of exercise 1 c) tells us that a multiplexed rotation Ry or Rz with k control
qubits (k-multiplexed) can be decomposed into 2 cnots and 2 (k − 1)-multiplexed rotations. Applying
this decomposition recursively gives us the total number of gates necessary to implement the multiplexed
rotation using only cnots and non-multiplexed rotations.

Let c be the number of cnots and rk the number of k-multiplexed rotations with k. We have

level #gates
k rk

k − 1 2c+ 2rk−1

k − 2 2c+ 2(2c+ 2rk−1)
k − 3 2c+ 2(2c+ 2(2c+ rk−2))

...

0

(
k∑
j=1

2j
)

︸ ︷︷ ︸
2k+1−2

c+ 2kr0.


The number of cnots necessary per k-multiplexed rotation would be 2k+1 − 2. Not let’s see how many
of these rotations we need per unitary. Combining parts a) and b) of exercise 1, we can see that we can
decompose a unitary that acts on k qubits into 4 unitaries acting on k−1 qubits and 3 (k−1)-multiplexed
rotations,
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Applying this decomposition recursively gives us

level #gates
k uk

k − 1 3rk−1 + 4uk−1

k − 2 3rk−1 + 4(3rk−2 + 4uk−2)
k − 3 3rk−1 + 4(3rk−2 + 4(3rk−3 + 4uk−3))

...

1
(∑k−1

j=1 4k−j−1 3rj
)

+ 4ku1.


The total number of cnots necessary to implement a unitary acting on n qubits in this way is

cn =

n−1∑
j=1

4n−j−1 3(2k+1 − 2)

= 4n − 3(2n) + 2,

which grows with 4n.

This decomposition can be optimized. For instance, using the identities

cnot (1⊗Ry(2α)) cnot (1⊗Ry(2β)) = (1⊗Ry(2β)) cnot (1⊗Ry(2α)) cnot

cnot (1⊗Rz(2α)) cnot (1⊗Rz(2β)) = (1⊗Rz(2β)) cnot (1⊗Rz(2α)) cnot,

we can find a decomposition of multiplexed rotations such that some cnots cancel out:

.

This way we only need 2k cnots to implement a k-multiplexed rotation. That brings us to a total
of
∑n−1
j=1 4n−j−1 3 (2j) = 3

4
4n − 3

2
2n cnot gates to implement a unitary acting on n qubits. Further

optimizations can be found in http://arxiv.org/abs/quant-ph/0406176.
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