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1 Introduction

The very process of doing physics is to acquire information about the world around us.
At the same time, the storage and processing of information is necessarily a physical
process. It is thus not surprising that physics and the theory of information are inherently
connected.1 Quantum information theory is an interdisciplinary research area whose goal
is to explore this connection.

As the name indicates, the information carriers in quantum information theory are
quantum-mechanical systems (e.g., the spin of a single electron). This is in contrast to
classical information theory where information is assumed to be represented by systems
that are accurately characterized by the laws of classical mechanics and electrodynamics
(e.g., a classical computer, or simply a piece of paper). Because any such classical system
can in principle be described in the language of quantum mechanics, classical information
theory is a (practically significant) special case of quantum information theory.

The course starts with a quick introduction to classical probability and information the-
ory. Many of the relevant concepts, e.g., the notion of entropy as a measure of uncertainty,
can already be defined in the purely classical case. I thus consider this classical part as a
good preparation as well as a source of intuition for the more general quantum-mechanical
treatment.

We will then move on to the quantum setting, where we will spend a considerable
amount of time to introduce a convenient framework for representing and manipulating
quantum states and quantum operations. This framework will be the prerequisite for
formulating and studying typical information-theoretic problems such as information stor-
age and transmission (with possibly noisy devices). Furthermore, we will learn in what
sense information represented by quantum systems is different from information that is
represented classically. Finally, we will have a look at applications such as quantum key
distribution.

I would like to emphasize that it is not an intention of this course to give a complete
treatment of quantum information theory. Instead, the goal is to focus on certain key
concepts and to study them in more detail. For further reading, I recommend the stan-
dard textbook by Nielsen and Chuang [10]. Also, I would like to mention the course on
quantum computation [16] by Stefan Wolf (Computer Science Department). Wolf’s course
is somewhat complementary in the sense that it focuses on quantum computation, while
this course is on quantum information.

1This connection has been noticed by numerous famous scientists over the past fifty years, among them
Rolf Landauer with his claim “information is physical.”
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2 Probability Theory

Information theory is largely based on probability theory. Therefore, before introducing
information-theoretic concepts, we need to recall some key notions of probability theory.
The following section is, however, not thought as an introduction to probability theory.
Rather, its main purpose is to summarize some basic facts as well as the notation we are
going to use in this course.

2.1 What is probability?

This is actually a rather philosophical question and it is not the topic of this course to an-
swer it.1 Nevertheless, it might be useful to spend some thoughts about how probabilities
are related to actual physical quantities.

For the purpose of this course, it might make sense to take a Bayesian point of view,
meaning that probability distributions are generally interpreted as a state of knowledge.
To illustrate the Bayesian approach, consider a game where a quizmaster hides a prize
behind one of three doors, and where the task of a candidate is to find the prize. Let X
be the number of the door (1, 2, or 3) which hides the prize. Obviously, as long as the
candidate does not get any additional information, each of the doors is equally likely to
hide the prize. Hence, the probability distribution P cand

X that the candidate would assign
to X is uniform,

P cand
X (1) = P cand

X (2) = P cand
X (3) = 1/3 .

On the other hand, the quizmaster knows where he has hidden the prize, so he would assign
a deterministic value to X. For example, if the prize is behind door 1, the probability
distribution Pmast the quizmaster would assign to X has the form

Pmast
X (1) = 1 and Pmast

X (2) = Pmast
X (3) = 0 .

The crucial thing to note here is that, although the distributions P cand
X and Pmast

X are
referring to the same physical value X, they are different because they correspond to
different states of knowledge.

We could extend this example arbitrarily. For instance, the quizmaster could open one
of the doors, say 3, to reveal that the prize is not behind it. This additional information, of
course, changes the state of knowledge of the candidate, resulting in yet another probability
distribution P cand′

X associated with X,2

1For a nice introduction to the philosophy of probability theory, I recommend the book [9].
2The situation becomes more intriguing if the quizmaster opens a door after the candidate has already

made a guess. The problem of determining the probability distribution that the candidate assigns to
X in this case is known as the Monty Hall problem. For further reading, I refer to [15].
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P cand′

X (1) = P cand′

X (2) = 1/2 and P cand′

X (3) = 0 .

When interpreting a probability distribution as a state of knowledge and, hence, as
subjective quantity, we need to carefully specify whose state of knowledge we are referring
to. This is particularly relevant for the analysis of information-theoretic settings, which
usually involve more than one party. For example, in a communication scenario, we might
have a sender who intends to transmit a message M to a receiver. Clearly, before M is
sent, the sender and the receiver have different knowledge about M and, consequently,
would assign different probability distributions to M . In the following, when describing
such settings, we will typically understand all distributions as states of knowledge of an
outside observer.

2.2 Definition of probability spaces and random variables

The concept of random variables is important in both physics and information theory.
Roughly speaking, one can think of a random variable as the state of a classical proba-
bilistic system. Hence, in classical information theory, it is natural to think of data as
being represented by random variables.

In this section, we define random variables and explain a few related concepts. For
completeness, we first give the general mathematical definition based on probability spaces.
Later, we will restrict to discrete random variables (i.e., random variables that only take
countably many values). These are easier to handle than general random variables but
still sufficient for our information-theoretic considerations.

2.2.1 Probability space

A probability space is a triple (Ω, E , P ), where (Ω, E) is a measurable space, called sample
space, and P is a probability measure. The measurable space consists of a set Ω and a
σ-algebra E of subsets of Ω, called events.

By definition, the σ-algebra E must contain at least one event, and be closed under
complements and countable unions. That is, (i) E 6= ∅, (ii) if E is an event then so is its
complement Ec := Ω\E, and (iii) if (Ei)i∈N is a family of events then

⋃
i∈NEi is an event.

In particular, Ω and ∅ are events, called the certain event and the impossible event.
The probability measure P on (Ω, E) is a function

P : E → R+

that assigns to each event E ∈ E a nonnegative real number P [E], called the probability
of E. It must satisfy the probability axioms P [Ω] = 1 and P [

⋃
i∈NEi] =

∑
i∈N P [Ei] for

any family (Ei)in∈N of pairwise disjoint events.

2.2.2 Random variables

Let (Ω, E , P ) be a probability space and let (X ,F) be a measurable space. A random
variable X is a function from Ω to X which is measurable with respect to the σ-algebras

4



E and F . This means that the preimage of any F ∈ F is an event, i.e., X−1(F ) ∈ E .
The probability measure P on (Ω, E) induces a probability measure PX on the measurable
space (X ,F), which is also called range of X,

PX [F ] := P [X−1(F )] ∀F ∈ F . (2.1)

A pair (X,Y ) of random variables can obviously be seen as a new random variable. More
precisely, if X and Y are random variables with range (X ,F) and (Y,G), respectively, then
(X,Y ) is the random variable with range (X × Y,F × G) defined by3

(X,Y ) : ω 7→ X(ω)× Y (ω) .

We will typically write PXY to denote the joint probability measure P(X,Y ) on (X × Y,F × G)
induced by (X,Y ). This convention can, of course, be extended to more than two random
variables in a straightforward way. For example, we will write PX1···Xn

for the probability
measure induced by an n-tuple of random variables (X1, . . . , Xn).

In a context involving only finitely many random variables X1, . . . , Xn, it is usually
sufficient to specify the joint probability measure PX1···Xn

, while the underlying probability
space (Ω, E , P ) is irrelevant. In fact, as long as we are only interested in events defined in
terms of the random variables X1, . . . , Xn (see Section 2.2.3 below), we can without loss
of generality identify the sample space (Ω, E) with the range of the tuple (X1, . . . , Xn) and
define the probability measure P to be equal to PX1···Xn .

2.2.3 Notation for events

Events are often defined in terms of random variables. For example, if the range of X
is (a subset of) the set of real numbers R then E := {ω ∈ Ω : X(ω) > x0} is the event
that X takes a value larger than x0. To denote such events, we will usually drop ω, i.e.,
we simply write E = {X > x0}. If the event is given as an argument to a function, we
also omit the curly brackets. For instance, we write P [X > x0] instead of P [{X > x0}] to
denote the probability of the event {X > x0}.

2.2.4 Conditioning on events

Let (Ω, E , P ) be a probability space. Any event E′ ∈ E such that P (E′) > 0 gives rise to
a new probability measure P [·|E′] on (Ω, E) defined by

P [E|E′] :=
P [E ∩ E′]
P [E′]

∀E ∈ E .

P [E|E′] is called the probability of E conditioned on E′ and can be interpreted as the
probability that the event E occurs if we already know that the event E′ has occurred.
In particular, if E and E′ are mutually independent, i.e., P [E ∩ E′] = P [E]P [E′], then
P [E|E′] = P [E].

3F ×G denotes the set {F ×G : F ∈ F , G ∈ G}. It is easy to see that F ×G is a σ-algebra over X ×Y.
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Similarly, we can define PX|E′ as the probability measure of a random variable X con-
ditioned on E′. Analogously to (2.1), it is the probability measure induced by P [·|E′],
i.e.,

PX|E′ [F ] := P [X−1(F )|E′] ∀F ∈ F .

2.3 Probability theory with discrete random variables

2.3.1 Discrete random variables

In the remainder of this script, if not stated otherwise, all random variables are assumed
to be discrete. This means that their range (X ,F) consists of a countably infinite or even
finite set X . In addition, we will assume that the σ-algebra F is the power set of X , i.e.,
F := {F ⊆ X}.4 Furthermore, we call X the alphabet of X. The probability measure PX
is then defined for any singleton set {x}. Setting PX(x) := PX [{x}], we can interpret PX
as a probability mass function, i.e., a positive function

PX : X → R+

that satisfies the normalization condition∑
x∈X

PX(x) = 1 . (2.2)

More generally, for an event E′ with P [E′] > 0, the probability mass function of X con-
ditioned on E′ is given by PX|E′(x) := PX|E′ [{x}], and also satisfies the normalization
condition (2.2).

2.3.2 Marginals and conditional distributions

Although the following definitions and statements apply to arbitrary n-tuples of random
variables, we will formulate them only for pairs (X,Y ) in order to keep the notation
simple. In particular, it suffices to specify a bipartite probability distribution PXY , i.e.,
a positive function on X × Y satisfying the normalization condition (2.2), where X and
Y are the alphabets of X and Y , respectively. The extension to arbitrary n-tuples is
straightforward.5

Given PXY , we call PX and PY the marginal distributions. It is easy to verify that

PX(x) =
∑
y∈Y

PXY (x, y) ∀x ∈ X , (2.3)

and likewise for PY . Furthermore, for any y ∈ Y with PY (y) > 0, the distribution PX|Y=y

of X conditioned on the event Y = y obeys

PX|Y=y(x) =
PXY (x, y)

PY (y)
∀x ∈ X . (2.4)

4It is easy to see that the power set of X is indeed a σ-algebra over X .
5Note that X and Y can themselves be tuples of random variables.
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2.3.3 Special distributions

Certain distributions are important enough to be given a name. We call PX flat if all
non-zero probabilities are equal, i.e.,

PX(x) ∈ {0, q} ∀x ∈ X

for some q ∈ [0, 1]. Because of the normalization condition (2.2), we have q = 1
|suppPX | ,

where suppPX := {x ∈ X : PX(x) > 0} is the support of the function PX . Furthermore,
if PX is flat and has no zero probabilities, i.e.,

PX(x) =
1

|X |
∀x ∈ X ,

we call it uniform.

2.3.4 Independence and Markov chains

Two discrete random variables X and Y are said to be mutually independent if the events
{X = x} and {Y = y} are mutually independent for any (x, y) ∈ X × Y. Their joint
probability mass function then satisfies PXY = PX × PY .6

Related to this is the notion of Markov chains. A sequence of random variablesX1, X2, . . .
is said to have the Markov property, denoted X1 ↔ X2 ↔ · · · ↔ Xn, if for all i ∈
{1, . . . , n− 1}

PXi+1|X1=x1,...,Xi=xi
= PXi+1|Xi=xi

∀x1, . . . , xi .

This expresses the fact that, given any fixed value of Xi, the random variable Xi+1 is
completely independent of all previous random variables X1, . . . , Xi−1. In particular,
Xi+1 can be computed given only Xi.

2.3.5 Functions of random variables, expectation values, and Jensen’s
inequality

Let X be a random variable with alphabet X and let f be a function from X to Y. We
denote by f(X) the random variable defined by the concatenation f ◦X. Obviously, f(X)
has alphabet Y and, in the discrete case we consider here, the corresponding probability
mass function Pf(X) is given by

Pf(X)(y) =
∑

x∈f−1({y})

PX(x) .

For a random variable X whose alphabet X is a module over the reals R (i.e., there is a
notion of addition and multiplication with reals), we define the expectation value of X by

〈X〉PX
:=
∑
x∈X

PX(x)x .

6PX × PY denotes the function (x, y) 7→ PX(x)PY (y).
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If the distribution PX is clear from the context, we sometimes omit the subscript.
For a convex real function f on a convex set X , the expectation values of X and f(X)

are related by Jensen’s inequality

〈f(X)〉 ≥ f(〈X〉) .

The inequality is essentially a direct consequence of the definition of convexity (see Fig. 2.1).

Figure 2.1: Jensen’s inequality for a convex function

2.3.6 Trace distance

Let P and Q be two probability mass functions7 on an alphabet X . The trace distance δ
between P and Q is defined by

δ(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|

In the literature, the trace distance is also called statistical distance, variational distance,
or Kolmogorov distance.8 It is easy to verify that δ is indeed a metric, that is, it is
symmetric, nonnegative, zero if and only if P = Q, and it satisfies the triangle inequality.
Furthermore, δ(P,Q) ≤ 1 with equality if and only if P and Q have distinct support.

Because P and Q satisfy the normalization condition (2.2), the trace distance can equiv-
alently be written as

δ(P,Q) = 1−
∑
x∈X

min[P (x), Q(x)] . (2.5)

The trace distance between the probability mass functions QX and QX′ of two random
variables X and X ′ has a simple interpretation. It can be seen as the minimum probability
that X and X ′ take different values.
7The definition can easily be generalized to probability measures.
8We use the term trace distance because, as we shall see, it is a special case of the trace distance for

density operators.
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Lemma 2.3.1. Let QX and QX′ be probability mass functions on X . Then

δ(QX , QX′) = min
PXX′

PXX′ [X 6= X ′]

where the minimum ranges over all joint probability mass functions PXX′ with marginals
PX = QX and PX′ = QX′ .

Proof. To prove the inequality δ(QX , QX′) ≤ minPXX′ PXX′ [X 6= X ′], we use (2.5) and the
fact that, for any joint probability mass function PXX′ , min[PX(x), PX′(x)] ≥ PXX′(x, x),
which gives

δ(PX , PX′) = 1−
∑
x∈X

min[PX(x), PX′(x)] ≤ 1−
∑
x∈X

PXX′(x, x) = PXX′ [X 6= X ′] .

We thus have δ(PX , PX′) ≤ PXX′ [X 6= X ′], for any probability mass function PXX′ .
Taking the minimum over all PXX′ with PX = QX and PX′ = QX′ gives the desired
inequality.

The proof of the opposite inequality is given in the exercises.

An important property of the trace distance is that it can only decrease under the
operation of taking marginals.

Lemma 2.3.2. For any two density mass functions PXY and QXY ,

δ(PXY , QXY ) ≥ δ(PX , QX) .

Proof. Applying the triangle inequality for the absolute value, we find

1

2

∑
x,y

|PXY (x, y)−QXY (x, y)| ≥ 1

2

∑
x

|
∑
y

PXY (x, y)−QXY (x, y)|

=
1

2

∑
x

|PX(x)−QX(x)| ,

where the second equality is (2.3). The assertion then follows from the definition of the
trace distance.

2.3.7 I.i.d. distributions and the law of large numbers

An n-tuple of random variables X1, . . . , Xn with alphabet X is said to be independent and
identically distributed (i.i.d.) if their joint probability mass function has the form

PX1···Xn
= P×nX := PX × · · · × PX .

The i.i.d. property thus characterizes situations where a certain process is repeated n times
independently. In the context of information theory, the i.i.d. property is often used to
describe the statistics of noise, e.g., in repeated uses of a communication channel (see
Section 3.2).

9



The law of large numbers characterizes the “typical behavior” of real-valued i.i.d. ran-
dom variables X1, . . . , Xn in the limit of large n. It usually comes in two versions, called
the weak and the strong law of large numbers. As the name suggests, the latter implies
the first.

Let µ = 〈Xi〉 be the expectation value of Xi (which, by the i.i.d. assumption, is the
same for all X1, . . . , Xn), and let

Zn :=
1

n

n∑
i=1

Xi

be the sample mean. Then, according to the weak law of large numbers, the probability
that Zn is ε-close to µ for any positive ε converges to one, i.e.,

lim
n→∞

P
[
|Zn − µ| < ε

]
= 1 ∀ε > 0 . (2.6)

The weak law of large numbers will be sufficient for our purposes. However, for com-
pleteness, we mention the strong law of large numbers which says that Zn converges to µ
with probability 1,

P
[

lim
n→∞

Zn = µ
]

= 1 .

2.3.8 Channels

A channel p is a probabilistic mapping that assigns to each value of an input alphabet X
a value of the output alphabet. Formally, p is a function

p : X × Y → R+

(x, y) 7→ p(y|x)

such that p(·|x) is a probability mass function for any x ∈ X .
Given a random variable X with alphabet X , a channel p from X to Y naturally defines

a new random variable Y via the joint probability mass function PXY given by9

PXY (x, y) := PX(x)p(y|x) . (2.7)

Note also that channels can be seen as generalizations of functions. Indeed, if f is a
function from X to Y, its description as a channel p is given by

p(y|x) = δy,f(x) .

Channels can be seen as abstractions of any (classical) physical device that takes an
input X and outputs Y . A typical example for such a device is, of course, a communication
channel, e.g., an optical fiber, where X is the input provided by a sender and where Y is
the (possibly noisy) version of X delivered to a receiver. A practically relevant question

9It is easy to verify that PXY is indeed a probability mass function.
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then is how much information one can transmit reliably over such a channel, using an
appropriate encoding.

But channels do not only carry information over space, but also over time. Typical
examples are memory devices, e.g., a hard drive or a CD (where one wants to model the
errors introduced between storage and reading out of data). Here, the question is how
much redundancy we need to introduce in the stored data in order to correct these errors.

The notion of channels is illustrated by the following two examples.

Figure 2.2: Example 1. A reliable channel

Example 2.3.3. The channel depicted in Fig. 2.2 maps the input 0 with equal probability
to either 0 or 1; the input 1 is always mapped to 2. The channel has the property that its
input is uniquely determined by its output. As we shall see later, such a channel would
allow to reliably transmit one classical bit of information.

Figure 2.3: Example 2. An unreliable channel

Example 2.3.4. The channel shown in Fig. 2.3 maps each possible input with equal
probability to either 0 or 1. The output is thus completely independent of the input. Such
a channel is obviously not useful to transmit information.

The notion of i.i.d. random variables naturally translates to channels. A channel pn from
X ×· · ·×X to Y×· · ·×Y is said to be i.i.d. if it can be written as pn = p×n := p×· · ·×p.
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3 Information Theory

3.1 Quantifying information

The main object of interest in information theory, of course, is information and the way it
is processed. The quantification of information thus plays a central role. The aim of this
section is to introduce some notions and techniques that are needed for the quantitative
study of classical information, i.e., information that can be represented by the state of a
classical (in contrast to quantum) system.

3.1.1 Approaches to define information and entropy

Measures of information and measures of uncertainty, also called entropy measures, are
closely related. In fact, the information contained in a message X can be seen as the
amount by which our uncertainty (measured in terms of entropy) decreases when we
learn X.

There are, however, a variety of approaches to defining entropy measures. The decision
what approach to take mainly depends on the type of questions we would like to answer.
Let us thus consider a few examples.

Example 3.1.1 (Data transmission). Given a (possibly noisy) communication channel
connecting a sender and a receiver (e.g., an optical fiber), we are interested in the time it
takes to reliably transmit a certain document (e.g., the content of a textbook).

Example 3.1.2 (Data storage). Given certain data (e.g., a movie), we want to determine
the minimum space (e.g., on a hard drive) needed to store it.

The latter question is related to data compression, where the task is to find a space-
saving representation Z of given data X. In some sense, this corresponds to finding the
shortest possible description of X. An elegant way to make this more precise is to view
the description of X as an algorithm that generates X. Applied to the problem of data
storage, this would mean that, instead of storing data X directly, one would store an (as
small as possible) algorithm Z which can reproduce X.

The definition of algorithmic entropy, also known as Kolmogorov complexity, is exactly
based on this idea. The algorithmic entropy of X is defined as the minimum length of an
algorithm that generates X. For example, a bitstring X = 00 · · · 0 consisting of n � 1
zeros has small algorithmic entropy because it can be generated by a short program (the
program that simply outputs a sequence of zeros). The same is true if X consists of the
first n digits of π, because there is a short algorithm that computes the circular constant
π. In contrast, if X is a sequence of n bits chosen at random, its algorithmic entropy
will, with high probability, be roughly equal to n. This is because the shortest program
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generating the exact sequence of bits X is, most likely, simply the program that has the
whole sequence already stored.1

Despite the elegance of its definition, the algorithmic entropy has a fundamental disad-
vantage when being used as a measure for uncertainty: it is not computable. This means
that there cannot exist a method (e.g., a computer program) that estimates the algorith-
mic complexity of a given string X. This deficiency as well as its implications2 render the
algorithmic complexity unsuitable as a measure of entropy for most practical applications.

In this course, we will consider a different approach which is based on ideas developed
in thermodynamics. The approach has been proposed in 1948 by Shannon [13] and,
since then, has proved highly successful, with numerous applications in various scientific
disciplines (including, of course, physics). It can also be seen as the theoretical foundation
of modern information and communication technology. Today, Shannon’s theory is viewed
as the standard approach to information theory.

In contrast to the algorithmic approach described above, where the entropy is defined
as a function of the actual data X, the information measures used in Shannon’s theory
depend on the probability distribution of the data. More precisely, the entropy of a value
X is a measure for the likelihood that a particular value occurs. Applied to the above
compression problem, this means that one needs to assign a probability mass function to
the data to be compressed. The method used for compression might then be optimized
for the particular probability mass function assigned to the data.

3.1.2 Entropy of events

We take an axiomatic approach to motivate the definition of the Shannon entropy and
related quantities. In a first step, we will think of the entropy as a property of events E.
More precisely, given a probability space (Ω, E , P ), we consider a function H that assigns
to each event E a real value H(E),

H : E → R ∪ {∞}
E 7→ H(E) .

For the following, we assume that the events are defined on a probability space with
probability measure P . The function H should then satisfy the following properties.

1. Independence of the representation: H(E) only depends on the probability P [E] of
the event E.

2. Continuity: H is continuous in the probability measure P (relative to the topology
induced by the trace distance).

3. Additivity: H(E ∩ E′) = H(E) +H(E′) for two independent events E and E′.

4. Normalization: H(E) = 1 for E with P [E] = 1
2 .

1In fact, a (deterministic) computer can only generate pseudo-random numbers, i.e., numbers that cannot
be distinguished (using any efficient method) from true random numbers.

2An immediate implication is that there cannot exist a compression method that takes as input data X
and outputs a short algorithm that generates X.
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The axioms appear natural if we think of H as a measure of uncertainty. Indeed,
Axiom 3 reflects the idea that our total uncertainty about two independent events is
simply the sum of the uncertainty about the individual events. We also note that the
normalization imposed by Axiom 4 can be chosen arbitrarily; the convention, however, is
to assign entropy 1 to the event corresponding to the outcome of a fair coin flip.

The axioms uniquely define the function H.

Lemma 3.1.3. The function H satisfies the above axioms if and only if it has the form

H : E 7−→ − log2 P [E] .

Proof. It is straightforward that H as defined in the lemma satisfies all the axioms. It
thus remains to show that the definition is unique. For this, we make the ansatz

H(E) = f(− log2 P [E])

where f is an arbitrary function from R+ ∪ {∞} to R ∪ {∞}. We note that, apart from
taking into account the first axiom, this is no restriction of generality, because any possible
function of P [E] can be written in this form.

From the continuity axiom, it follows that f must be continuous. Furthermore, inserting
the additivity axiom for events E and E′ with probabilities p and p′, respectively, gives

f(− log2 p) + f(− log2 p
′) = f(− log2 pp

′) .

Setting a := − log2 p and a′ := − log2 p
′, this can be rewritten as

f(a) + f(a′) = f(a+ a′) .

Together with the continuity axiom, we conclude that f is linear, i.e., f(x) = γx for some
γ ∈ R. The normalization axiom then implies that γ = 1.

3.1.3 Entropy of random variables

We are now ready to define entropy measures for random variables. Analogously to the
entropy of an event E, which only depends on the probability P [E] of the event, the
entropy of a random variable X only depends on the probability mass function PX .

We start with the most standard measure in classical information theory, the Shannon
entropy, in the following denoted by H. Let X be a random variable with alphabet X and
let h(x) be the entropy of the event Ex := {X = x}, for any x ∈ X , that is,

h(x) := H(Ex) = − log2 PX(x) . (3.1)

Then the Shannon entropy is defined as the expectation value of h(x), i.e.,

H(X) := 〈h(X)〉 = −
∑
x∈X

PX(x) log2 PX(x) .

If the probability measure P is unclear from the context, we will include it in the notation
as a subscript, i.e., we write H(X)P .
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Similarly, the min-entropy, denoted Hmin, is defined as the minimum entropy H(Ex) of
the events Ex, i.e.,

Hmin(X) := min
x∈X

h(x) = − log2 max
x∈X

PX(x) .

A slightly different entropy measure is the max-entropy, denoted Hmax. Despite the
similarity of its name to the above measure, the definition does not rely on the entropy of
events, but rather on the cardinality of the support suppPX := {x ∈ X : PX(x) > 0} of
PX ,

Hmax(X) := log2

∣∣suppPX
∣∣.

It is easy to verify that the entropies defined above are related by

Hmin(X) ≤ H(X) ≤ Hmax(X) , (3.2)

with equality if the probability mass function PX is flat. Furthermore, they have various
properties in common. The following holds for H, Hmin, and Hmax; to keep the notation
simple, however, we only write H.

1. H is invariant under permutations of the elements, i.e., H(X) = H(π(X)), for any
permutation π.

2. H is nonnegative.3

3. H is upper bounded by the logarithm of the alphabet size, i.e., H(X) ≤ log2 |X |.

4. H equals zero if and only if exactly one of the entries of PX equals one, i.e., if
|suppPX | = 1.

3.1.4 Conditional entropy

In information theory, one typically wants to quantify the uncertainty about some data X,
given that one already has information Y . To capture such situations, we need to generalize
the entropy measures introduced in Section 3.1.3.

Let X and Y be random variables with alphabet X and Y, respectively, and define,
analogously to (3.1),

h(x|y) := − log2 PX|Y=y(x) , (3.3)

for any x ∈ X and y ∈ Y. Then the Shannon entropy of X conditioned on Y is again
defined as an expectation value,

H(X|Y ) := 〈h(X|Y )〉 = −
∑
x∈X
y∈Y

PXY (x, y) log2 PX|Y=y(x) .

3Note that this will no longer be true for the conditional entropy of quantum states.
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For the definition of the min-entropy of X given Y , the expectation value is replaced
by a minimum, i.e.,

Hmin(X|Y ) := min
x∈X
y∈Y

h(x|y) = − log2 max
x∈X
y∈Y

PX|Y=y(x) .

Finally, the max-entropy of X given Y is defined by

Hmax(X|Y ) := max
y∈Y

log2 |suppPX|Y=y| .

The conditional entropies H, Hmin, and Hmax satisfy the rules listed in Section 3.1.3.
Furthermore, the entropies can only decrease when conditioning on an additional random
variable Z, i.e.,

H(X|Y ) ≥ H(X|Y Z) . (3.4)

This relation is also known as strong subadditivity and we will prove it in the more general
quantum case.

Finally, it is straightforward to verify that the Shannon entropy H satisfies the chain
rule

H(X|Y Z) = H(XY |Z)−H(Y |Z) .

In particular, if we omit the random variable Z, we get

H(X|Y ) = H(XY )−H(Y )

that is, the uncertainty of X given Y can be seen as the uncertainty about the pair (X,Y )
minus the uncertainty about Y . We note here that a slightly modified version of the chain
rule also holds for Hmin and Hmax, but we will not go further into this.

3.1.5 Mutual information

Let X and Y be two random variables. The (Shannon) mutual information between X
and Y , denoted I(X : Y ) is defined as the amount by which the Shannon entropy on X
decreases when one learns Y ,

I(X : Y ) := H(X)−H(X|Y ) .

More generally, given an additional random variable Z, the (Shannon) mutual information
between X and Y conditioned on Z, I(X : Y |Z), is defined by

I(X : Y |Z) := H(X|Z)−H(X|Y Z) .

It is easy to see that the mutual information is symmetric under exchange of X and Y ,
i.e.,

I(X : Y |Z) = I(Y : X|Z) .

Furthermore, because of the strong subadditivity (3.4), the mutual information cannot be
negative, and I(X : Y ) = 0 holds if and only if X and Y are mutually independent. More
generally, I(X : Y |Z) = 0 if and only if X ↔ Z ↔ Y is a Markov chain.
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3.1.6 Smooth min- and max- entropies

The dependency of the min- and max-entropy of a random variable on the underlying
probability mass functions is discontinuous. To see this, consider a random variable X
with alphabet {1, . . . , 2`} and probability mass function P εX given by

P εX(1) = 1− ε

P εX(x) =
ε

2` − 1
if x > 1 ,

where ε ∈ [0, 1]. It is easy to see that, for ε = 0,

Hmax(X)P 0
X

= 0

whereas, for any ε > 0,

Hmax(X)P ε
X

= ` .

Note also that the trace distance between the two distributions satisfies δ(P 0
X , P

ε
X) = ε.

That is, an arbitrarily small change in the distribution can change the entropy Hmax(X)
by an arbitrary amount. In contrast, a small change of the underlying probability mass
function is often irrelevant in applications. This motivates the following definition of
smooth min- and max-entropies, which extends the above definition.

Let X and Y be random variables with joint probability mass function PXY , and let
ε ≥ 0. The ε-smooth min-entropy of X conditioned on Y is defined as

Hε
min(X|Y ) := max

QXY ∈Bε(PXY )
Hmin(X|Y )QXY

where the maximum ranges over the ε-ball Bε(PXY ) of probability mass functions QXY
satisfying δ(PXY , QXY ) ≤ ε. Similarly, the ε-smooth max-entropy of X conditioned on Y
is defined as

Hε
max(X|Y ) := min

QXY ∈Bε(PXY )
Hmax(X|Y )QXY

.

Note that the original definitions of Hmin and Hmax can be seen as the special case
where ε = 0.

3.1.7 Shannon entropy as a special case of min- and max-entropy

We have already seen that the Shannon entropy always lies between the min- and the
max-entropy (see (3.2)). In the special case of n-tuples of i.i.d. random variables, the gap
between Hε

min and Hε
max approaches zero with increasing n, which means that all entropies

become identical. This is expressed by the following lemma.

Lemma 3.1.4. For any n ∈ N, let (X1, Y1), . . . , (Xn, Yn) be a sequence of i.i.d. pairs of
random variables, i.e., PX1Y1···XnYn

= P×nXY . Then

H(X|Y )PXY
= lim
ε→0

lim
n→∞

1

n
Hε

min(X1 · · ·Xn|Y1 · · ·Yn)

H(X|Y )PXY
= lim
ε→0

lim
n→∞

1

n
Hε

max(X1 · · ·Xn|Y1 · · ·Yn) .
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Proof. The lemma is a consequence of the law of large numbers (see Section 2.3.7), applied
to the random variables Zi := h(Xi|Yi), for h(x|y) defined by (3.3). More details are given
in the exercises.

3.2 An example application: channel coding

3.2.1 Definition of the problem

Consider the following scenario. A sender, traditionally called Alice, wants to send a
message M to a receiver, Bob. They are connected by a communication channel p that
takes inputs X from Alice and outputs Y on Bob’s side (see Section 2.3.8). The channel
might be noisy, which means that Y can differ from X. The challenge is to find an
appropriate encoding scheme that allows Bob to retrieve the correct message M , except
with a small error probability ε. As we shall see, ε can always be made arbitrarily small
(at the cost of the amount of information that can be transmitted), but it is generally
impossible to reach ε = 0, i.e., Bob cannot retrieve M with absolute certainty.

To describe the encoding and decoding process, we assume without loss of generality4

that the message M is represented as an `-bit string, i.e., M takes values from the set
{0, 1}`. Alice then applies an encoding function enc` : {0, 1}` → X that maps M to a
channel input X. On the other end of the line, Bob applies a decoding function dec` :
Y → {0, 1}` to the channel output Y in order to retrieve M ′.

M −−−−−−−−→
enc`

X −−−−−−−−→
p Y −−−−−−−−→

dec`
M ′ . (3.5)

The transmission is successful if M = M ′. More generally, for any fixed encoding and
decoding procedures enc` and dec`, and for any message m ∈ {0, 1}`, we can define

penc`,dec`
err (m) := P [dec` ◦ p ◦ enc`(M) 6= M |M = m]

as the probability that the decoded message M ′ := dec` ◦ p ◦ enc`(M) generated by the
process (3.5) does not coincide with M .5

In the following, we analyze the maximum number of message bits ` that can be trans-
mitted in one use of the channel p if we tolerate a maximum error probability ε,

`ε(p) := max{` ∈ N : ∃ enc`,dec` : max
m

penc`,dec`
err (m) ≤ ε} .

3.2.2 The general channel coding theorem

The channel coding theorem provides a lower bound on the quantity `ε(p). It is easy to
see from the formula below that reducing the maximum tolerated error probability by
a factor of 2 comes at the cost of reducing the number of bits that can be transmitted
reliably by 1. It can also be shown that the bound is almost tight (up to terms log2

1
ε ).

4Note that all our statements will be independent of the actual representation of M . The only quantity
that matters is the alphabet size of M , i.e., the total number of possible values.

5Here we interpret a channel as a probabilistic function from the input to the output alphabets.
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Theorem 3.2.1. For any channel p and any ε ≥ 0,

`ε(p) ≥ max
PX

(
Hmin(X)−Hmax(X|Y )

)
− log2

1

ε
− 3 ,

where the entropies on the right hand side are evaluated for the random variables X and
Y jointly distributed according to PXY = PXp.6

The proof idea is illustrated in Fig. 3.1.

codewords

M M
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m m

supp
�
PX|Y=y



Figure 3.1: The figure illustrates the proof idea of the channel coding theorem. The range
of the encoding function enc` is called code and their elements are the code-
words.

Proof. The argument is based on a randomized construction of the encoding function. Let
PX be the distribution that maximizes the right hand side of the claim of the theorem
and let ` be

` = bHmin(X)−Hmax(X|Y )− log2

2

ε
c. (3.6)

In a first step, we consider an encoding function enc` chosen at random by assigning to
each m ∈ {0, 1}` a value enc`(m) := X where X is chosen according to PX . We then show
that for a decoding function dec` that maps y ∈ Y to an arbitrary value m′ ∈ {0, 1}` that
is compatible with y, i.e., enc`(m

′) ∈ suppPX|Y=y, the error probability for a message M
chosen uniformly at random satisfies〈

penc`,dec`
err (M)

〉
= P [dec` ◦ p ◦ enc`(M) 6= M ] ≤ ε

2
. (3.7)

In a second step, we use this bound to show that there exist enc′`−1 and dec′`−1 such that

p
enc′`−1,dec′`−1
err (m) ≤ ε ∀m ∈ {0, 1}`−1 . (3.8)

6See also (2.7).
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We then have

`ε(p) ≥ `− 1

= bHmin(X)−Hmax(X|Y )− log2(2/ε)c − 1

≥ Hmin(X)−Hmax(X|Y )− log2(1/ε)− 3.

To prove (3.7), let enc` and M be chosen at random as described, let Y := p ◦ enc`(M)
be the channel output, and let M ′ := dec`(Y ) be the decoded message. We then consider
any pair (m, y) such that PMY (m, y) > 0. It is easy to see that, conditioned on the
event that (M,Y ) = (m, y), the decoding function dec` described above can only fail, i.e.,
produce an M ′ 6= M , if there exists m′ 6= m such that enc`(m

′) ∈ suppPX|Y=y. Hence,
the probability that the decoding fails is bounded by

P [M 6= M ′|M = m,Y = y] ≤ P [∃m′ 6= m : enc`(m
′) ∈ suppPX|Y=y] . (3.9)

Furthermore, by the union bound, we have

P [∃m′ 6= m : enc`(m
′) ∈ suppPX|Y=y] ≤

∑
m′ 6=m

P [enc`(m
′) ∈ suppPX|Y=y] .

Because, by construction, enc`(m
′) is a value chosen at random according to the distri-

bution PX , the probability in the sum on the right hand side of the inequality is given
by

P [enc`(m
′) ∈ suppPX|Y=y] =

∑
x∈suppPX|Y =y

PX(x)

≤ |suppPX|Y=y|max
x

PX(x)

≤ 2−(Hmin(X)−Hmax(X|Y )) ,

where the last inequality follows from the definitions of Hmin and Hmax. Combining this
with the above and observing that there are only 2` − 1 values m′ 6= m, we find

P [M 6= M ′|M = m,Y = y] ≤ 2`−(Hmin(X)−Hmax(X|Y )) ≤ ε

2
.

Because this holds for any m and y, we have

P [M 6= M ′] ≤ max
m,y

P [M 6= M ′|M = m,Y = y] ≤ ε

2
.

This immediately implies that (3.7) holds on average over all choices of enc`. But this
also implies that there exists at least one specific choice for enc` such that (3.7) holds.

It remains to show inequality (3.8). For this, we divide the set of messages {0, 1}` into
two equally large sets M and M such that penc`,dec`

err (m) ≤ penc`,dec`
err (m) for any m ∈ M

and m ∈M. We then have

max
m∈M

penc`,dec`
err (m) ≤ min

m∈M
penc`,dec`

err (m) ≤ 2−(`−1)
∑
m∈M

penc`,dec`
err (m) .
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Using (3.7), we conclude

max
m∈M

penc`,dec`
err (m) ≤ 2

∑
m∈{0,1}`

2−`penc`,dec`
err (m) = 2

〈
penc`,dec`

err (M)
〉
≤ ε .

Inequality (3.8) then follows by defining enc′`−1 as the encoding function enc` restricted
to M, and adapting the decoding function accordingly.

3.2.3 Channel coding for i.i.d. channels

Realistic communication channels (e.g., an optical fiber) can usually be used repeatedly.
Moreover, such channels often are accurately described by an i.i.d. noise model. In this
case, the transmission of n subsequent signals over the physical channel corresponds to
a single use of a channel of the form p×n = p × · · ·p. To determine the amount of
information that can be transmitted from a sender to a receiver using the physical channel
n times is thus given by Theorem 3.2.1 applied to p×n.

In applications, the number n of channel uses is typically large. It is thus convenient to
measure the capacity of a channel in terms of the asymptotic rate

rate(p) = lim
ε→0

lim
n→∞

1

n
`ε(p×n) (3.10)

The computation of the rate will rely on the following corollary, which follows from
Theorem 3.2.1 and the definition of smooth entropies.

Corollary 3.2.2. For any channel p and any ε, ε′, ε′′ ≥ 0,

`ε+ε
′+ε′′(p) ≥ max

PX

(
Hε′

min(X)−Hε′′

max(X|Y )
)
− log2

1

ε
− 3

where the entropies on the right hand side are evaluated for PXY := PXp.

Combining this with Lemma 3.1.4, we get the following lower bound for the rate of a
channel.

Theorem 3.2.3. For any channel p

rate(p) ≥ max
PX

(
H(X)−H(X|Y )

)
= max

PX

I(X : Y ) .

where the entropies on the right hand side are evaluated for PXY := PXp.

3.2.4 The converse

We conclude our treatment of channel coding with a proof sketch which shows that the
bound given in Theorem 3.2.3 is tight. The main ingredient to the proof is the information
processing inequality

I(U : W ) ≤ I(U : V )

21



which holds for any random variables such that U ↔ V ↔ W is a Markov chain. The
inequality is proved by

I(U : W ) ≤ I(U : W ) + I(U : V |W ) = I(U : VW ) = I(U : V ) + I(U : W |V ) = I(U : V ) ,

where the first inequality holds because the mutual information cannot be negative and
the last equality follows because I(U : W |V ) = 0 (see end of Section 3.1.5). The remaining
equalities are essentially rewritings of the chain rule (for the Shannon entropy).

Let now M , X, Y , and M ′ be defined as in (3.5). If the decoding is successful then
M = M ′ which implies

H(M) = I(M : M ′) . (3.11)

Applying the information processing inequality first to the Markov chain M ↔ Y ↔ M ′

and then to the Markov chain M ↔ X ↔ Y gives

I(M : M ′) ≤ I(M : Y ) ≤ I(X : Y ) .

Combining this with (3.11) and assuming that the message M is uniformly distributed
over the set {0, 1}` of bitstrings of length ` gives

` = H(M) ≤ max
PX

I(X : Y ) .

It is straightforward to verify that the statement still holds approximately if ` on the left
hand side is replaced by `ε, for some small decoding error ε > 0. Taking the limits as
in (3.10) finally gives

rate(p) ≤ max
PX

I(X : Y ) .
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4 Quantum States and Operations

The mathematical formalism used in quantum information theory to describe quantum
mechanical systems is in many ways more general than that of typical introductory books
on quantum mechanics. This is why we devote a whole chapter to it. The main concepts
to be treated in the following are density operators, which represent the state of a system,
as well as positive-valued measures (POVMs) and completely positive maps (CPMs), which
describe measurements and, more generally, the evolution of a system.

4.1 Preliminaries

4.1.1 Hilbert spaces and operators on them

An inner product space is a vector space (over R or C) equipped with an inner product
(·, ·). A Hilbert space H is an inner product space such that the metric defined by the
norm ‖α‖ ≡

√
(α, α) is complete, i.e., every Cauchy sequence is convergent. We will often

deal with finite-dimensional spaces, where the completeness condition always holds, i.e.,
inner product spaces are equivalent to Hilbert spaces.

We denote the set of homomorphisms (i.e., the linear maps) from a Hilbert space H to a
Hilbert space H′ by Hom(H,H′). Furthermore, End(H) is the set of endomorphism (i.e.,
the homomorphisms from a space to itself) on H, that is, End(H) = Hom(H,H). The
identity operator α 7→ α that maps any vector α ∈ H to itself is denoted by id.

The adjoint of a homomorphism S ∈ Hom(H,H′), denoted S∗, is the unique operator
in Hom(H′,H) such that

(α′, Sα) = (S∗α′, α) ,

for any α ∈ H and α′ ∈ H′. In particular, we have (S∗)∗ = S. If S is represented as a
matrix, then the adjoint operation can be thought of as the conjugate transpose.

In the following, we list some properties of endomorphisms S ∈ End(H).

• S is normal if SS∗ = S∗S.

• S is unitary if SS∗ = S∗S = id. Unitary operators S are always normal.

• S is Hermitian if S∗ = S. Hermitian operators are always normal.

• S is positive if (α, Sα) ≥ 0 for all α ∈ H. Positive operators are always Hermitian.
We will sometimes write S ≥ 0 to express that S is positive.

• S is a projector if SS = S. Projectors are always positive.

Given an orthonormal basis {ei}i of H, we also say that S is diagonal with respect to {ei}i
if the matrix (Si,j) defined by the elements Si,j = (ei, Sej) is diagonal.
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4.1.2 The bra-ket notation

In this script, we will make extensive use of a variant of Dirac’s bra-ket notation, where
vectors are interpreted as operators. More precisely, we identify any vector α ∈ H with
an endomorphism |α〉 ∈ Hom(C,H), called ket, and defined as

|α〉 : γ 7→ αγ

for any γ ∈ C. The adjoint |α〉∗ of this mapping is called bra and denoted by 〈α|. It is
easy to see that 〈α| is an element of the dual space H∗ := Hom(H,C), namely the linear
functional defined by

〈α| : β 7→ (α, β)

for any β ∈ H.
Using this notation, the concatenation 〈α||β〉 of a bra 〈α| ∈ Hom(H,C) with a ket

|β〉 ∈ Hom(C,H) results in an element of Hom(C,C), which can be identified with C. It
follows immediately from the above definitions that, for any α, β ∈ H,

〈α||β〉 ≡ (α, β) .

We will thus in the following denote the scalar product by 〈α|β〉.
Conversely, the concatenation |β〉〈α| is an element of End(H) (or, more generally, of

Hom(H,H′) if α ∈ H and β ∈ H′ are defined on different spaces). In fact, any endo-
morphism S ∈ End(H) can be written as a linear combination of such concatenations,
i.e.,

S =
∑
i

|βi〉〈αi|

for some families of vectors {αi}i and {βi}i. For example, the identity id ∈ End(H) can
be written as

id =
∑
i

|ei〉〈ei|

for any basis {ei} of H.

4.1.3 Tensor products

Given two Hilbert spaces HA and HB , the tensor product HA ⊗ HB is defined as the
Hilbert space spanned by elements of the form |α〉⊗ |β〉, where α ∈ HA and β ∈ HB , such
that the following equivalences hold

• (α+ α′)⊗ β = α⊗ β + α′ ⊗ β

• α⊗ (β + β′) = α⊗ β + α⊗ β′

• 0⊗ β = α⊗ 0 = 0
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for any α, α′ ∈ HA and β, β′ ∈ HB , where 0 denotes the zero vector. Furthermore, the
inner product of HA ⊗HB is defined by the linear extension (and completion) of

〈α⊗ β|α′ ⊗ β′〉 = 〈α|α′〉〈β|β′〉 .

For two homomorphisms S ∈ Hom(HA,H′A) and T ∈ Hom(HB ,H′B), the tensor product
S ⊗ T is defined as

(S ⊗ T )(α⊗ β) ≡ (Sα)⊗ (Tβ) (4.1)

for any α ∈ HA and β ∈ HB . The space spanned by the products S⊗T can be canonically
identified1 with the tensor product of the spaces of the homomorphisms, i.e.,

Hom(HA,H′A)⊗Hom(HB ,H′B) ∼= Hom(HA ⊗HB ,H′A ⊗H′B) . (4.2)

This identification allows us to write, for instance,

|α〉 ⊗ |β〉 = |α⊗ β〉 ,

for any α ∈ HA and β ∈ HB .

4.1.4 Trace and partial trace

The trace of an endomorphism S ∈ End(H) over a Hilbert space H is defined by2

tr(S) ≡
∑
i

〈ei|S|ei〉

where {ei}i is any orthonormal basis of H. The trace is well defined because the above
expression is independent of the choice of the basis, as one can easily verify.

The trace operation tr is obviously linear, i.e.,

tr(uS + vT ) = utr(S) + vtr(T ) ,

for any S, T ∈ End(H) and u, v ∈ C. It also commutes with the operation of taking the
adjoint,3

tr(S∗) = tr(S)∗ .

Furthermore, the trace is cyclic, i.e.,

tr(ST ) = tr(TS) .

1That is, the mapping defined by (4.1) is an isomorphism between these two vector spaces.
2More precisely, the trace is only defined for trace class operators over a separable Hilbert space. However,

all endomorphisms on a finite-dimensional Hilbert space are trace class operators.
3The adjoint of a complex number γ ∈ C is simply its complex conjugate.
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Also, it is easy to verify4 that the trace tr(S) of a positive operator S ≥ 0 is positive.
More generally

(S ≥ 0) ∧ (T ≥ 0) =⇒ tr(ST ) ≥ 0 . (4.3)

The partial trace5 trB is a mapping from the endomorphisms End(HA ⊗ HB) on a
product space HA ⊗ HB onto the endomorphisms End(HA) on HA. It is defined by the
linear extension of the mapping.6

trB : S ⊗ T 7→ tr(T )S ,

for any S ∈ End(HA) and T ∈ End(HB).
Similarly to the trace operation, the partial trace trB is linear and commutes with

the operation of taking the adjoint. Furthermore, it commutes with the left and right
multiplication with an operator of the form TA ⊗ idB where TA ∈ End(HA).7 That is, for
any operator SAB ∈ End(HA ⊗HB),

trB
(
SAB(TA ⊗ idB)

)
= trB(SAB)TA (4.4)

and

trB
(
(TA ⊗ idB)SAB

)
= TAtrB(SAB) . (4.5)

We will also make use of the property that the trace on a bipartite system can be
decomposed into partial traces on the individual subsystems, i.e.,

tr(SAB) = tr(trB(SAB)) (4.6)

or, more generally, for an operator SABC ∈ End(HA ⊗HB ⊗HC),

trAB(SABC) = trA(trB(SABC)) .

4.1.5 Decompositions of operators and vectors

Spectral decomposition. Let S ∈ End(H) be normal and let {ei}i be an orthonormal
basis of H. Then there exists a unitary U ∈ End(H) and an operator D ∈ End(H) which
is diagonal with respect to {ei}i such that

S = UDU∗ .

4The assertion can, for instance, be proved using the spectral decomposition of S and T (see below for
a review of the spectral decomposition).

5Here and in the following, we will use subscripts to indicate the space on which an operator acts.
6Alternatively, the partial trace trB can be defined as a product mapping I ⊗ tr where I is the identity

operation on End(HA) and tr is the trace mapping elements of End(HB) to End(C). Because the
trace is a completely positive map (see definition below) the same is true for the partial trace.

7More generally, the partial trace commutes with any mapping that acts like the identity on End(HB).
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The spectral decomposition implies that, for any normal S ∈ End(H), there exists a
basis {ei}i of H with respect to which S is diagonal. That is, S can be written as

S =
∑
i

αi|ei〉〈ei| (4.7)

where αi are the eigenvalues of S.
Expression (4.7) can be used to give a meaning to a complex function f : C→ C applied

to a normal operator S. We define f(S) by

f(S) ≡
∑
i

f(αi)|ei〉〈ei| .

Polar decomposition. Let S ∈ End(H). Then there exists a unitary U ∈ End(H) such
that

S =
√
SS∗U

and

S = U
√
S∗S .

Singular decomposition. Let S ∈ End(H) and let {ei}i be an orthonormal basis of H.
Then there exist unitaries U, V ∈ End(H) and an operator D ∈ End(H) which is diagonal
with respect to {ei}i such that

S = V DU .

In particular, for any S ∈ Hom(H,H′), there exist bases {ei}i of H and {e′i}i of H′ such
that the matrix defined by the elements (e′i, Sej) is diagonal.

Schmidt decomposition. The Schmidt decomposition can be seen as a version of the
singular decomposition for vectors. The statement is that any vector Ψ ∈ HA ⊗HB can
be written in the form

Ψ =
∑
i

γiei ⊗ e′i

where ei ∈ HA and e′i ∈ HB are eigenvectors of the operators ρA := trB(|Ψ〉〈Ψ|) and
ρB := trA(|Ψ〉〈Ψ|), respectively, and where γ2

i are the corresponding eigenvalues. In
particular, the existence of the Schmidt decomposition implies that ρA and ρB have the
same nonzero eigenvalues.
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4.1.6 Operator norms and the Hilbert-Schmidt inner product

The Hilbert-Schmidt inner product between two operators S, T ∈ End(H) is defined by

(S, T ) := tr(S∗T ) .

The induced norm ‖S‖2 :=
√

(S, S) is called Hilbert-Schmidt norm. If S is normal with
spectral decomposition S =

∑
i αi|ei〉〈ei| then

‖S‖2 =

√∑
i

|αi|2 .

An important property of the Hilbert-Schmidt inner product (S, T ) is that it is positive
whenever S and T are positive.

Lemma 4.1.1. Let S, T ∈ End(H). If S ≥ 0 and T ≥ 0 then

tr(ST ) ≥ 0 .

Proof. If S is positive we have S =
√
S

2
and T =

√
T

2
. Hence, using the cyclicity of the

trace, we have

tr(ST ) = tr(V ∗V )

where V =
√
S
√
T . Because the trace of a positive operator is positive, it suffices to show

that V ∗V ≥ 0. This, however, follows from the fact that, for any φ ∈ H,

〈φ|V ∗V |φ〉 = ‖V φ‖2 ≥ 0 .

The trace norm of S is defined by

‖S‖1 := tr|S|

where

|S| :=
√
S∗S .

If S is normal with spectral decomposition S =
∑
i αi|ei〉〈ei| then

‖S‖1 =
∑
i

|αi| .

The following lemma provides a useful characterization of the trace norm.

Lemma 4.1.2. For any S ∈ End(H),

‖S‖1 = max
U
|tr(US)|

where U ranges over all unitaries on H.
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Proof. We need to show that, for any unitary U ,

|tr(US)| ≤ tr|S| (4.8)

with equality for some appropriately chosen U .
Let S = V |S| be the polar decomposition of S. Then, using the Cauchy-Schwarz

inequality

|tr(Q∗R)| ≤ ‖Q‖2‖R‖2

with Q :=
√
|S|V ∗U∗ and R :=

√
|S| we find∣∣tr(US)

∣∣ =
∣∣tr(UV |S|)∣∣ =

∣∣tr(UV√|S|√|S|)∣∣ ≤√tr(UV |S|V ∗U∗)tr(|S|) = tr(|S|) ,

which proves (4.8). Finally, it is easy to see that equality holds for U := V ∗.

4.1.7 The vector space of Hermitian operators

The set of Hermitian operators on a Hilbert space H, in the following denoted Herm(H),
forms a real vector space. Furthermore, equipped with the Hilbert Schmidt inner product
defined in the previous section, Herm(H) is an inner product space.

If {ei}i is an orthonormal basis of H then the set of operators Ei,j defined by

Ei,j :=

{
1
2 |ei〉〈ej |+

1
2 |ej〉〈ei| if i ≤ j

i
2 |ei〉〈ej | −

i
2 |ej〉〈ei| if i > j

forms an orthonormal basis of Herm(H). We conclude from this that

dim Herm(H) = (dimH)2 . (4.9)

For two Hilbert spaces HA and HB , we have in analogy to (4.2)

Herm(HA)⊗Herm(HB) ∼= Herm(HA ⊗HB) . (4.10)

To see this, consider the canonical mapping from Herm(HA)⊗Herm(HB) to Herm(HA ⊗HB)
defined by (4.1). It is easy to verify that this mapping is injective. Furthermore, because
by (4.9) the dimension of both spaces equals dim(HA)2 dim(HB)2, it is a bijection, which
proves (4.10).

4.2 Postulates of quantum mechanics

Despite more than one century of research, numerous questions related to the foundations
of quantum mechanics are still unsolved (and highly disputed). For example, no fully
satisfying explanation for the fact that quantum mechanics has its particular mathematical
structure has been found so far. As a consequence, some of the aspects to be discussed
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in the following, e.g., the postulates of quantum mechanics, might appear to lack a clear
motivation.

In this section, we pursue one of the standard approaches to quantum mechanics. It
is based on a number of postulates about the states of physical systems as well as their
evolution. (For more details, we refer to Section 2 of [10], where an equivalent approach
is described.) The postulates are as follows:

1. States: The set of states of an isolated physical system is in one-to-one correspon-
dence to the projective space of a Hilbert space H. In particular, any physical state
can be represented by a normalized vector φ ∈ H which is unique up to a phase
factor. In the following, we will call H the state space of the system.8

2. Composition: For two physical systems with state spacesHA andHB , the state space
of the product system is isomorphic to HA ⊗ HB . Furthermore, if the individual
systems are in states φ ∈ HA and φ′ ∈ HB , then the joint state is

Ψ = φ⊗ φ′ ∈ HA ⊗HB .

3. Evolutions: For any possible evolution of an isolated physical system with state
space H and for any fixed time interval [t0, t1] there exists a unitary U describing
the mapping of states φ ∈ H at time t0 to states

φ′ = Uφ

at time t1. The unitary U is unique up to a phase factor.

4. Measurements: For any measurement on a physical system with state space H there
exists an observable O with the following properties. O is a Hermitian operator on
H such that each eigenvalue x of O corresponds to a possible measurement outcome.
If the system is in state φ ∈ H, then the probability of observing outcome x when
applying the measurement is given by

PX(x) = tr(Px|φ〉〈φ|)

where Px denotes the projector onto the eigenspace belonging to the eigenvalue
x, i.e., O =

∑
x xPx. Finally, the state φ′x of the system after the measurement,

conditioned on the event that the outcome is x, equals

φ′x :=

√
1

PX(x)
Pxφ .

4.3 Quantum states

In quantum information theory, one often considers situations where the state or the
evolution of a system is only partially known. For example, we might be interested in

8In quantum mechanics, the elements φ ∈ H are also called wave functions.
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a scenario where a system might be in two possible states φ0 or φ1, chosen according to
a certain probability distribution. Another simple example is a system consisting of two
correlated parts A and B in a state

Ψ =

√
1

2

(
e0 ⊗ e0 + e1 ⊗ e1

)
∈ HA ⊗HB , (4.11)

where {e0, e1} are orthonormal vectors in HA = HB . From the point of view of an
observer that has no access to system B, the state of A does not correspond to a fixed
vector φ ∈ HA, but is rather described by a mixture of such states. In this section,
we introduce the density operator formalism, which allows for a simple and convenient
characterization of such situations.

4.3.1 Density operators — Definition and properties

The notion of density operators has been introduced independently by von Neumann and
Landau in 1927. Since then, it has been widely used in quantum statistical mechanics
and, more recently, in quantum information theory.

Definition 4.3.1. A density operator ρ on a Hilbert space H is a normalized positive
operator on H, i.e., ρ ≥ 0 and tr(ρ) = 1. The set of density operators on H is denoted
by S(H). A density operator is said to be pure if it has the form ρ = |φ〉〈φ|. If H is
d-dimensional and ρ has the form ρ = 1

d · id then it is called fully mixed.

It follows from the spectral decomposition theorem that any density operator can be
written in the form

ρ =
∑
x

PX(x)|ex〉〈ex|

where PX is the probability mass function defined by the eigenvalues PX(x) of ρ and
{ex}x are the corresponding eigenvectors. Given this representation, it is easy to see that
a density operator is pure if and only if exactly one of the eigenvalues equals 1 whereas
the others are 0. In particular, we have the following lemma.

Lemma 4.3.2. A density operator ρ is pure if and only if tr(ρ2) = 1.

4.3.2 Quantum-mechanical postulates in the language of density
operators

In a first step, we adapt the postulates of Section 4.2 to the notion of density operators.
At the same time, we generalize them to situations where the evolution and measurements
only act on parts of a composite system.

1. States: The states of a physical system are represented as density operators on a
state space H. For an isolated system whose state, represented as a vector, is φ ∈ H,
the corresponding density operator is defined by ρ := |φ〉〈φ|.9

9Note that this density operator is pure.
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2. Composition: The states of a composite system with state spaces HA and HB are
represented as density operators on HA ⊗ HB . Furthermore, if the states of the
individual subsystems are independent of each other and represented by density
operators ρA and ρB , respectively, then the state of the joint system is ρA ⊗ ρB .

3. Evolution: Any isolated evolution of a subsystem of a composite system over a
fixed time interval [t0, t1] corresponds to a unitary on the state space H of the
subsystem. For a composite system with state spaceHA⊗HB and isolated evolutions
on both subsystems described by UA and UB , respectively, any state ρAB at time t0
is transformed into the state10

ρ′AB = (UA ⊗ UB)(ρAB)(U∗A ⊗ U∗B) (4.12)

at time t1.11

4. Measurement: Any isolated measurement on a subsystem of a composite system is
specified by a Hermitian operator, called observable. When applying a measurement
OA =

∑
x xPx on the first subsystem of a composite system HA ⊗HB whose state

is ρAB , the probability of observing outcome x is

PX(x) = tr(Px ⊗ idBρAB) (4.13)

and the post-measurement state conditioned on this outcome is

ρ′AB,x =
1

PX(x)
(Px ⊗ idB)ρAB(Px ⊗ idB) . (4.14)

It is straightforward to verify that these postulates are indeed compatible with those of
Section 4.2. What is new is merely the fact that the evolution and measurements can be
restricted to individual subsystems of a composite system. As we shall see, this extension
is, however, very powerful because it allows us to examine parts of a subsystem without
the need of keeping track of the state of the entire system.

4.3.3 Partial trace and purification

Let HA⊗HB be a composite quantum system which is initially in a state ρAB = |Ψ〉〈Ψ| for
some Ψ ∈ HA⊗HB . Consider now an experiment which is restricted to the first subsystem.
More precisely, assume that subsystem A undergoes an isolated evolution, described by
a unitary UA, followed by an isolated measurement, described by an observable OA =∑
x xPx.
According to the above postulates, the probability of observing an outcome x is then

given by

PX(x) = tr
(
(Px ⊗ idB)(UA ⊗ UB)ρAB(U∗A ⊗ U∗B)

)
10In particular, if HB = C is trivial, this expression equals ρ′A = UAρAU

∗
A.

11By induction, this postulate can be readily generalized to composite systems with more than two parts.
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where UB is an arbitrary isolated evolution on HB . Using rules (4.6) and (4.4), this can
be transformed into

PX(x) = tr
(
PxUAtrB(ρAB)U†A

)
,

which is independent of UB . Observe now that this expression could be obtained equiv-
alently by simply applying the above postulates to the reduced state ρA := trB(ρAB). In
other words, the reduced state already fully characterizes all observable properties of the
subsystem HA.

This principle, which is sometimes called locality, plays a crucial role in many information-
theoretic considerations. For example, it implies that it is impossible to influence system
HA by local actions on system HB . In particular, communication between the two subsys-
tems is impossible as long as their evolution is determined by local operations UA ⊗ UB .

In this context, it is important to note that the reduced state ρA of a pure joint state
ρAB is not necessarily pure. For instance, if the joint system is in state ρAB = |Ψ〉〈Ψ| for
Ψ defined by (4.11) then

ρA =
1

2
|e0〉〈e0|+

1

2
|e1〉〈e1| , (4.15)

i.e., the density operator ρA is fully mixed. In the next section, we will give an interpre-
tation of non-pure, or mixed, density operators.

Conversely, any mixed density operator can be seen as part of a pure state on a larger
system. More precisely, given ρA on HA, there exists a pure density operator ρAB on a
joint system HA ⊗HB (where the dimension of HB is at least as large as the rank of ρA)
such that

ρA = trB(ρAB) (4.16)

A pure density operator ρAB for which (4.16) holds is called a purification of ρA.

4.3.4 Mixtures of states

Consider a quantum system HA whose state depends on a classical value Z and let ρzA ∈
S(HA) be the state of the system conditioned on the event Z = z. Furthermore, consider
an observer who does not have access to Z, that is, from his point of view, Z can take
different values distributed according to a probability mass function PZ .

Assume now that the system HA undergoes an evolution UA followed by a measurement
OA =

∑
x xPx as above. Then, according to the postulates of quantum mechanics, the

probability mass function of the measurement outcomes x conditioned on the event Z = z
is given by

PX|Z=z(x) = tr(PxUAρ
z
AU
∗
A) .

Hence, from the point of view of the observer who is unaware of the value Z, the probability
mass function of X is given by

PX(x) =
∑
z

PZ(z)PX|Z=z(x) .
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By linearity, this can be rewritten as

PX(x) = tr(PxUAρAU
∗
A) . (4.17)

where

ρA :=
∑
z

PZ(z)ρzA .

Alternatively, expression (4.17) can be obtained by applying the postulates of Sec-
tion 4.3.2 directly to the density operator ρA defined above. In other words, from the
point of view of an observer not knowing Z, the situation is consistently characterized by
ρA.

We thus arrive at a new interpretation of mixed density operators. For example, the
density operator

ρA =
1

2
|e0〉〈e0|+

1

2
|e1〉〈e1| (4.18)

defined by (4.15) corresponds to a situation where either state e0 or e1 is prepared, each
with probability 1

2 . The decomposition according to (4.18) is, however, not unique. In
fact, the same state could be written as

ρA =
1

2
|ẽ0〉〈ẽ0|+

1

2
|ẽ1〉〈ẽ1|

where ẽ0 := 1
2 (e0 + e1) and ẽ1 := 1

2 (e0 − e1). That is, the system could equivalently be
interpreted as being prepared either in state ẽ0 or ẽ1, each with probability 1

2 .
It is important to note, however, that any predictions one can possibly make about

observations restricted to system HA are fully determined by the density operator ρA,
and, hence do not depend on the choice of the interpretation. That is, whether we see
the system HA as a part of a larger system HA ⊗ HB which is in a pure state (as in
Section 4.3.3) or as a mixture of pure states (as proposed in this section) is irrelevant as
long as we are only interested in observable quantities derived from system HA.

4.3.5 Hybrid classical-quantum states

We will often encounter situations where parts of a system are quantum mechanical
whereas others are classical. A typical example is the scenario described in Section 4.3.4,
where the state of a quantum system HA depends on the value of a classical random
variable Z.

Since a classical system can be seen as a special type of a quantum system, such sit-
uations can be described consistently using the density operator formalism introduced
above. More precisely, the idea is to represent the states of classical values Z by mutually
orthogonal vectors on a Hilbert space. For example, the density operator describing the
scenario of Section 4.3.4 would read

ρAZ =
∑
z

PZ(z)ρzA ⊗ |ez〉〈ez| ,
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where {ez}z is a family of orthonormal vectors on HZ .
More generally, we use the following definition of classicality.

Definition 4.3.3. Let HA and HZ be Hilbert spaces and let {ez}z be a fixed orthonormal
basis of HZ . Then a density operator ρAZ ∈ S(HA ⊗ HZ) is said to be classical on HZ
(with respect to {ez}z) if12

ρAZ ∈ Herm(HA)⊗ span{|ez〉〈ez|}z

4.3.6 Distance between states

Given two quantum states ρ and σ, we might ask how well we can distinguish them from
each other. The answer to this question is given by the trace distance, which can be seen
as a generalization of the corresponding distance measure for classical probability mass
functions as defined in Section 2.3.6.

Definition 4.3.4. The trace distance between two density operators ρ and σ on a Hilbert
space H is defined by

δ(ρ, σ) :=
1

2

∥∥ρ− σ∥∥
1
.

It is straightforward to verify that the trace distance is a metric on the space of density
operators. Furthermore, it is unitarily invariant, i.e., δ(UρU∗, UσU∗) = δ(ρ, σ), for any
unitary U .

The above definition of trace distance between density operators is consistent with the
corresponding classical definition of Section 2.3.6. In particular, for two classical states
ρ =

∑
z P (z)|ez〉〈ez| and σ =

∑
z Q(z)|ez〉〈ez| defined by probability mass functions P

and Q, we have

δ(ρ, σ) = δ(P,Q) .

More generally, the following lemma implies that for any (not necessarily classical) ρ
and σ there is always a measurement O that “conserves” the trace distance.

Lemma 4.3.5. Let ρ, σ ∈ S(H). Then

δ(ρ, σ) = max
O

δ(P,Q)

where the maximum ranges over all observables O ∈ HermH and where P and Q are the
probability mass functions of the outcomes when applying the measurement described by O
to ρ and σ, respectively.

12If the classical system HZ itself has a tensor product structure (e.g., HZ = HZ′ ⊗HZ′′ ) we typically
assume that the basis used for defining classical states has the same product structure (i.e., the basis
vectors are of the form e = e′ ⊗ e′′ with e′ ∈ HZ′ and e′′ ∈ HZ′′ ).
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Proof. Define ∆ := ρ− σ and let ∆ =
∑
i αi|ei〉〈ei| be a spectral decomposition. Further-

more, let R and S be positive operators defined by

R =
∑

i:αi≥0

αi|ei〉〈ei|

S = −
∑

i:αi<0

αi|ei〉〈ei| ,

that is,

∆ = R− S (4.19)

|∆| = R+ S . (4.20)

Finally, let O =
∑
x xPx be a spectral decomposition of O, where each Px is a projector

onto the eigenspace corresponding to the eigenvalue x. Then

δ(P,Q) =
1

2

∑
x

∣∣P (x)−Q(x)
∣∣ =

1

2

∑
x

∣∣tr(Pxρ)− tr(Pxσ)
∣∣ =

1

2

∑
x

∣∣tr(Px∆)
∣∣ . (4.21)

Now, using (4.19) and (4.20),∣∣tr(Px∆)
∣∣ =

∣∣tr(PxR)− tr(PxS)
∣∣ ≤ ∣∣tr(PxR)

∣∣+
∣∣tr(PxS)

∣∣ = tr(Px|∆|) , (4.22)

where the last equality holds because of (4.3). Inserting this into (4.21) and using
∑
x Px =

id gives

δ(P,Q) ≤ 1

2

∑
x

tr
(
Px|∆|

)
=

1

2
tr
(
|∆|
)

=
1

2
‖∆‖1 = δ(ρ, σ) .

This proves that the maximum maxO δ(P,Q) on the right hand side of the assertion of
the lemma cannot be larger than δ(ρ, σ). To see that equality holds, it suffices to verify
that the inequality in(4.22) becomes an equality if for any x the projector Px either lies in
the support of R or in the support of S. Such a choice of the projectors is always possible
because R and S have mutually orthogonal support.

An implication of Lemma 4.3.5 is that the trace distance between two states ρ and σ can
be interpreted as the maximum distinguishing probability, i.e., the maximum probability
by which a difference between ρ and σ can be detected (see Lemma 2.3.1). Another
consequence of Lemma 4.3.5 is that the trace distance cannot increase under the partial
trace, as stated by the following lemma.

Lemma 4.3.6. Let ρAB and σAB be bipartite density operators and let ρA := trB(ρAB)
and σA := trB(σAB) be the reduced states on the first subsystem. Then

δ(ρA, σA) ≤ δ(ρAB , σAB) .
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Proof. Let P and Q be the probability mass functions of the outcomes when applying a
measurement OA to ρA and σA, respectively. Then, for an appropriately chosen OA, we
have according to Lemma 4.3.5

δ(ρA, σA) = δ(P,Q) . (4.23)

Consider now the observable OAB on the joint system defined by OAB := OA ⊗ idB .
It follows from property (4.4) of the partial trace that, when applying the measurement
described by OAB to the joint states ρAB and σAB , we get the same probability mass
functions P and Q. Now, using again Lemma 4.3.5,

δ(ρAB , σAB) ≥ δ(P,Q) . (4.24)

The assertion follows by combining (4.23) and (4.24).

The significance of the trace distance comes mainly from the fact that it is a bound
on the probability that a difference between two states can be seen. However, in certain
situations, it is more convenient to work with an alternative notion of distance, called
fidelity.

Definition 4.3.7. The fidelity between two density operators ρ and σ on a Hilbert space
H is defined by

F (ρ, σ) :=
∥∥ρ 1

2σ
1
2

∥∥
1

where ‖S‖1 := tr
(√
S∗S

)
.

To abbreviate notation, for two vectors φ, ψ ∈ H, we sometimes write F (φ, ψ) instead of
F (|φ〉〈φ|, |ψ〉〈ψ|), and, similarly, δ(φ, ψ) instead of δ(|φ〉〈φ|, |ψ〉〈ψ|). Note that the fidelity
is always between 0 and 1, and that F (ρ, ρ) = 1.

The fidelity is particularly easy to compute if one of the operators, say σ, is pure. In
fact, if σ = |ψ〉〈ψ|, we have

F (ρ, |ψ〉〈ψ|) = ‖ρ 1
2σ

1
2 ‖1 = tr

(√
σ

1
2 ρσ

1
2

)
= tr

(√
|ψ〉〈ψ|ρ|ψ〉〈ψ|

)
=
√
〈ψ|ρ|ψ〉 .

In particular, if ρ = |φ〉〈φ|, we find

F (φ, ψ) = |〈φ|ψ〉| . (4.25)

The fidelity between pure states thus simply corresponds to the (absolute value of the)
scalar product between the states.

The following statement from Uhlmann generalizes this statement to arbitrary states.

Theorem 4.3.8 (Uhlmann). Let ρA and σA be density operators on a Hilbert space HA.
Then

F (ρA, σA) = max
ρAB ,σAB

F (ρAB , σAB) .

where the maximum ranges over all purifications ρAB and σAB of ρA and σA, respectively.
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Proof. Because any finite-dimensional Hilbert space can be embedded into any other
Hilbert space with higher dimension, we can assume without loss of generality that HA
and HB have equal dimension.

Let {ei}i and {fi}i be orthonormal bases of HA and HB , respectively, and define

Θ :=
∑
i

ei ⊗ fi .

Furthermore, let W ∈ Hom(HA,HB) be the transformation of the basis {ei}i to the basis
{fi}i, that is,

W : ei 7→ fi .

Writing out the definition of Θ, it is easy to verify that, for any SB ∈ End(HB),

(idA ⊗ SB)Θ = (S′A ⊗ idB)Θ (4.26)

where S′A := W−1STBW , and where STB denotes the transpose of SB with respect to the
basis {fi}i.

Let now ρAB = |Ψ〉〈Ψ| and let

Ψ =
∑
i

αie
′
i ⊗ f ′i

be a Schmidt decomposition of Ψ. Because the coefficients αi are the square roots of the
eigenvalues of ρA, we have

Ψ = (
√
ρA ⊗ idB)(UA ⊗ UB)Θ

where UA is the transformation of {ei}i to {e′i}i and, likewise, UB is the transformation
of {fi}i to {f ′i}i. Using (4.26), this can be rewritten as

Ψ = (
√
ρAV ⊗ idB)Θ

for V := UAW
−1UTBW unitary. Similarly, for σAB = |Ψ′〉〈Ψ′|, we have

Ψ′ = (
√
σAV

′ ⊗ idB)Θ

for some appropriately chosen unitary V ′. Thus, using (4.25), we find

F (ρAB , σAB) = |〈Ψ|Ψ′〉| = 〈Θ|V ∗√ρA
√
σAV

′|Θ〉 = tr(V ∗
√
ρA
√
σAV

′) ,

where the last equality is a consequence of the definition of Θ. Using the fact that any
unitary V ′ can be obtained by an appropriate choice of the purification σAB , this can be
rewritten as

F (ρAB , σAB) = max
U

tr(U
√
ρA
√
σA) .

The assertion then follows because, by Lemma 4.1.2,

F (ρA, σA) = ‖√ρA
√
σA‖1 = max

U
tr(U
√
ρA
√
σA) .
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Uhlmann’s theorem is very useful for deriving properties of the fidelity, as, e.g., the
following lemma.

Lemma 4.3.9. Let ρAB and σAB be bipartite states. Then

F (ρAB , σAB) ≤ F (ρA, σA) .

Proof. According to Uhlmann’s theorem, there exist purifications ρABC and σABC of ρAB
and σAB such that

F (ρAB , σAB) = F (ρABC , σABC) . (4.27)

Trivially, ρABC and σABC are also purifications of ρA and σA, respectively. Hence, again
by Uhlmann’s theorem,

F (ρA, σA) ≥ F (ρABC , σABC) . (4.28)

Combining (4.27) and (4.28) concludes the proof.

The trace distance and the fidelity are related to each other. In fact, for pure states,
represented by normalized vectors φ and ψ, we have

δ(φ, ψ) =
√

1− F (φ, ψ)2 . (4.29)

To see this, let φ⊥ be a normalized vector orthogonal to φ such that ψ = αφ + βφ⊥, for
some α, β ∈ R+ such that α2 +β2 = 1. (Because the phases of both φ, φ⊥, ψ are irrelevant,
the coefficients α and β can without loss of generality assumed to be real and positive.)
The operators |φ〉〈φ| and |ψ〉〈ψ| can then be written as matrices with respect to the basis
{φ, φ⊥},

|φ〉〈φ| =
(

1 0
0 0

)
|ψ〉〈ψ| =

(
|α|2 αβ∗

α∗β |β|2
)

In particular, the trace distance takes the form

δ(φ, ψ) =
1

2

∥∥|φ〉〈φ| − |ψ〉〈ψ|∥∥
1

=
1

2

∥∥∥∥(1− |α|2 −αβ∗
−α∗β −|β|2

)∥∥∥∥
1

.

The eigenvalues of the matrix on the right hand side are α0 = β and α1 = −β. We thus
find

δ(φ, ψ) =
1

2

(
|α0|+ |α1|

)
= β .

Furthermore, by the definition of β, we have

β =
√

1− |〈φ|ψ〉|2 .

The assertion (4.29) then follows from (4.25).
Equality (4.29) together with Uhlmann’s theorem are sufficient to prove one direction

of the following lemma.
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Lemma 4.3.10. Let ρ and σ be density operators. Then

1− F (ρ, σ) ≤ δ(ρ, σ) ≤
√

1− F (ρ, σ)2 .

Proof. We only prove the second inequality. For a proof of the first, we refer to [10].
Consider two density operators ρA and σA and let ρAB and σAB be purifications such

that

F (ρA, σA) = F (ρAB , σAB)

as in Uhlmann’s theorem. Combining this with equality (4.29) and Lemma 4.3.6, we find√
1− F (ρA, σA)2 =

√
1− F (ρAB , σAB)2 = δ(ρAB , σAB) ≥ δ(ρA, σA) .

4.4 Evolution and measurements

Let HA ⊗HB be a composite system. We have seen in the previous sections that, as long
as we are only interested in the observable quantities of subsystem HA, it is sufficient
to consider the corresponding reduced state ρA. So far, however, we have restricted our
attention to scenarios where the evolution of this subsystem is isolated.

In the following, we introduce tools that allow us to consistently describe the behavior of
subsystems in the general case where there is interaction between HA and HB . The basic
mathematical objects to be introduced in this context are completely positive maps (CPMs)
and positive operator valued measures (POVMs), which are the topic of this section.

4.4.1 Completely Positive Maps (CPMs)

Let HA and HB be the Hilbert spaces describing certain (not necessarily disjoint) parts
of a physical system. The evolution of the system over a time interval [t0, t1] induces a
mapping E from the set of states S(HA) on subsystem HA at time t0 to the set of states
S(HB) on subsystem HB at time t1. This and the following sections are devoted to the
study of this mapping.

Obviously, not every function E from S(HA) to S(HB) corresponds to a physically
possible evolution. In fact, based on the considerations in the previous sections, we have
the following requirement. If ρ is a mixture of two states ρ0 and ρ1, then we expect that
E(ρ) is the mixture of E(ρ0) and E(ρ1). In other words, a physical mapping E needs to
conserve the convex structure of the set of density operators, that is,

E
(
pρ0 + (1− p)ρ1

)
= pE(ρ0) + (1− p)E(ρ1) , (4.30)

for any ρ0, ρ1 ∈ S(HA) and any p ∈ [0, 1].
As we shall see, any mapping from S(HA) to S(HB) that satisfies (4.30) corresponds

to a physical process (and vice versa). In the following, we will thus have a closer look at
these mappings.
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For our considerations, it will be convenient to embed the mappings from S(HA) to
S(HB) into the space of mappings from End(HA) to End(HB). The convexity require-
ment (4.30) then turns into the requirement that the mapping is linear. In addition, the
requirement that density operators are mapped to density operators will correspond to
two properties, called complete positivity and trace preservation.

The definition of complete positivity is based on the definition of positivity.

Definition 4.4.1. A linear map E ∈ Hom(End(HA),End(HB)) is said to be positive if
E(S) ≥ 0 for any S ≥ 0.

An simple example of a positive map is the identity map on End(HA), in the following
denoted IA. A more interesting example is TA defined by

TA : S 7→ ST ,

where ST denotes the transpose with respect to some fixed basis. To see that TA is positive,
note that S ≥ 0 implies 〈φ|S|φ〉 ≥ 0 for any vector φ. Hence 〈φ|ST |φ〉 = 〈φ|S|φ〉 ≥ 0,
from which we conclude ST ≥ 0.

Remarkably, positivity of two maps E and F does not necessarily imply positivity of the
tensor map E ⊗ F defined by

(E ⊗ F)(S ⊗ T ) := E(S)⊗F(T ) .

In fact, it is straightforward to verify that the map IA⊗TA′ applied to the positive operator
ρAA′ := |Ψ〉〈Ψ|, for Ψ defined by (4.11), results in a non-positive operator.

To guarantee that tensor products of mappings such as E ⊗ F are positive, a stronger
requirement is needed, called complete positivity.

Definition 4.4.2. A linear map E ∈ Hom(End(HA),End(HB)) is said to be completely
positive if for any Hilbert space HR, the map E ⊗ IR is positive.

Definition 4.4.3. A linear map E ∈ Hom(End(HA),End(HB)) is said to be trace pre-
serving if tr(E(S)) = tr(S) for any S ∈ End(HA).

We will use the abbreviation CPM to denote completely positive maps. Moreover, we
denote by TPCPM(HA,HB) the set of trace-preserving completely positive maps from
End(HA) to End(HB).

4.4.2 The Choi-Jamiolkowski isomorphism

The Choi-Jamiolkowski isomorphism is a mapping that relates CPMs to density operators.
Its importance results from the fact that it essentially reduces the study of CPMs to
the study of density operators. In other words, it allows us to translate mathematical
statements that hold for density operators to statements for CPMs (and vice versa).

Let HA and HB be Hilbert spaces, let HA′ be isomorphic to HA, and define the nor-
malized vector Ψ = ΨA′A ∈ HA′ ⊗HA by

Ψ =
1√
d

d∑
i=1

ei ⊗ ei
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where {ei}i=1,...,d is an orthonormal basis of HA ∼= HA′ and d = dim(HA).

Definition 4.4.4. The Choi-Jamiolkowski mapping (relative to the basis {ei}i) is the
linear function τ from Hom(End(HA),End(HB)) to End(HA′ ⊗HB) defined by

τ : E 7→ (IA′ ⊗ E)(|Ψ〉〈Ψ|) .

Lemma 4.4.5. The Choi-Jamiolkowski mapping

τ : Hom(End(HA),End(HB)) −→ End(HA′ ⊗HB)

is an isomorphism. Its inverse τ−1 maps any ρA′B to

τ−1(ρA′B) : SA 7→ d · trA′
((
TA→A′(SA)⊗ idB

)
ρA′B

)
,

where TA→A′ : End(HA)→ End(HA′) is defined by

TA→A′(SA) :=
∑
i,j

|ei〉A′〈ej |ASA|ei〉A〈ej |A′ .

Proof. It suffices to verify that the mapping τ−1 defined in the lemma is indeed an inverse
of τ . We first check that τ ◦ τ−1 is the identity on End(HA′ ⊗HB). That is, we show that
for any operator ρA′B ∈ End(HA′ ⊗HB), the operator

τ(τ−1(ρA′B)) := d · (IA′ ⊗ trA′)
((

(IA′ ⊗ TA→A′)(|Ψ〉〈Ψ|)⊗ idB
)
(idA′ ⊗ ρA′B)

)
(4.31)

equals ρA′B (where we have written IA′ ⊗ trA′ instead of trA′ to indicate that the trace
only acts on the second subsystem HA′). Inserting the definition of Ψ, we find

τ(τ−1(ρA′B)) = d · (IA′ ⊗ trA′)
(∑
i,j

(|ei〉〈ej |A′ ⊗ |ej〉〈ei|A′ ⊗ idB)(idA′ ⊗ ρA′B)
)

=
∑
i,j

(|ei〉〈ei|A′ ⊗ idB)ρA′B(|ej〉〈ej |A′ ⊗ idB) = ρA′B ,

which proves the claim that τ ◦ τ−1 is the identity.
It remains to show that τ is injective. For this, let SA ∈ End(HA) be arbitrary and

note that

(TA→A′(SA)⊗ idA)Ψ = (idA′ ⊗ SA)Ψ .

Together with the fact that trA′(|Ψ〉〈Ψ|) = 1
d idA this implies

E(SA) = d · E
(
SAtrA′(|Ψ〉〈Ψ|)

)
= d · trA′

(
(IA′ ⊗ E)

(
(idA′ ⊗ SA)|Ψ〉〈Ψ|

))
= d · trA′

(
(IA′ ⊗ E)

(
(TA→A′(SA)⊗ idA)|Ψ〉〈Ψ|

))
= d · trA′

(
(TA→A′(SA)⊗ idA)(IA′ ⊗ E)(|Ψ〉〈Ψ|)

)
.
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Assume now that τ(E) = 0. Then, by definition, (IA′ ⊗ E)(|Ψ〉〈Ψ|) = 0. By virtue of the
above equality, this implies E(SA) = 0 for any SA and, hence, E = 0. In other words,
τ(E) = 0 implies E = 0, i.e., τ is injective.

In the following, we focus on trace-preserving CPMs. The set TPCPM(HA,HB) ob-
viously is a subset of Hom(End(HA),End(HB)). Consequently, τ(TPCPM(HA,HB)) is
also a subset of End(HA′ ⊗ HB). It follows immediately from the complete positivity
property that τ(TPCPM(HA,HB)) only contains positive operators. Moreover, by the
trace-preserving property, any ρA′B ∈ τ(TPCPM(HA,HB)) satisfies

trB(ρA′B) =
1

d
idA′ . (4.32)

In particular, ρA′B is a density operator.
Conversely, the following lemma implies13 that any density operator ρA′B that satis-

fies (4.32) is the image of some trace-preserving CPM. We therefore have the following
characterization of the image of TPCPM(HA,HB) under the Choi-Jamiolkowski isomor-
phism,

τ(TPCPM(HA,HB)) = {ρA′B ∈ S(HA ⊗HB) : trB(ρA′B) = 1
d idA′} .

Lemma 4.4.6. Let Φ ∈ HA′ ⊗ HB such that trB(|Φ〉〈Φ|) = 1
d idA′ . Then the mapping

E := τ−1(|Φ〉〈Φ|) has the form

E : SA 7→ USAU
∗

where U ∈ End(HA ⊗HB) is an isometry, i.e., U∗U = idA.

Proof. Using the expression for E := τ−1(|Φ〉〈Φ|) provided by Lemma 4.4.5, we find, for
any SA ∈ End(HA),

E(SA) = d · trA′
(
(TA→A′(SA)⊗ idB)|Φ〉〈Φ|

)
= d ·

∑
i,j

〈ei|SA|ej〉(〈ei| ⊗ idB)|Φ〉〈Φ|(|ej〉 ⊗ idB)

=
∑
i,j

EiSAE
∗
j ,

where Ei :=
√
d · (〈ei| ⊗ idB)|Φ〉〈ei|. Defining U :=

∑
iEi, we conclude that E has the

desired form, i.e., E(SA) = USAU
∗.

To show that U is an isometry, let

Φ =
1√
d

∑
i

ei ⊗ fi

13See the argument in Section 4.4.3.
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be a Schmidt decomposition of Φ. (Note that, because trB(|Φ〉〈Φ|) is fully mixed, the
basis {ei} can be chosen to coincide with the basis used for the definition of τ .) Then
(〈ei| ⊗ idB)|Φ〉 = |fi〉 and, hence,

U∗U = d
∑
i,j

|ej〉〈Φ|(|ej〉 ⊗ idB)(〈ei| ⊗ idB)|Φ〉〈ei| = idA .

4.4.3 Stinespring dilation

The following lemma will be of crucial importance for the interpretation of CPMs as
physical maps.

Lemma 4.4.7 (Stinespring dilation). Let E ∈ TPCPM(HA,HB). Then there exists an
isometry U ∈ Hom(HA,HB ⊗HR), for some Hilbert space H, such that

E : SA 7→ trR(USAU
∗) .

Proof. Let EA→B := E , define ρAB := τ(E), and let ρABR be a purification of ρAB . We then
define E ′ = E ′A→(B,R) := τ−1(ρABR). According to Lemma 4.4.6, because trBR(ρABR) is

fully mixed, E ′A→(B,R) has the form

E ′A→(B,R) : SA 7→ USAU
∗ .

The assertion then follows from the fact that the diagram below commutes, which can be
readily verified from the definition of the Choi-Jamiolkowski isomorphism. (Note that the
arrow on the top corresponds to the operation E ′ 7→ trR ◦ E ′.)

EA→B
trR←−−−− E ′A→(B,R)

τ

y xτ−1

ρA′B −−−−→
purif.

ρA′BR

We can use Lemma 4.4.7 to establish a connection between general trace-preserving
CPMs and the evolution postulate of Section 4.3.2. Let E ∈ TPCPM(HA,HA) and let U ∈
Hom(HA,HA⊗HR) be the corresponding Stinespring dilation, as defined by Lemma 4.4.7.
Furthermore, let Ũ ∈ Hom(HA⊗HR,HA⊗HR) be a unitary embedding of U in HA⊗HR,
i.e., Ũ is unitary and, for some fixed w0 ∈ HR, satisfies

Ũ : v ⊗ w0 7→ Uv .

Using the fact that U is an isometry, it is easy to see that there always exists such a Ũ .
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By construction, the unitary Ũ satisfies

E(SA) = trR
(
Ũ(SA ⊗ |w0〉〈w0|)Ũ∗

)
for any operator SA on HA. Hence, the mapping E on HA can be seen as a unitary on
an extended system HA ⊗HR (with HR being initialized with a state w0) followed by a
partial trace over HR. In other words, any possible mapping from density operators to
density operators that satisfies the convexity criterion (4.30) (this is exactly the set of
trace-preserving CPMs) corresponds to a unitary evolution of a larger system.

4.4.4 Operator-sum representation

As we have seen in the previous section, CPMs can be represented as unitaries on a larger
system. In the following, we consider an alternative and somewhat more economic14

description of CPMs.

Lemma 4.4.8 (Operator-sum representation). For any E ∈ TPCPM(HA,HB) there ex-
ists a family {Ex}x of operators Ex ∈ Hom(HA,HB) such that

E : SA 7→
∑
x

ExSAE
∗
x (4.33)

and
∑
xE
∗
xEx = idA.

Conversely, any mapping E of the form (4.33) is contained in TPCPM(HA,HB).

Proof. By Lemma 4.4.7, there exists operators U ∈ Hom(HA,HB ⊗HR) such that

E(SA) = trR(USAU
∗) =

∑
x

(idB ⊗ 〈fx|)USAU∗(idB ⊗ |fx〉) ,

where {fx}x is an orthonormal basis of HR. Defining

Ex := (idB ⊗ 〈fx|)U ,

the direct assertion follows from the fact that∑
x

E∗xEx =
∑
x

U∗(idB ⊗ |fx〉)(idB ⊗ 〈fx|)U = U∗U = id ,

which holds because U is an isometry.
The converse assertion can be easily verified as follows. The fact that any mapping of

the form (4.33) is positive follows from the observation that ExSAE
∗
x is positive whenever

SA is positive. To show that the mapping is trace-preserving, we use

tr(E(SA)) =
∑
x

tr(ExSAE
∗
x) =

∑
x

tr(E∗xEXSA) = tr(idASA) .

14In the sense that there is less redundant information in the description of the CPM.
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Note that the family {Ex}x is not uniquely determined by the CPM E . This is easily
seen by the following example. Let E be the trace-preserving CPM from End(HA) to
End(HB) defined by

E : SA 7→ tr(SA)|w〉〈w|

for any operator SA ∈ End(HA) and some fixed w ∈ HB . That is, E maps any density
operator to the state |w〉〈w|. It is easy to verify that this CPM can be written in the
form (4.33) for

Ex := |w〉〈ex|

where {ex}x in an arbitrary orthonormal basis of HA.

4.4.5 Measurements as CPMs

An elegant approach to describe measurements is to use the notion of classical states.
Let ρAB be a density operator on HA ⊗ HB and let O =

∑
x xPx be an observable on

HA. Then, according to the the measurement postulate of Section 4.3.2, the measurement
process produces a classical value X distributed according to the probability distribution
PX specified by (4.13), and the post-measurement state ρ′AB,x conditioned on the outcome
x is given by (4.14). This situation is described by a density operator

ρ′XAB :=
∑
x

PX(x)|ex〉〈ex| ⊗ ρ′AB,x .

on HX ⊗ HA ⊗ HB which is classical on HX (with respect to some orthonormal basis
{ex}x). Inserting the expressions for PX and ρ′AB,x, this operator can be rewritten as

ρ′XAB =
∑
x

|ex〉〈ex| ⊗ (Px ⊗ idB)ρAB(Px ⊗ idB) .

Note that the mapping E from ρAB to ρ′XAB can be written in the operator-sum repre-
sentation (4.33) with

Ex := |x〉 ⊗ Px ⊗ idB ,

where ∑
x

E∗xEx =
∑
x

Px ⊗ idB = idAB .

It thus follows from Lemma 4.4.8 that the mapping

E : ρAB 7→ ρ′XAB

is a trace-preserving CPM.
This is a remarkable statement. According to the Stinespring dilation theorem, it tells

us that any measurement can be seen as a unitary on a larger system. In other words, a
measurement is just a special type of evolution of the system.
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4.4.6 Positive operator valued measures (POVMs)

When analyzing a physical system, one is often only interested in the probability distri-
bution of the observables (but not in the post-measurement state). Consider a system
that first undergoes an evolution characterized by a CPM and, after that, is measured.
Because, as argued above, a measurement can be seen as a CPM, the concatenation of
the evolution and the measurement is again a CPM E ∈ TPCPM(HA,HX ⊗HB). If the
measurement outcome X is represented by orthogonal vectors {ex}x of HX , this CPM has
the form

E : SA 7→
∑
x

|ex〉〈ex| ⊗ ExSAE∗x .

In particular, if we apply the CPM E to a density operator ρA, the distribution PX of the
measurement outcome X is given by

PX(x) = tr(ExρAE
∗
x) = tr(MxρA) ,

where Mx := E∗xEx.
From this we conclude that, as long as we are only interested in the probability distri-

bution of X, it suffices to characterize the evolution and the measurement by the family
of operators Mx. Note, however, that the operators Mx do not fully characterize the full
evolution. In fact, distinct operators Ex can give raise to the same operator Mx = E∗xEx.

It is easy to see from Lemma 4.4.8 that the family {Mx}x of operators defined as above
satisfies the following definition.

Definition 4.4.9. A positive operator valued measure (POVM) (on H) is a family {Mx}x
of positive operators Mx ∈ Herm(H) such that∑

x

Mx = idH .

Conversely, any POVM {Mx}x corresponds to a (not unique) physically possible evo-
lution followed by a measurement. This can easily be seen by defining a CPM by the
operator-sum representation with operators Ex :=

√
Mx.

4.4.7 The diamond norm of CPMs

Let E and F be arbitrary CPMs from S(H) to S(H′). The defining demand on the
definition of the wanted distance measure d(.., ..) between the CPMs E and F is that it
is proportional to the maximal probability for distinguishing the maps E and F in an
experiment. After our discussion of the trace distance between states in an earlier chapter
it is natural to propose the distance measure

d̃(E ,F) := max
ρ∈S(H(in))

‖E(ρ)−F(ρ)‖1

if one recalls the ”maximal distinguishing probability property” of the trace distance. Up
to a factor 1/2 this is the maximal probability to distinguish the CPMs E and F in an
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experiment which works with initial states in the Hilbert space H. But this is not the best
way to distinguish the CPMs E and F in an experiment!Note that in our naive definition
above we have excluded the possibility to consider initial states in ”larger” Hilbert spaces
in the maximization-procedure. The probability to distinguish the CPMs E and F in an
experiment may increase if we ”enlarge” the input Hilbert space H by an additional tensor
space factor;

H H⊗HE ;

and apply the CPMs E and F as E ⊗ IE and F ⊗ IE to states in S(H ⊗ HE). These
replacements lead to a simultaneous replacement of the output Hilbert space:

H′  H′ ⊗HE .

Let us have a closer look at an explicit example to recognize that situations occur in which

d̃(E ,F) < d̃(E ⊗ IE ,F ⊗ IE)

for some Hilbert space HE . This shows why we discard the immediate use of d̃(E ,F) but
use a distance measure of the form d̃(E ⊗ IE ,F ⊗IE) instead. We will still have to figure
out the optimal choice for the Hilbert space HE which will lead to the definition of the so
called ”diamond norm”.

Example 4.4.10. Let H ∼= H′ ∼= HE ∼= C2, define

E : S(C2) → S(C2)
ρ 7→ E(ρ) = (1− p)ρ+ p

2 IC2

and set F := I := IC2 . We are trying to show that

d̃(E , I) < d̃(E ⊗ IE , I ⊗ IE).

We first compute the left hand sight explicitly and prove the inequality afterwards building
on the explicit result derived for the left hand sight.

The left hand sight. According to the proposed distance measure d̃(.., ..),

d̃(E , I) = max
ρ∈S(H)

‖E(ρ)− I(ρ)‖1

To compute this expression we first prove two claims.

Claim 1: The distance ‖E(ρ)−F(ρ)‖1 is maximal for pure states ρ = |ψ〉〈ψ|, ψ ∈ H.
Proof: The state ρ can be written in the form

ρ = pρ1 + (1− p)ρ2

(ρ1 and ρ2 have support on orthogonal subspaces) whenever the state ρ isn’t pure. In this
case we observe

‖E(ρ)−F(ρ)‖1 ≤ p‖E(ρ1)−F(ρ1)‖1 + (1− p)‖E(ρ2)−F(ρ2)‖1
≤ max{‖E(ρ1)−F(ρ1)‖1, ‖E(ρ2)−F(ρ2)‖1},
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where we have used the linearity of CPMs and the triangle inequality in the first step. The
application of this to smaller and smaller subsystems leads to pure states in the end. This
proves the claim.

Claim 2: The distance ‖E(ρ)− I(ρ)‖1 is invariant under unitary transformations of ρ,
i.e.,

‖E(ρ)− ρ‖1 = ‖E(UρU∗)− UρU∗‖1.

Proof: Because of the invariance of the trace norm under unitaries,

‖E(ρ)− ρ‖1 = ‖UE(ρ)U∗ − UρU∗‖1
= ‖E(UρU∗)− UρU∗‖1,

where we have used the explicit definition of the map E in the second step. This proves
the claim.

Together, these two claims imply that we can use any pure state ρ = |ψ〉〈ψ| to maximize
‖E(ρ)− ρ‖1. We chose |ψ〉 = |0〉 where {|0〉, |1〉} is the computational basis of C2. We get

d̃(E , I) =

∥∥∥∥( −p2 0
0 p

2

)∥∥∥∥
1

= p.

Proof of the inequality. Now that we have computed d̃(E , I) we have a closer look at an
experiment where the experimentalist implements the maps E and I as E ⊗ IE = E ⊗ I
and I ⊗ IE = I ⊗ I, respectively. We thus have to show that

d̃(E , I) < d̃(E ⊗ IE , I ⊗ IE).

According to the definition of d̃(.., ..) it is sufficient to find a state ρ ∈ S(C2 ⊗ C2) such
that

‖E ⊗ I(ρ)− I ⊗ I(ρ)‖1 ≥ d̃(E , I) = p.

For simplicity, we assume p = 1/2. Our ansatz for ρ is the Bell state |β0〉〈β0|.

Definition 4.4.11. The Bell states or EPR pairs are four specific two-qubit states
β0, ..., β3 defined by

|βµ〉 :=
∑

a,b∈{0,1}

1√
2

(σµ)ab|a, b〉.

Hence,

|β0〉 =
1√
2

(|00〉+ |11〉).

Inserting this state in ‖E ⊗ I(ρ)− I ⊗ I(ρ)‖1 gives approximately (for p = 1/2)

0.9789 > 1/2 = d̃(E , I),

where you may use Mathematica to diagonalize the resulting 4×4 matrix. This proves the
inequality.
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To summarize, we have found out that there exist situations in which

d̃(E , I) < d̃(E ⊗ IE , I ⊗ IE).

This forces us to use

d(E ,F) := max
ρ∈S(H⊗HE)

‖E ⊗ IE(ρ)−F ⊗ IE(ρ)‖1

instead of our naive approach above. Next one asks how the distinguishing probability
depends on the choice of the Hilbert spaceHE . To that purpose we are stating and proving
two lemmas. In the final definition of distance between CPMs we will then use a Hilbert
space HE which maximizes the probability for distinguishing the CPMs E and F .

Lemma 4.4.12. Let ρAB be a pure state on a Hilbert space HA ⊗HB and let ρ′AB′ be an
arbitrary state on a Hilbert space HA ⊗HB′ , such that

trBρAB = trB′ρ
′
AB′ .

Then there exists a CPM E : S(HB)→ S(HB′), such that

ρ′AB′ = IA ⊗ E(ρAB).

Proof. Assume that ρ′AB′ is pure. Since ρAB is pure (and by the assumption made in the
lemma) there exist states ψ ∈ HA⊗HB and ψ′ ∈ HA⊗HB′ , such that ρAB = |ψ〉〈ψ| and
ρ′AB′ = |ψ′〉〈ψ′|. Let

|ψ〉 =
∑
i

√
λi|vi〉A ⊗ |wi〉B

and
|ψ′〉 =

∑
i

√
λ′i|v

′
i〉A ⊗ |w′i〉B′

be the Schmidt decompositions of |ψ〉 and |ψ′〉. Without loss of generality we assume
|vi〉A = |v′i〉A because vi and v′i are both eigenvectors of the operator ρA := trBρAB =
trB′ρ

′
AB′ . Define the map

U :=
∑
i

|w′i〉B′〈wi|B .

This map U is an isometry because {wi}i and {w′i}i are orthonormal systems in HB and
HB′ , respectively. Consequently,

ψ′ = (idA ⊗ U)(ψ)

which proves the lemma for ρ′AB′ being pure.
Now let’s assume that ρ′AB′ isn’t pure and consider the purification ρ′AB′R of ρ′AB′ . Then
(according to the statement proved so far) there exists a map

U : HB → HB′ ⊗HR,
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such that
ρ′AB′R = (idA ⊗ U)ρAB(idA ⊗ U∗).

Now we simply define E := trR ◦ adidA⊗U and thus

ρ′AB′ = IA ⊗ E(ρAB)

which concludes the proof.

Let us come back to the question about the best choice for the Hilbert space HE ap-
pearing in the definition of the distance measure in the space of CPMs. Let E1 and E2 be
two CPMs from S(HA) to S(H′A) and let ρA be a state in S(HA), ρAR ∈ S(HA⊗HA) be
the purification of ρA, ρ′AB be a state in S(HA ⊗HB) such that ρA = trBρ

′
AB . Because

ρAR is pure there exists a state ψ ∈ HA ⊗HA, such that ρAR = |ψ〉〈ψ| and according to
the Schmidt decomposition there exist vi ∈ HA and real numbers λi ∈ R such that

ψ =
∑
i

√
λivi ⊗ vi.

According to the lemma we just proved there exists a CPM G : S(HA) → S(HB) such
that

ρ′AB = IA ⊗ G(ρAR).

The CPMs E1 and E2 act only on states in S(HA) and thus they act on the states ρAR
and ρ′AB as

E1 ⊗ IB(ρ′AB) = (IA ⊗ G) ◦ (E1 ⊗ IA)(ρAR)

E2 ⊗ IB(ρ′AB) = (IA ⊗ G) ◦ (E2 ⊗ IA)(ρAR).

We have proved in an earlier chapter about quantum states and operations that trace
preserving CPMs can never increase the distance between states. We thus get

‖E1 ⊗ IB(ρ′AB)− E2 ⊗ IB(ρ′AB)‖1 ≤ ‖E1 ⊗ IA(ρAR)− E2 ⊗ IA(ρAR)‖1.

This inequality holds for any choice of HB and states in S(HA ⊗HB). We conclude that
the right hand sight of our the inequality describes the best way to distinguish the CPMs
E1 and E2 in an experiment. Consequently, this is the best choice for the distance measure
between CPMs. This distance measure is induced by the following norm.

Definition 4.4.13 (Diamond norm for CPMs). Let H and G be two Hilbert spaces and
let

E : S(H)→ S(G)

be a CPM. Then the diamond norm ‖E‖♦ of E is defined as

‖E‖♦ := ‖E ⊗ IH‖1,

where ‖ · ‖1 denotes the so called trace norm for resources which is defined as

‖Ψ‖1 := max
ρ∈S(L1⊗L2)

‖Ψ(ρ)‖1

where Ψ : S(L1)→ S(L2) denotes an arbitrary CPM.
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5 Basic protocols

5.1 Teleportation

Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters, 1993.

“An unknown quantum state |φ〉 can be disassembled into, then later recon-
structed from, purely classical information and purely nonclassical Einstein-
Podolsky-Rosen (EPR) correlations. To do so the sender, Alice, and the re-
ceiver, Bob, must prearrange the sharing of an EPR-correlated pair of particles.
Alice makes a joint measurement on her EPR particle and the unknown quan-
tum system, and sends Bob the classical result of this measurement. Knowing
this, Bob can convert the state of his EPR particle into an exact replica of the
unknown state |φ〉 which Alice destroyed.”

With EPR correlations, Bennett et al. mean our familiar ebit 1√
2
|00 + 11〉. In more

precise terms, we are interested in performing the following task:

Task: Alice wants to communicate the unknown state ρ of one qubit in system S to Bob.
They share one Bell state. She can also send him two classical bits.

The protocol that achieves this, makes integral use of the Bell measurement. This is a
measurement of two qubits and consists of projectors onto the four Bell states

|ψ00〉 =
1√
2
|00 + 11〉

|ψ01〉 =
1√
2
|00− 11〉

|ψ10〉 =
1√
2
|01 + 10〉

|ψ11〉 =
1√
2
|01− 10〉.

More compactly, we can write

|ψij〉 = id⊗ σij |ψ00〉

where σij = σixσ
j
z. For simplicity of the exposition, let ρ = |φ〉〈φ| be a pure state,

|φ〉 = α|0〉 + β|1〉 (the more general case of mixed ρ follows then by linearity of the
protocol). The global state before the protocol is therefore given by |φ〉S ⊗ |ψ00〉AB . The
protocol is as follows:
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Protocol

1. Alice measures S and A (her half of the entangled state) in the Bell basis.

Alice’s outcome Global projector Resulting global state

00 : |ψ00〉SA |ψ00〉〈ψ00|SA ⊗ idB |ψ00〉SA ⊗ (α|0〉+ β|1〉)B

01 : |ψ01〉SA |ψ01〉〈ψ01|SA ⊗ idB |ψ01〉SA ⊗ (α|0〉 − β|1〉)B

10 : |ψ10〉SA |ψ10〉〈ψ10|SA ⊗ idB |ψ10〉SA ⊗ (β|0〉+ α|1〉)B

11 : |ψ11〉SA |ψ11〉〈ψ11|SA ⊗ idB |ψ11〉SA ⊗ (β|0〉 − α|1〉)B

2. Alice sends the classical bits that describe her outcome, i, j, to Bob.

3. Bob applies σij on his qubit.

The resulting state is |φ〉 as one easily verifies by direct computation or alternatively by
the observation that

σij ⊗ σij |ψ00〉 = |ψ00〉.

ψ00

i,j

ψij

Bob

Alice

ρ
Bell

σ ij
ρ

Note that each outcome is equally probable and that entanglement between ρ and the
rest of the universe is preserved.

Diagrammatically, we can summarise the teleportation as the following conversion of
resources:

2→
1
g

≥ 1
 

where the straight arrow represents the sending of a classical bit, the wiggly line an
ebit and the wiggly arrow the sending of a qubit. The inequality sign means that there
exists a protocol that can transform the resources of one ebit and two bits of classical
communication into the resource of sending one qubit.
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5.2 Superdense coding

Superdense coding answers the question of how many classical bits we can send with one
use of a quantum channel if we are allowed to use preshared ebits.

Task Alice wants to send two classical bits, i and j, to Bob. They share one Bell state.
She can also send him one qubit.

Protocol

1. Alice applies a local unitary operation, σij , on her half of the entangled state.

i, j Global operation Resulting state

00 idA ⊗ idB
|00〉+|11〉√

2

|00〉+|11〉√
2

= |ψ00〉

01 σxA ⊗ idB
|00〉+|11〉√

2

|00〉−|11〉√
2

= |ψ01〉

10 σyA ⊗ idB
|00〉+|11〉√

2

|01〉+|10〉√
2

= |ψ10〉

11 σzA ⊗ idB
|00〉+|11〉√

2

|01〉−|10〉√
2

= |ψ11〉

Recall, that the states |ψij〉 form a basis for two qubits: the Bell basis.

2. Alice sends her qubit to Bob.

3. Bob measures the two qubits in the Bell basis. Outcome of his measurement: i, j.

ψ00

σ ij

i,j

Bell

unitary operation

measurement
ψij

i,j

Bob

Alice

We can summarise the task of superdense coding in the following diagram:

1
 
1
g

≥ 2→
In order to show that this inequality is tight, i.e. that we cannot send more than two
classical bits with one ebit and one use of a qubit channel, we will need some more
technology - in particular the concept of quantum entropy.
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5.3 Entanglement Conversion

With teleportation and superdense coding we have seen two tasks that can be solved nicely
when we have access to ebits. In a realistic scenario, unfortunately, it is difficult to obtain
or generate ebits exactly. It is therefore important to understand when and how we can
distill ebits from other quantum correlations or more generally, how to convert one type
of quantum correlation into another one. In this section, we will consider the simplest
instance of this problem, namely the conversion of one bipartite pure state into another
one. Before we state the main result, we need to do some preparatory work and introduce
the concept of majorisation.

5.3.1 Majorisation

Given two d-dimensional real vectors x and y with entries in non-increasing order (i.e.
xi ≥ xi+1 and yi ≥ yi+1) and of the same length

∑
i xi =

∑
i yi we say that y majorises

x, and write x ≺ y if
k∑
i=1

xi ≤
k∑
i=1

yi

for all k ∈ {1, . . . , d}.

Lemma 5.3.1. If y majorises x, then there exists a set of permutation matrices with
associated probability {πi, pi} such that

x =
∑
i

piπiy.

Proof. We prove lemma inductively. Clearly the case d = 1 is true and we will therefore
focus on the inductive step d− 1 7→ d.
y � x implies that x1 ≤ y1, which in turn implies that there exists j such that yj ≤

x1 ≤ yj−1 ≤ y1. Consequently, there is a t ∈ [0, 1] such that x1 = ty1 + (1 − t)yj . Let T
be the transposition that interchanges places 1 and j and let P = tid + (1 − t)T . Then
Py = (x1, y2, . . . , yj−1, (1− t)y1 + tyj , . . .︸ ︷︷ ︸

ỹ

). It remains to show that ỹ � x̃, where the latter

is just x without x1, since then the result follows by applying the inductive hypothesis to
x̃ and ỹ. This is shown as follows. For k < j:

k∑
i=2

xi ≤
k∑
i=2

x1 ≤
k∑
i=2

yj−1 ≤
k∑
i=2

yi.
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For k ≥ j:

k−1∑
i=1

x̃i =

k∑
i=2

xi

≤

 k∑
j=2

yi

+ (y1 − x1)

≤

 k∑
i=2:i 6=j

yi

+ (y1 − tyj − (1− t)y1 + yj)

=

 k∑
i=2:i 6=j

yi

+ (ty1 + (1− t)yj)

=

k−1∑
i=1

ỹi

Lemma 5.3.2. Let A and B and C = A+B be Hermitian operators with eigenvalues a,
b and c ordered non-increasingly, then c ≺ a+ b

Proof.

k∑
i=1

ci = max
V :|V |=k

trPV (A+B)

≤ max
V :|V |=k

trPVA+ max
W :|W |=k

trPWB

=

k∑
i=1

ai +

k∑
i=1

bi

where we used Ky Fan’s principle which characterises the largest (and also the largest k)
eigenvalues in a variational way.

Corollary 5.3.3. Let r and s be the eigenvalues (incl. multiplicities) of density matrices
ρ and σ in non-increasing order. Then s � r iff there exists a finite set of unitaries and
associated probabilities {Ui, pi} such that

ρ =
∑
i

piUiσU
−1
i

Proof. If s � r, then according to Lemma 5.3.1 there exists a set of permutation matrices
πi (which are in particular unitary) and probabilities pi such that r =

∑
i piπis. Inserting
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UρU−1 = diag(r) and V σV −1 = diag(s) for unitaries U and V arising from the spectral
decomposition we find

UρU−1 =
∑
i

piπiV σV
−1π−1

i

which is equivalent to the claim for Ui := U−1πiV .
Conversely, Lemma 5.3.2 applied to ρ =

∑
i piUiσU

−1
i implies

s = EV(σ) =
∑
i

EV(piUiσU
−1
i ) � EV(ρ) = r

We now want to argue that any measurement on Bob’s side of the state |ψ〉 can be
replaced by a measurement on Alice’s side and a unitary on Bob’s side dependent on
Alice’s measurement outcome. Note that this is only possible since we know the state on
which the measurement will be applied – without this knowledge this is impossible. In
order to see how it works, we write |ψ〉 in its Schmidt decomposition

|ψ〉 =
∑
i

ψi|i〉A|i〉B

and express Bob’s the Kraus operators of Bob’s measurement Bk (i.e.
∑
k B
†
kBk = id) in

his Schmidt basis
Bk =

∑
ij

bk,ji|j〉〈i|B .

We now define measurement operators for Alice

A′k =
∑
ij

bk,ji|j〉〈i|A

and note that
id⊗Bk|ψ〉 = FA′k ⊗ id|ψ〉

where F is the operator exchanging the two systems that we have encountered previously.1

This shows in particular that the Schmidt coefficients of id ⊗ Bk|ψ〉 and A′k ⊗ id|ψ〉 are
identical. Therefore, there exist unitaries Uk and Vk such that

id⊗Bk|ψ〉 = Uk ⊗ Vk ·A′k ⊗ id|ψ〉

which means that we can simulate the measurement on Bob’s side on |ψ〉 by a measurement
on Alice’s side (with Kraus operators Ak = UkA

′
k) followed by a unitary Vk on Bob’s side.

This way we can reduce an arbitrary LOCC protocol between Alice and Bob (applied
to |ψ〉) by a measurement on Alice’s side followed by a unitary on Bob’s side conditioned
on Alice’s measurement outcome.

This preparation will allows us to prove the following result due to Nielsen.

1F =
∑

ij |j〉〈i| ⊗ |i〉〈j|
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Theorem 5.3.4. |ψ〉 can be transformed into |φ〉 by LOCC iff r ≺ s, where r and s are
the local eigenvalues of |ψ〉 and |φ〉, respectively.

Proof. Define ρAB = |ψ〉〈ψ|AB and σAB = |φ〉〈φ|AB with reduced states ρA and σA. By
the above it suffices to consider protocols where Alice performs a measurement with Kraus
operators Ak followed by a unitary Vk on Bob’s side. Since the protocol must transform
Alice’s local state for each measurement outcome into the local part of the final state, we
have

AkρAA
†
k = pkσA (5.1)

for all k, where pk is the probability to obtain outcome k. Let

Ak
√
ρA = |Ak

√
ρA|Uk =

√
AkρAAkUk

be the polar decomposition of the LHS. Multiplying this equation with its hermitian
conjugate and using (5.1) we find

√
ρAA

†
kAk
√
ρA = pkU

†
kσAUk.

Summing over k yields

ρA =
∑
k

pkU
†
kσAUk (5.2)

which by Corollary 5.3.3 implies that r ≺ s.
In order to see the opposite direction, note that r ≺ s implies that there exist probabil-

ities pk and unitaries Uk such that (5.2) holds. We then define

Ak :=
√
pkσAU

†
k

√
ρA
−1

where we assume for simplicity that ρA is invertible (the other case can be considered a

limiting case). It is easy to verify that
∑
k A
†
kAk = id. Clearly

AkρAA
†
k = pkσk

and therefore there exist unitaries Vk on Bob’s side such that the final state is |φ〉.
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6 Entropy of quantum states

In Chapter 3 we have discussed the definitions and properties of classical entropy measures
and we have learned about their usefulness in the discussion of the channel coding theo-
rem. After the introduction of the quantum mechanical basics in chapter 4 (and after the
short insertion about the non-classicality in quantum theory) we are ready to introduce
the notion of entropy in the quantum mechanical context. Textbooks usually start the
discussion of quantum mechanical entropy with the definition of the so called von Neu-
mann entropy and justify the explicit expression as being the most natural analog of the
classical Shannon entropy for quantum systems. But this explanation is not completely
satisfactory. Hence a lot of effort is made to replace the von Neumann entropy by the
quantum version of the min-entropy which can be justified by its profound operational
interpretation (recall for example the discussion of the channel coding theorem where we
worked with the min-entropy and where the Shannon entropy only appears as a special
case).

One can prove that the smooth min-entropy of a product state ρ⊗n converges for large
n to n-times the von Neumann entropy of the state ρ. The quantum mechanical min-
entropy thus generalizes the von Neumann entropy in some sense. But since this work is
still in progress we forgo this modern point of view and begin with the definition of the von
Neumann entropy and only indicate at the end of the chapter these new developments.

6.1 Motivation and definitions

Let HZ be a Hilbert space of dimension n which is spanned by the linearly independent
family {|z〉}z and consider an arbitrary state ρ on HZ which is classical with respect to
{|z〉}z. Hence,

ρ =
∑
z

PZ(z)|z〉〈z|,

where PZ(z) is the probability distribution for measuring |z〉 in a measurement of ρ in the
basis {|z〉}z. Our central demand on the definition of the entropy measures of quantum
states is that they generalize the classical entropies. More precisely, we demand that the
evaluation of the quantum entropy on ρ yields the corresponding classical entropy of the
distribution PZ(z). The following definitions meet these requirements as we will see below.

Definition 6.1.1. Let ρ be an arbitrary state on a Hilbert space HA. Then the von
Neumann entropy H is the quantum mechanical generalization of the Shannon entropy.
It is defined by

H(A)ρ := −tr(ρ log ρ).
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The quantum mechanical min-entropy Hmin generalizes the classical min-entropy. It is
defined by

Hmin(A)ρ := − log2 ‖ρ‖∞.

The quantum mechanical max-entropy Hmax generalizes the classical max-entropy. It is
defined by

Hmax(A)ρ := log2 |supp(ρ)|,

where supp(ρ) denotes the support of the operator ρ.

Now, we check if our requirement from above really is fulfilled. To that purpose we
consider again the state

ρZ =
∑
z

PZ(z)|z〉〈z|.

Since the map ρ→ ρ log ρ is defined through the eigenvalues of ρ,

H(Z)ρ = −tr(ρ log ρ) = −
∑
z

PZ(z) log2 PZ(z),

which reproduces that the Shannon entropy as demanded. Recall that ‖ρ‖∞ is the op-
erator norm which equals the greatest eigenvalue of the operator ρ. Thus, the quantum
mechanical min-entropy reproduces the classical min-entropy:

Hmin(Z)ρ = − log2 ‖ρ‖∞ = − log max
z∈Z

PZ(z).

To show that the classical max-entropy emerges as a special case from the quantum me-
chanical max-entropy we make the simple observation

Hmax(Z)ρ = log2 |suppρ| = log2 |supp PZ |.

Notation. Let ρAB be a density operator on the Hilbert space HA ⊗ HB and let ρA
and ρB be defined as the partial traces

ρA := trB ρAB , ρB := trA ρAB .

Then the entropies of the states ρAB ∈ S(HA ⊗HB), ρA ∈ S(HA) and ρB ∈ S(HB) are
denoted by

H(AB)ρ := H(AB)ρAB
, H(A)ρ := H(A)ρA , H(B)ρAB

:= H(B)ρB .

(other conventions are for instance H(ρ) or H(ρA), and there may be a few of those left
in these notes)

6.2 Properties of the von Neumann entropy

In the present section we state and prove some basic properties of the von Neumann
entropy.
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Lemma 6.2.1. Let ρ be an arbitrary state on HA. Then,

H(A)ρ ≥ 0,

with equality iff ρ is pure.

Proof. Let {|j〉}j be a complete orthonormal system which diagonalizes ρ, i.e.,

ρ =
∑
j

pj |j〉〈j|,

with
∑
j pj = 1. Therefore,

H(A)ρ = −
∑
j

pj log pj . (6.1)

The function −x log x is positive on [0, 1]. Consequently, the RHS above is positive which
shows that the entropy is non-negative. It is left to show that H(A)ρ = 0 iff ρ is pure.

Assume H(A)ρ = 0. Since the function −x log x is non-negative on [0, 1] each term in
the summation in (6.1) has to vanish separately. Thus, either pk = 0 or pk = 1 for all k.
Because of the constraint

∑
j pj = 1 exactly one coefficient pm is equal to one whereas all

the others vanish. We conclude that ρ describes the pure state |m〉.

Assume ρ is the pure state |φ〉. Hence,

ρ = |φ〉〈φ|

which yields H(A)ρ = 0.

Lemma 6.2.2. The von Neumann entropy is invariant under similarity transformations,
i.e.,

H(A)ρ = H(A)UρU−1

for U ∈ GL(HA).

Proof. Let f : R → R be a function and let M be an operator on a Hilbert space H.
Recall that

f(M) := V −1f(VMV −1)V,

where V ∈ GL(H) diagonalizes M . Now we show that

f(UMU−1) = Uf(M)U−1

for U ∈ GL(H) arbitrary. Let D denote the diagonal matrix similar to M . The operator
V U−1 diagonalizes UMU−1. According to the definition above,

f(UMU−1) = UV −1f(V U−1UMU−1UV −1)V U−1 = UV −1f(VMV −1)V U−1.

On the other hand
Uf(M)U−1 = UV −1f(VMV −1)V U−1.

This claims the assertion from above. Since the trace is unaffected by similarity transfor-
mations we conclude the proof by setting M = ρ and f(x) = x log(x).

61



Lemma 6.2.3. Let HA and HB be Hilbert spaces, let |ψ〉 be is a pure state on HA ⊗HB
and let ρAB := |ψ〉〈ψ|. Then,

H(A)ρ = H(B)ρ.

Proof. According to the Schmidt decomposition there exist orthonormal families {|iA〉}
and {|iB〉} in HA and HB , respectively, and positive real numbers {λi} with the property∑
i λ

2
i = 1 such that

|ψ〉 =
∑
i

λi|iA〉 ⊗ |iB〉.

Hence, trB(ρAB) and trA(ρAB) have the same eigenvalues and thus, H(A)ρAB
= H(B)ρAB

.

Lemma 6.2.4. Let ρA and ρB be arbitrary states. Then,

H(AB)ρA⊗ρB = H(A)ρA +H(B)ρB .

Proof. Let {pAi }i ({pBj }j) and {|iA〉}i ({|jB〉}j) be the eigenvalues and eigenvectors of the
operators ρA (ρB). Hence,

ρA ⊗ ρB =
∑
ij

pAi p
B
j |iA〉〈iA| ⊗ |jB〉〈jB |.

We deduce

H(AB)ρA⊗ρB = −
∑
ij

pAi p
B
j log(pAi p

B
j )

= H(A)ρA +H(B)ρA .

Lemma 6.2.5. Let ρ be a state on a Hilbert space HA of the form

ρ = p1ρ1 + ...+ pnρn

with density operators {ρi}i having support on pairwise orthogonal subspaces of H and
with

∑
j pj = 1. Then,

H(A)ρ = Hclass({pi}i) +
∑
j

pjH(A)ρj ,

where {Hclass({pi}i)} denotes the Shannon entropy of the probability distribution {pi}i.

Proof. Let {λ(i)
j } and {|j(i)〉} the eigenvalues and eigenvectors of the density operators

{ρi}. Thus,

ρ =
∑
i,j

piλ
(i)
j |j

(i)〉〈j(i)|
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and consequently,

H(A)ρ = −
∑
i,j

piλ
(i)
j log(piλ

(i)
j )

= −
∑
i

∑
j

λ
(i)
j

 pi log(pi)−
∑
i

pi
∑
j

λ
(i)
j log(λ

(i)
j )

= Hclass({pi}) +
∑
i

piH(A)ρi .

A consequence of this lemma is that the entropy is concave. More precisely, let ρ1, ..., ρn
be density operators on the same Hilbert space HA. Consider a mixture of those density
operators according to a probability distribution {pj}j on {1, ..., n}, ρ =

∑
j pjρj .

Then
H(A)ρ ≥

∑
j

pjH(A)ρj .

Proof. Let HZ be an auxiliary Hilbert space of dimension n which is spanned by the
linearly independent family {|i〉}i and let ρ̃ be the state

ρ̃ :=
∑
j

pj |j〉〈j| ⊗ ρ(j)
A

on HZ ⊗ HA which is classical on HZ with respect to {|i〉}i. According to the strong
subadditivity property

H(Z|A)ρ̃ ≤ H(Z)ρ̃

or equivalently,
H(ZA)ρ̃ ≤ H(Z)ρ̃ +H(B)ρ̃.

Using Lemma 6.2.6, we get

H(ZA)ρ̃ = H({pj}j) +
∑
j

pjH(ρ
(j)
A )

H(Z)ρ̃ = H({pj}j)

H(B)ρ̃ = H(p1ρ
(1)
A + ...+ ρ

(n)
A ),

and thus,

p1H(ρ
(1)
A ) + ...+ pnH(ρ

(n)
A ) ≤ H(p1ρ

(1)
A + ...+ ρ

(n)
A )

Lemma 6.2.6. Let HA and HZ be Hilbert spaces and let ρAZ be a state on HA ⊗ HZ
which is classical on HZ with respect to the basis {|z〉}z of HZ , i.e., ρAZ is of the form

ρAZ =
∑
z

PZ(z)ρ
(z)
A ⊗ |z〉〈z|.
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Then
H(AZ)ρ = Hclass({PZ(z)}z) +

∑
z

PZ(z)H(A)
ρ
(z)
A

.

Proof. Define

ρ̃z := ρ
(z)
A ⊗ |z〉〈z|,

apply Lemma 6.2.5 with ρi replaced by ρ̃z, use lemma 6.2.4 and apply Lemma 6.2.1.

6.3 The conditional entropy and its properties

We have encountered the identity

Hclass(X|Y ) = Hclass(XY )−Hclass(Y )

for classical entropies in the chapter about classical information theory. We use exactly
this identity to define conditional entropy in the context of quantum information theory.

Definition 6.3.1. Let HA and HB be two Hilbert spaces and let ρAB be a state on
HA ⊗HB . Then, the conditional entropy H(A|B)ρ is defined by

H(A|B)ρAB
:= H(AB)ρAB

−H(B)ρAB
.

Recasting this defining equation leads immediately to the so called chain rule:

H(AB)ρAB
= H(A|B)ρAB

+H(B)ρAB
.

Lemma 6.3.2. Let ρAB be a pure state on a Hilbert space HA⊗HB. Then H(A|B)ρAB
< 0

iff ρAB is entangled, i.e. H(AB)ρAB
6= H(A)ρAB

+H(B)ρAB
.

Proof. Observe that
H(A|B)ρAB

= H(AB)ρAB
−H(B)ρAB

.

Recall from Lemma 6.2.1 that the entropy of a state is zero iff it is pure. The state
trA(ρAB) is pure iff ρAB is not entangled. Thus. indeed H(A|B)ρAB

is negative iff ρAB is
entangled.

Hence, the the conditional entropy can be negative.

Lemma 6.3.3. Let HA, HB and HC be Hilbert spaces and let ρABC be a state on HA ⊗
HB ⊗HC . Then,

H(A|B)ρABC
= −H(A|C)ρABC

.

Proof. We have seen in Lemma 6.2.3 that ρABC pure implies that

H(AB)ρ = H(C)ρ, H(AC)ρ = H(B)ρ, H(BC)ρ = H(A)ρ.

Thus,
H(A|B)ρ = H(AB)ρ −H(B)ρ = H(C)ρ −H(AC)ρ = −H(A|C)ρ.
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Lemma 6.3.4. Let HA and HZ be Hilbert spaces, let {|z〉}z be a complete orthonormal
basis in HZ and let ρAZ be classical on HZ with respect to the basis {|z〉}z, i.e.,

ρAZ =
∑
z

PZ(z)ρ
(z)
A ⊗ |z〉〈z|.

Then the entropy conditioned on Z is

H(A|Z)ρ =
∑
z

PZ(z)H(ρ
(z)
A ).

Moreover,
H(A|Z)ρ ≥ 0.

Proof. Apply Lemma 6.2.6 to get

H(A|Z)ρ = H(AZ)ρ −H(Z)ρ

= Hclass(PZ(z)) +
∑
z

PZ(z)H(ρ
(z)
A )−Hclass(PZ(z))

=
∑
z

PZ(z)H(ρ
(z)
A ).

In Lemma 6.2.1 we have seen that H(ρ) ≥ 0 for all states ρ. Hence, H(A|Z)ρ ≥ 0.

Now it’s time to state one of the central identities in quantum information theory: the
so called strong subadditivity.

Theorem 6.3.5. Let ρABC be a state on HA ⊗HB ⊗HC . Then,

H(A|B)ρABC
≥ H(A|BC)ρABC

.

In textbooks you presently find complex proofs of this theorem based on the Araki-Lieb
inequality (see for example [10]) . An alternative shorter proof can be found in [12].

Lemma 6.3.6. Let ρ be an arbitrary state on a d-dimensional Hilbert space H. Then,

H(ρ) ≤ log2 d,

with equality iff ρ is a completely mixed state, i.e., a state similar to 1
d idH.

Proof. Let ρ be a state on H which maximizes the entropy and let {|j〉} the diagonalizing
basis, i.e.,

ρ =
∑
j

pj |j〉〈j|.

The entropy does only depend on the state’s eigenvalue, thus, in order to maximize the
entropy, we are allowed to consider the entropy H as a function mapping ρ’s eigenvalues
(p1, ..., pd) ∈ [0, 1]d to R. Consequently, we have to maximize the function H(p1, ..., pd)
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under the constraint p1 + ... + pd = 1. This is usually done using Lagrange multipliers.
One gets pj = 1/d for all j = 1, ..., d and therefore,

ρ =
1

d
idH

(this is the completely mixed state). This description of the state uniquely characterizes
the state independently of the choice of the basis the matrix above refers to since the
identity idH is unaffected by similarity transformations. This proves that ρ is the only
state that maximizes the entropy. The immediate observation that

S(ρ) = log2 d

concludes the proof.

Lemma 6.3.7. Let HA and HB be two Hilbert spaces and let d := dim HA. Then,

|H(A|B)ρ| ≤ log2(d).

Proof. Use Lemma 6.3.6 to get

H(A|B)ρ ≤ H(A)ρ ≤ log2(d)

and Lemma 6.3.3 to get

H(A|B)ρAB
= H(A|B)ρABC

= −H(A|C)ρABC
≥ − log(d),

where ρABC is a purification of ρAB .

Lemma 6.3.8. Let HX and HB be Hilbert spaces, {|x〉}z be a complete orthonormal basis
in HX and let ρXB be a state on HX⊗HB which is classical with respect to {|x〉}x. Then,

H(X|B)ρ ≥ 0

which means that the entropy of a classical system is non-negative.

Proof. Let HX′ be a Hilbert space isomorphic to HX and let ρBXX′ be a state on HB ⊗
HX ⊗HX′ defined by

ρBXX′ :=
∑
x,j

PX(x)ρ
(x)
B ⊗ |x〉〈x| ⊗ |x〉〈x|.

Hence,
H(X|B)ρBXX′ = H(BX)ρBXX′ −H(B)ρBXX′

and
H(X|BX ′)ρBXX′ = H(BXX ′)ρBXX′ −H(BX ′)ρBXX′ .

According to the strong subadditivity

H(X|B)ρBXX′ ≥ H(X|BX ′)ρBXX′ .
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To prove the assertion we have to show that the RHS vanishes or equivalently that
H(BXX ′)ρBXX′ is equal to H(BX ′)ρBXX′ . Let ρBX′ denote the state which emerges from
ρBXX′ after the application of trX(·). Hence, H(BX ′)ρBXX′ = H(BX ′)ρBX′ . Further,

H(BX ′)ρBX′ = H(BX ′)ρBX′⊗|0〉〈0|,

where |0〉 is a state in the basis {|x〉}z of the Hilbert space HX . Define the map

S : HX ⊗HX′ → HX ⊗HX′

by

S(|z0〉) := |zz〉
S(|zz〉) := |z0〉
S(|xy〉) := |xy〉, (otherwise).

We observe,
[IB ⊗ S]ρBX′ ⊗ |0〉〈0|[IB ⊗ S]−1 = ρBXX′ .

Obviously, [IB⊗S] ∈ GL(HX ⊗HX′) (the general linear group) and thus does not change
the entropy:

H(BX ′)ρBXX′ = H(BX ′)ρBX′⊗|0〉〈0| = H(BXX ′)ρBXX′ .

Lemma 6.3.9. Let HA, HB and HB′ be Hilbert spaces, let ρAB be a state on HA ⊗HB,
let

E : HB → HB′

be a TPCPM(HB ,HB′) and let

ρAB′ = [IA ⊗ E ](ρAB)

be a state on HA ⊗HB′ . Then,

H(A|B)ρAB
≤ H(A|B′)ρAB′ .

Proof. Let |0〉 be a state in an auxiliary Hilbert space HR. Then

H(A|B)ρAB
= H(AB)ρAB

−H(B)ρAB

= H(ABR)ρAB⊗|0〉〈0| −H(BR)ρAB⊗|0〉〈0|.

According to the Stinespring dilation the Hilbert space HR can be chosen such that there
exists a unitary U with the property

trR ◦ adU (ξ ⊗ |0〉〈0|) = E(ξ),
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where adU (·) := U(·)U−1 and ξ ∈ S(HB). Since the entropy is invariant under similarity
transformations we can use this transformation U to get

H(A|B)ρAB
= H(AB′R)[IA⊗adU ](ρAB⊗|0〉〈0|) −H(B′R)[IA⊗adU ](ρAB⊗|0〉〈0|)

= H(A|B′R)[IA⊗adU ](ρAB⊗|0〉〈0|)

≤ H(A|B′)[IA⊗trR◦adU ](ρAB⊗|0〉〈0|)

= H(A|B′)[IA⊗E](ρAB)

= H(A|B′)ρAB′ ,

where we have used the strong subadditivity and the Stinespring dilation. We get

H(A|B)ρAB
≤ H(A|B′)ρAB′ ,

which concludes the proof.

6.4 The mutual information and its properties

Definition 6.4.1. Let ρAB a state on a Hilbert space HA ⊗ HB . Then, the so called
mutual information I(A : B) is defined by

I(A : B) := H(A)ρAB
+H(B)ρAB

−H(AB)ρAB
= H(A)ρAB

−H(A|B)ρAB

Let ρABC a state on a Hilbert space HA ⊗ HB ⊗ HC . Then, the so called conditional
mutual information I(A : B|C) is defined by

I(A : B|C) := H(A|C)ρABC
−H(A|BC)ρABC

We observe that the definition of quantum mutual information and the definition of
classical mutual information are formally identical. Next we prove a small number of
properties of the mutual information.

Lemma 6.4.2. Let ρABC a state on a Hilbert space HA ⊗HB ⊗HC . Then,

I(A : B|C) ≥ 0.

This Lemma is a direct corollary of the strong subadditivity property of conditional
entropy.

Lemma 6.4.3. Let HA, HB, HB′ be Hilbert spaces, let ρAB a state on a Hilbert space
HA ⊗HB and let

E : HB → HB′

be a TPCPM. Then,
I(A : B) ≥ I(A : B′).

This is an immediate consequence of Lemma 6.3.9.
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Lemma 6.4.4. Let HA, HB, HC be Hilbert spaces and let ρABC be a state on a Hilbert
space HA ⊗HB ⊗HC . Then,

I(A : BC) = I(A : B) + I(A : C|B).

To prove this statement we simply have to plug in the definition of mutual information
and conditional mutual information.

Exercise (Bell state). Compute the mutual information I(A : B) of a Bell state ρAB .
You should get H(A) = 1, H(A|B) = −1 and thus I(A : B) = 2.

Exercise (Cat state). Let HA, HB , HC and HD be Hilbert spaces of quantum
mechanical 2-level systems which are spanned by {|0〉A, |1〉A}, {|0〉B , |1〉B}, {|0〉C , |1〉C}
and {|0〉D, |1〉D}, respectively. Then, the so called cat state is defined the pure state

|ψ〉 :=
1√
2

(|0〉A|0〉B |0〉C |0〉D + |1〉A|1〉B |1〉C |1〉D).

Hence ρABCD = |ψ〉〈ψ| is the corresponding density matrix. Compute the expressions
I(A : B), I(A : B|C), I(A : B|CD) and I(A : BCD). During your calculations you should
get

H(A)ρ = H(B)ρ = H(C)ρ = H(D)ρ = 1,

H(AB)ρ = H(AC)ρ = 1,

H(ABC)ρ = H(D)ρ = 1,

H(ABCD)ρ = 0.

6.5 Conditional Min-Entropy

In this section, we will introduce conditional min-entropy and discuss some of its properties
and uses. The definition is a quantum generalisation of the classical conditional min-
entropy which we have discussed some time ago, i.e. the maximum value of a conditional
probability distribution is replaced by a maximum eigenvalue of a conditional operator
– the the only change that we have to maximise over different versions of a conditional
operator:

Hmin(A|B)ρ = max
σB

(− log λmax(idA ⊗ σ−1/2
B ρAB idA ⊗ σ−1/2

B ))

where the maximisation is taken over density operators σB . σ−1
B denotes the pseudo-inverse

of σB , i.e. the operator

σ−1
B = Udiag(λ−1

1 , . . . , λ−1
` , 0, . . . , 0)U†,

where σB = Udiag(λ1, . . . , λ`, 0, . . . , 0)U† with λ1 ≥ · · · ≥ λ` > 0 is the spectral decom-
position of σB . There is an alternative way of writing the conditional min-entropy which
often comes in handy when doing computations:

Hmin(A|B)ρ = max
σB

(− log min{λ : λidA ⊗ σB ≥ ρAB}).
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The following lemma shows that conditional min-entropy characterises the maximum
probability of guessing a value X correctly giving access to quantum information in a
register B.

Lemma 6.5.1. Let ρXB =
∑
x |x〉〈x| ⊗ ρx, then

Hmin(X|B) = − log pguess(X|B)

where
pguess(X|B) = max

{Ex}POVM

∑
x

tr[ρxEx]

is the maximum probability of guessing X correctly given access to B.

Proof. The proof uses semidefinite programming, an extension of linear programming. For
a review see [14]. Defining C = −

∑
x |x〉〈x| ⊗ ρx, X̃ =

∑
x |x〉〈x| ⊗ Ex, Aij = id ⊗ eij

where eij denotes a matrix with a one in column i and row j and bij := δij , pguess takes
the classic form of a primal semidefinite programme:

−min trCX̃ : X̃ ≥ 0,
∑
ij

trAijX̃ = bij .

The dual programme is

max
∑
ij

bijyij :
∑
ij

yijAij ≤ C

Setting yij := −σij this SDP reads

max−trσ : id⊗ σ ≥
∑
x

|x〉〈x| ⊗ ρx.

Both programmes are strictly feasible, since the points X = id and σ = id are feasible
points, respectively. By semidefinite programming duality, the two programmes therefore
have the same value. This proves the claim.

Recall that by definition the conditional von Neumann entropy satisfies H(A|B) =
H(AB)−H(B). From the definition of the conditional min-entropy such an inequality is
certainly non-obvious and indeed false when taken literally. For most purposes, a set of
inequalities replaces this important equality (which is often known as a chain rule). To
give you the flavor of such inequalities we will prove the most basic one:

Lemma 6.5.2.
Hmin(A|B) ≥ Hmin(AB)−Hmax(B)

Proof.

Hmin(A|B)ρ = max
σB

(− log min{λ : λidA ⊗ σB ≥ ρAB}) (6.2)

≥ − log min{λ : λidA ⊗
ρ0
B

|suppρB |
≥ ρAB} (6.3)

= − log min{µ|suppρB | : µidA ⊗ idB ≥ ρAB} (6.4)

= − log min{µ : µidA ⊗ idB ≥ ρAB} − log |suppρB | (6.5)

= Hmin(AB)ρ −Hmax(B)ρ (6.6)
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where ρ0
B denotes the projector onto the support of ρB .

Strong subadditivity of von Neumann entropy is the inequality:

H(AB) +H(BC) ≥ H(ABC) +H(B).

Using the definition of the conditional von Neumann entropy, this is equivalent to the
inequality

H(A|B) ≥ H(A|BC)

which is often interpreted as “conditioning reduces entropy”. In this form, it has a direct
analog for conditional min entropy:

Lemma 6.5.3.
Hmin(A|B) ≥ Hmin(A|BC)

Proof. Since λσBC ≥ ρABC implies λσB ≥ ρAB we find for the σBC that maximises the
expression for Hmin(A|BC)

Hmin(A|BC)ρ = − log min{λ : λidA ⊗ σBC ≥ ρABC} (6.7)

≤ max
σB

(− log min{λ : λidA ⊗ σB ≥ ρAB}) = Hmin(A|B)ρ. (6.8)

In the exercises, you will show how these two lemmas also hold for the smooth min and
max-entropy. Combined with the asymptotic equipartition property that we discussed
in the part on classical information theory you will then prove strong subadditivity of
von Neumann entropy. The very fundamental result by the mathematical physicist Beth
Ruskai and Elliot Lieb was proven in 1973 and remains the only known inequality for the
von Neumann entropy — there may be more, we just haven’t discovered them yet!
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7 Resources Inequalities

We have seen that ebits, classical communication and quantum communication can be seen
as valuable resources with which we can achieve certain tasks. An important example was
the teleportation protocol which shows one ebit and two bits of classical communication
can simulate the transmission of one qubit. In the following we will develop a framework
for the transformation resources and present a technique that allows to show the optimality
of certain transformations.

7.1 Resources and Inequalities

We will consider a setup with two parties, Alice and Bob, who wish to convert one type
of resource to another (one may also consider more than two parties, but this is a little
outside the scope of this course). The resources we consider are:

•
n
 perfect quantum channel
(Alice sends n qubits to Bob)

•
n→ perfect classical channel

(Alice sends n bits to Bob)

• n
g shared entanglement, or ebits

(Alice and Bob share n Bell pairs)

• n
f shared bits

A resource inequality is a relation X ≥ Y which is to be interpreted as “we can obtain
Y using X”. Formally, there exists a protocol to simulate resources Y using only resources
X and local operations. The example to keep in mind is the teleportation protocol which
achieves:

2→
1
g

≥ 1
 

Sometimes, our resources are noisy and we do not require the resource conversion to be
perfect. We can then still use resource inequalities to formulate our results but it becomes
a little cumbersome as you can see in the case of Shannon’s noiseless coding theorem for
a channel PY |X :
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n→PY |X ≥ε
n(maxPX I(X;Y )−ε)

→ , for all ε > 0 and n large enough.

In the remainder we will only be concerned with an exact conversion of perfect resources
with the main goal to show that the teleportation and superdense coding protocols are
optimal.

7.2 Monotones

Given a class of quantum operations, a monotone M is a function from states into the real
numbers that has the property that it does not increase under any operations from the
class. Rather than making this definition too formal (e.g. by specifying exactly on which
systems the operations act), we will consider a few characteristic examples.

Example 7.2.1. For bipartite states, the quantum mutual information is a monotone
for the class of local operations. More precisely, given a bipartite state ρAB and a local
quantum operation (CPTP map), say on Bob’s side, Λ : End(B) 7→ End(B′)

I(A : B) ≥ I(A : B′).

Proof. Let UB→B′B′′ be a Stinespring dilation of Λ. Since an isometry does not change
the entropy, we have

I(A : B) = I(A : B′B′′)

The RHS can be expanded as

I(A : B′B′′) = I(A : B′) + I(A : B′′|B′).

Strong subadditivity implies that the second term is nonnegative which leads us to the
desired conclusion.

A similar argument shows that

I(A : B|E) ≥ I(A : B′|E).

where ρABE is an arbitrary extension of ρAB, i.e. satisfies trEρABE = ρAB.

Example 7.2.2 (Squashed entanglement). The squashed entanglement of a state ρAB is
given by

Esq(A : B) :=
1

2
inf
E
I(A : B|E)

where the minimisation extends over all extensions ρABE of ρAB. Note that we do not
impose a limit on the dimension of E!(That is why we do not know whether the minimum
is achieved and write inf rather than min.) Squashed entanglement is a monotone under
local operations and classical communication. That squashed entanglement is monotone
under local operations follows immediately from the previous example. We just only need
to verify that it does not increase under classical communication.
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Proof. Alice will send classical system C to Bob (e.g. a bit string).
We want to compare Esq(AC : B) and Esq(A : BC). For any extension E, we have

I(B : AC|E) = H(B|E)−H(B|ACE)

≥ H(B|EC)−H(B|AEC) (strong subadditivity)

= I(B : A|EC)

= I(BC : A|EC) EC =: E′

≥ min
E′

I(BC : A|E′)

This shows that Esq(AC : B) ≥ Esq(A : BC). By symmetry then Esq(AC : B) = Esq(A :
BC).

7.3 Teleportation is Optimal

We will first show how to use monotones in order to prove that any protocol for telepor-
tation of m qubits needs at least n ebits, regardless of how much classical communication
the protocol uses. In our graphical notation this reads:

∞→
n
g
≥ m
 implies n ≥ m .

Note first that by sending m halves of ebits down the quantum channel on the RHS of

∞→
n
g
≥ m
 

we find

∞→
n
g
≥ m
g

so we only need to show that we cannot increase the number of ebits by classical commu-
nication. This sounds easy, but in fact needs our monotone squashed entanglement. Since
every possible extension ρABE of a pure state ρAB (for instance the n ebits) is of the form
ρABE = ρAB ⊗ ρE we find

2Esq(A : B)n
g

= inf
E
I(A : B|E) = I(A : B) = 2n.

So we start the protocol with correlations of n bits measured in units of squashed entan-
glement. Then we perform a protocol which does not increase the squashed entanglement
since it does only involve local operations and classical communication. The final state
can therefore have at most n units of squashed entanglement. So, if the final state consists
of m qubits as we require, then m ≤ n, since we had otherwise increased the squashed
entanglement.
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In fact, the statement also holds if one requires the transformation to only work approx-
imately. The proof is then a little more technical and needs a result about the continuity
of squashed entanglement.

One can also prove that one needs at least two bits of classical communication in order
to teleport one qubit, regardless of how many ebits one has available. But we will leave
this to the exercises.

7.4 Superdense Coding is Optimal

We want to prove that we need at least one qubit channel in order to send two classical
bits, regardless of how many ebits we have available:

n
 
∞
g
≥

2m→
∞
g

implies m ≤ n

Note that concatenation of

n
 
∞
g
≥

2m→
∞
g

with teleportation yields

n
 
∞
g
≥

m
 
∞
g

.

Now we have to prove that this implies n ≥ m, i.e. entanglement does not help us to
send more qubits. For this, we consider an additional player Charlie who holds system
C and shares ebits with Alice. Let Bi be Bob’s initial system, Q an n qubit system that
Alice sends to Bob, Λ Bob’s local operation and Bf Bob’s final system. Clearly, if an n
qubit channel could simulate an m qubit channel for m > n, then Alice could send m
fresh halves of ebits that she shares with Charlie to Bob, thereby increasing the quantum
mutual information between Charlie and Bob by 2m.

BobAlice

Charlie

...8

n

8

We are now going to show that the amount of quantum mutual information that Bob and
Charlie share cannot increase by more two times the number of qubits that he receives
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from Alice, i.e. by 2n. For this we estimate Bob’s final quantum mutual information with
Charlie as

I(C : Bf ) ≤ I(C : BiQ)

= I(C : Bi) + I(C : Q|Bi)
≤ I(C : Bi) + 2n

Therefore m ≤ n. This concludes our proof that the superdense coding protocol is optimal.
Interestingly, for this argument, we did not use a monotone such as squashed entan-

glement from above. We merely used the property that the quantum mutual information
cannot increase by too much under communication. Quantities that have the opposite
behaviour (i.e. can increase sharply when only few qubits are communicated) are known
as lockable quantities and have been in the focus of the attention in quantum information
theory in recent years. So, we might also say that the quantum mutual information is
nonlockable.

7.5 Entanglement

We have already encountered the word entanglement many times. Formally, we say that
a quantum state ρAB is separable if it can be written as a convex combination of product
states, i.e.

ρAB =
∑
k

pkτk ⊗ σk

where the pk form a probability distribution and the ρk are states on A and the σk are
states on B. A state is then called entangled if it is not separable.

Characteristic examples of separable states are

• ρAB = |φ〉〈φ|A ⊗ |ψ〉〈ψ|B

• ρAB = idAB = 1
4 idA ⊗ idB

• ρAB = 1
2 (|00〉〈00|+ |11〉〈11|)

Characteristic examples of entangled states are

• In most situations (e.g. teleportation), ebits are the most useful entangled states.
They are therefore also known as maximally entangled states (as well as all pure
states of the form U ⊗ V 1√

d

∑
i |ii〉AB |A| = |B| = d.)

• Non-maximally entangled pure states of the form
∑
i αi|ii〉, where the αi are not all

of equal magnitude. In certain cases they can be converted (distilled) into maximally
entangled states (of lower dimension) using Nielsen’s majorisation criterion.
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• The totally antisymmetric state ρAB = 1
d(d−1)

∑
i<j |ij − ji〉〈ij − ji|AB can be seen

to be entangled, since every pure state supported on the antisymmetric subspace is
entangled.

Since ebits are so useful, we can ask ourselves how many ebits we can extract per given
copy of ρAB , as the number of copies approaches infinity. Formally, this number is known
as the distillable entanglement of ρAB :

ED(ρAB) = lim
ε 7→0

lim
n 7→∞

sup
Λ LOCC

{m
n

: 〈ebit|⊗mΛ(ρ⊗nAB)|ebit〉⊗m ≥ 1− ε}

This number is obviously very difficult to compute, but there is a whole theory of
entanglement measures out there with the aim to provide upper bounds on distillable
entanglement. A particularly easy upper bound is given by the squashed entanglement.

Esq(ρAB) ≥ ED(ρAB).

The proof uses only the monotonicity of squashed entanglement under LOCC operations
and the fact that the squashed entanglement of a state that is close to n ebits (in the
purified distance) is close to n. In the exercise you will show that squashed entanglement
of separable state is zero. This then immediately implies that one cannot extract any ebits
from separable states!
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8 Bell inequalities and non-locality

Many physicists have felt rather uncomfortable with the fact that quantum mechanics
only makes statistical predictions. A famous example is Einstein, Podolsky, and Rosen,
who argued that quantum mechanics is incomplete [5].

In an attempt to remedy this “problem”, one could imagine that quantum mechanics is
merely an effective statistical theory of a more fundamental deterministic theory. (Some-
thing in the spirit of statistical mechanics based on classical mechanics.) In such a theory,
the randomness in the quantum measurements is merely a result of our ignorance about
some hidden degrees of freedoms or parameters. Keeping Einstein in mind, a condition
we would like to impose is that there should be no action at a distance. In other words,
this hypothetical theory should respect special relativity and not allow superluminal com-
munication. This class of theories are often referred to as local hidden variable theories
[2] (where “local” stands for the absence of action at distance).

As we will see, the measurement statistics resulting from any local hidden variable
theory has to satisfy certain types of inequalities, often referred to as Bell inequalities
[2, 3] (after John Stewart Bell, who first came up with the idea). A consequence of these
inequalities is that if one finds a setting (within a theory, or in a real experiment) where
these inequalities are violated, then one can conclude that a hidden variable theory is
not a good model in this case. For example, we will later construct measurements within
quantum mechanics that violate these inequalities, which shows that we cannot replace
quantum mechanics by a local hidden variable theory. Furthermore, many experiments
have shown violations of Bell inequalities (up to some loopholes).

However, before we turn to the actual Bell inequalities, we will first approach the whole
idea from a rather different angle, in the form of a game. The reason is to show that even
in a very classical setting, in a game that we all easily could play, the access to a relatively
simple quantum device can improve our chances to win this game beyond what we can do
if we are restricted to classical means. This highlights that quantum correlations in some
sense go beyond classical correlations.

8.1 A game

We here consider a very simple (but maybe slightly odd-looking) game, where we have a
referee and two players, Alice and Bob. The game is cooperative, so Alice and Bob either
both win or both loose.

The rules are as follows (see figure 8.1):

• The referee asks Alice a question a ∈ {0, 1}, and Alice gives an answer x ∈ {1,−1}.
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Alice Bob

Referee
a 0,1 b 0,1

x 1,-1 y 1,-1

Figure 8.1: The referee asks asks Alice question “a”, and Bob question “b”, which each
can be one of two questions (0 or 1). Their answers we denote by x and y,
which each can take one of two values 1 and −1. Alice and Bob cannot com-
municate with each other during the game, and depending of the combination
of questions and answers, they either both win or both lose.

• The referee asks Bob a question b ∈ {0, 1}, and Bob gives an answer y ∈ {1,−1}.

• Before the game starts, Alice and Bob can meet to decide on some strategy. However,
during the game they cannot communicate with each other. Moreover, Alice does
not know which question Bob receives, nor his answer, and vice versa. (Think of
Alice and Bob having to go into separate rooms when the game starts, without their
mobile phones.)

• The referee randomly asks the four possible combinations of questions (a, b) with
equal probability 1/4.

• In the cases (a, b) ∈ {(0, 0), (0, 1), (1, 0)} Alice and Bob win if the product of their
answers is x · y = 1, while in the case (a, b) = (1, 1) they win if their answers are
such that x · y = −1.

The game can be summarized by the following table

PA,B(a, b) a b x · y
1/4 0 0 1
1/4 0 1 1
1/4 1 0 1
1/4 1 1 −1

We letW denote the set of quadruples of questions and answers (a, b, x, y) for which Alice
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and Bob win, i.e.,

W =
{

(0, 0, 1, 1),(0, 0,−1,−1),

(0, 1, 1, 1),(0, 1,−1,−1),

(1, 0, 1, 1),(1, 0,−1,−1),

(1, 1, 1,−1),(1, 1,−1, 1)
}
.

(8.1)

8.1.1 Optimal deterministic strategies

The question is, what is the best strategy that Alice and Bob can use in order to maximize
their chance of winning?

We shall first consider deterministic strategies. In a deterministic strategy, Alice’s an-
swer is a function of the question she receives, i.e., x = f(a). Similarly for Bob, y = g(b).
(Since Alice and Bob cannot communicate, it follows that x cannot depend on b, and y
cannot depend on a.) Assume for the moment that we could find functions f and g such
that Alice and Bob always win the game.

According to the rules this means that

f(0)g(0) = 1
f(0)g(1) = 1
f(1)g(0) = 1
f(1)g(1) = −1

⇒

f(0) = g(0)
f(0) = g(1)
f(1) = g(0)
f(1) = −g(1)

(8.2)

A quick inspection yields g(1) = −g(1), which is a contradiction since g(1) ∈ {1,−1}. We
can thus conclude that there exists no deterministic strategy that lets Alice and Bob win
in all the four cases.

Could we find a deterministic strategy that wins in three cases? Indeed we can, namely
if Alice and Bob both answer “1” irrespective of the question they receive. This choice
makes them win in three out of four cases. We can thus conclude that the optimal winning
probability for a deterministic strategy is Pwin = 3/4. (Since all four combinations of
questions occur with equal probability we cannot do better than this for any strategy that
wins in three out of four cases.)

8.1.2 Optimal (classically local) probabilistic strategies

One could imagine that Alice and Bob could do better with some probabilistic strategy.
This means that their answers are not functions of the questions, but rather determined
randomly according to some probability distribution.

Since Alice and Bob are allowed to meet before the game starts, they can jointly create
a random number z, with distribution PZ . Later they can use this when they pick which
functions to use when they determine their outputs, i.e., x = fz(a) and y = gz(b). The
statistics resulting from this strategy can be described by a conditional probability distri-
bution. We let PX,Y |a,b(x, y) denote the probability that their answers are x, y conditioned
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on the questions being a, b. In the present case, the conditional probability distribution
reads

PX,Y |a,b(x, y) =
∑
z

PZ(z)δx,fz(a)δy,gz(b), (8.3)

where the delta function δx,f(a) means that the outcome x is equal to fz(a) with probability
1.

Nothing says that Alice and Bob have to determine their outputs deterministically, given
z and their questions. Their answers x and y could be determined randomly according to
some conditional distributions PX|a,z(x) and PY |b,z(y), respectively. In total, the statistics
of their answers would thus be characterized by the conditional distribution

PX,Y |a,b(x, y) =
∑
z

PZ(z)PX|a,z(x)PY |b,z(y). (8.4)

Note that the random variable Z does not depend on a or b, since Z is determined before
Alice and Bob receive the questions a and b. We refer to conditional distributions like in
(8.4) as classically local.

At first sight it might look like if the set of classically local distributions, as defined
by equation (8.4), is larger than the set spanned by equation (8.3). However, this is
not the case. The reason is that if a and x only can take a finite number of values,
then every conditional distribution can be written PX|a(x) =

∑
f P (f)δx,f(x), where the

sum spans over the set of all possible mappings f . From this we can conclude that the
extreme points of the set of classically local distributions are of the form δx,f(a)δy,g(b), for
different choices of f and g. Hence, both equation (8.3) and (8.4) span the set of classically
local distributions (sometimes also referred to as the “Bell polytope”). In other words,
all probabilistic strategies can be regarded as convex combinations of local deterministic
strategies.

Returning to our game, we see that given a conditional probability distribution PX,Y |a,b
(not necessarily classically local) the probability that Alice and Bob win is given by

Pwin =
∑

(a,b,x,y)∈W

PX,Y,A,B(x, y, a, b)

=
∑

(a,b,x,y)∈W

PX,Y |a,b(x, y)PA,B(a, b)

=
1

4

∑
(a,b,x,y)∈W

PX,Y |a,b(x, y).

(8.5)

The winning probability, Pwin, is clearly linear in the conditional probability distribution
PX,Y |a,b. We can thus conclude that the maximum of Pwin over the convex set of classically
local distributions is attained at one of the extreme points. Since the extreme points are
the local deterministic strategies, it follows that 3/4 is the maximum winning probability
among all strategies leading to classically local distributions.
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Alice Bob

Referee
a 0,1 b 0,1

x 1,-1 y 1,-1

A
a
x B

b
y

ρ
AB

Figure 8.2: Alice and Bob can improve their chances of winning the game by using a
quantum device. Before the game starts they create a pair of particles in the
maximally entangled state ρAB = |ψ〉〈ψ|, where |ψ〉 = (|00〉+ |11〉)/

√
2. When

the game starts, Alice and Bob each bring one of these particles with them.
Given the question a, Alice measures the POVM {Aa}x on her particle, and
returns the measurement outcome x as her answer. Similarly, Bob measures
the POVM {Bby}y and returns the answer y.

8.1.3 A strategy based on a quantum device

In the previous section we tacitly assumed that Alice and Bob are limited to classical
operations, in the sense that they can only generate and share classical randomness and
correlations. However, one could imagine Alice and Bob to establish a pair of entangled
particles before the game starts, and each bring with them one particle in this pair (see
figure 8.2). We will see that Alice and Bob can increase their chance of winning beyond
the value 3/4 with a clever choice of measurements.

Suppose that Alice and Bob share a quantum state ρAB . For each question a, Alice
measures a POVM {Aax}x, and outputs the measurement outcome x as the answer. Anal-
ogously, Bob measures the POVM {Bby}y if he gets question b, and lets the measurement
outcome be his answer. The resulting conditional probability distribution of this procedure
is

PX,Y |a,b(x, y) = tr(Aax ⊗BbyρAB), (8.6)

where the tensor product Aax ⊗ Bby corresponds to the fact that Alice and Bob measure
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their POVMs on separate locations and systems.
We shall now consider a specific choice of state ρAB and families of POVMs that makes

Alice and Bob win our game with a higher probability than in the classical case. We let
ρAB be the maximally entangled state

ρAB = |ψ〉〈ψ|, |ψ〉 =
1√
2

(|00〉+ |11〉).

Define the following family of normalized states

|φ1(θ)〉 = cos(θ)|0〉+ sin(θ)|1〉,
|φ−1(θ)〉 =− sin(θ)|0〉+ cos(θ)|1〉.

(8.7)

Via these states we define Alice and Bob’s POVMs.
Alice have the POVM {A0

1, A
0
−1} that corresponds to the question a = 0, and the POVM

{A1
1, A

1
−1} corresponding to question a = 1. We let

A0
1 =|φ1(0)〉〈φ1(0)|, A0

−1 =|φ−1(0)〉〈φ−1(0)|,
A1

1 =|φ1(π/4)〉〈φ1(π/4)|, A1
−1 =|φ−1(π/4)〉〈φ−1(π/4)|.

Analogously, Bob has the two POVMs {B0
1 , B

0
−1}, {B1

1 , B
1
−1} defined as

B0
1 =|φ1(π/8)〉〈φ1(π/8)|, B0

−1 =|φ−1(π/8)〉〈φ−1(π/8)|,
B1

1 =|φ1(−π/8)〉〈φ1(−π/8)|, B1
−1 =|φ−1(−π/8)〉〈φ−1(−π/8)|.

By combining Eqs. (8.5) with (8.6) and inserting the above POVM elements, we obtain

Pwin =
1

4

∑
(a,b,x,y)∈W

tr(Aax ⊗BbyρAB)

=
1

8

∑
(0,0,x,y)∈W

∣∣∣〈φx(0)|0〉〈φy(π/8)|0〉+ 〈φx(0)|1〉〈φy(π/8)|1〉
∣∣∣2

+
1

8

∑
(0,1,x,y)∈W

∣∣∣〈φx(0)|0〉〈φy(−π/8)|0〉+ 〈φx(0)|1〉〈φy(−π/8)|1〉
∣∣∣2

+
1

8

∑
(1,0,x,y)∈W

∣∣∣〈φx(φ/4)|0〉〈φy(π/8)|0〉+ 〈φx(π/4)|1〉〈φy(φ/8)|1〉
∣∣∣2

+
1

8

∑
(1,1,x,y)∈W

∣∣∣〈φx(π/4)|0〉〈φy(−π/8)|0〉+ 〈φx(π/4)|1〉〈φy(−π/8)|1〉
∣∣∣2

=
1

2
(1 +

1√
2

)

≈0.85

(8.8)

Hence, the winning probability is larger than 3/4.
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A consequence of this observation is that the set of conditional probability distributions
that we can reach via quantum states and local measurements, as in equation (8.6), is
strictly larger than the set of conditional probability distributions as in equation (8.4). In
the following section we shall reformulate this observation in more “traditional” terms.

8.2 The CHSH inequality

After this prelude, we now return to our main purpose, namely to introduce Bell inequal-
ities. As mentioned in the beginning of this chapter, the idea is to find an inequality that
is satisfied by all local hidden variable theories. The setting is more or less identical to
our game in the previous section, but the roles and meanings of the various objects have
changed.

In a deterministic theory, e.g., classical mechanics, the outcomes of the measurements
are uniquely determined by the choice of measurement and the actual state of the system.
In a hidden variable theory this “actual state” corresponds to a parameter z. We imagine
that Alice and Bob are space-like separated, such that no signal have time to propagate
between Alice and Bob during the time it takes them to perform their measurements, and
thus we do not allow Alice’s outcome x to depend on Bob’s choice of measurement b, or
Bob’s outcome y to depend on Alice’s choice of measurement a. (This is the assumption
of locality.) Hence, in a deterministic local hidden variable theory, Alice’s measurement
outcome is uniquely determined by her choice of measurement a and the hidden variable
z, i.e., x = fz(a). Similarly, Bob’s measurement outcome is uniquely determined by his
choice of measurement and the hidden variable, y = gz(b).

The randomness in the measurement outcomes comes from the fact that we do not
know what value the hidden variable z has. The distribution of z is described by PZ . The
statistics of the whole experiment is hence captured by a conditional distribution as in
equation (8.3), and is thus classically local.

A Bell inequality is an inequality that is satisfied by any measurement statistics that
can be described by a classically local distribution, and thus has to be satisfied by any
local hidden variable theory. There exist several different types of Bell inequalities, but we
shall here consider a specific version called the CHSH inequality [8] (after Clauser, Horne,
Shimony, and Holt).

Lemma 8.2.1. The function

F (x, y) := |x+ y|+ |x− y| (8.9)

is such that
max

(x,y)∈[−1,1]×[−1,1]
F (x, y) = 2. (8.10)

This follows from the fact that F is convex. Furthermore, on the set |x| = 1, |y| = 1 it
takes the value F (x, y) = 2. Hence, F (x, y) ≤ 2 for |x| ≤ 1, |y| ≤ 1.

Theorem 8.2.2 (CHSH inequality). Let X and Y be random variables that take values
in the interval [−1, 1], with a classically local conditional probability distribution PX,Y |a,b,
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where a, b ∈ {0, 1}. Then∣∣∣〈XY |(a, b) = (0, 0)
〉

+
〈
XY |(a, b) = (0, 1)

〉
+
〈
XY |(a, b) = (1, 0)

〉
−
〈
XY |(a, b) = (1, 1)

〉∣∣∣ ≤ 2.
(8.11)

The quantity
〈
XY |(a, b) = (0, 0)

〉
is the expectation value of the product of the two

measurement outcomes X and Y , given that we know that we have made measurements
a = 0 and b = 0. The total expression in equation (8.11) is thus a linear combination of
such expectation values, for the four possible combinations of experiments (a, b).

Proof. We first define

〈X|a, z〉 :=
∑
x

xPX|a,z(x), 〈Y |b, z〉 :=
∑
y

yPY |b,z(y). (8.12)

Note that since X and Y take values in the interval [−1, 1] it follows that |〈X|a, z〉| ≤ 1
and |〈Y |b, z〉| ≤ 1. We combine this observation with the triangle inequality, and Lemma
8.2.1, to obtain ∣∣∣〈XY |(a, b) = (0, 0)

〉
+
〈
XY |(a, b) = (0, 1)

〉
+
〈
XY |(a, b) = (1, 0)

〉
−
〈
XY |(a, b) = (1, 1)

〉∣∣∣
≤
∑
z

PZ(z)
∣∣∣〈X|a = 0, z

〉〈
Y |b = 0, z

〉
+
〈
X|a = 0, z

〉〈
Y |b = 1, z

〉
+
〈
X|a = 1, z

〉〈
Y |b = 0, z

〉
−
〈
X|a = 1, z

〉〈
Y |b = 1, z

〉∣∣∣
≤
∑
z

PZ(z)

∣∣∣∣[〈X|a = 0, z
〉

+
〈
X|a = 1, z

〉]〈
Y |b = 0, z

〉
+
[〈
X|a = 0, z

〉
−
〈
X|a = 1, z

〉]〈
Y |b = 1, z

〉∣∣∣∣
≤
∑
z

PZ(z)F
(〈
X|a = 0, z

〉
,
〈
X|a = 1, z

〉)
≤2.

(8.13)

8.3 Violation of the CHSH inequality

Here we demonstrate by an explicit example (this is the example of section 8.1.3 in disguise)
that the CHSH inequality can be violated within quantum mechanics.
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Consider the four observables

A0 := σz, A1 := σx, (8.14)

B0 :=
1√
2

(σz + σx), B1 :=
1√
2

(σz − σx). (8.15)

The observables A0 and A1 correspond to Alice’s two choices of measurements, and simi-
larly B0 and B1 are the observables of Bob’s two measurements.

If we let X denote the measurement outcome of Alice’s measurement, and Y is Bob’s
measurement outcome, then 〈XY |a, b〉 = tr(Aa ⊗ BbρAB). Note that the eigenvalues of
A0, A1, B0, and B1, are all ±1. Hence, the measurement outcomes X,Y take values in
the interval [−1, 1] for all values of a and b. For this setup we find〈

XY |(a, b) = (0, 0)
〉

+
〈
XY |(a, b) = (0, 1)

〉
+
〈
XY |(a, b) = (1, 0)

〉
−
〈
XY |(a, b) = (1, 1)

〉
=〈ψ|A0 ⊗ B0|ψ〉+ 〈ψ|A0 ⊗ B1|ψ〉+ 〈ψ|A1 ⊗ B0|ψ〉 − 〈ψ|A1 ⊗ B1|ψ〉

=
√

2〈ψ|σz ⊗ σz|ψ〉+
√

2〈ψ|σx ⊗ σx|ψ〉

=2
√

2.

(8.16)

Hence, the CHSH inequality can be violated, which means that we can never find a local
hidden variable theory that “simulates” quantum mechanics.

As a side remark we note that the measurements of the observables A0,A1,B0,B1 gives
precisely the POVMs in section 8.1.3 (as the pairs of eigenvectors of respective observable)

A0 : |φ1(0)〉, |φ−1(0)〉,
A1 : |φ1(π/4)〉, |φ−1(π/4)〉,
B0 : |φ1(π/8)〉, |φ−1(π/8)〉,
B1 : |φ1(−π/8)〉, |φ−1(−π/8)〉.

Assuming quantum mechanics to be the correct description of the world, the above
result excludes local hidden variable theories. But what if one does not trust quantum
mechanics? The Bell inequalities provide means to exclude local hidden variable theories
even if you do not want to subscribe to quantum mechanics. It is essentially enough to
gather measurement statistics (together with some weak theoretical assumptions) that
yields a violation of the Bell inequalities. A number of experiments have been performed
that rather clearly suggest violations of Bell inequalities. However, due to various limi-
tations in the implementations (often referred to as loopholes) we can strictly speaking
not be entirely sure that Mother Nature is not conspiring to fool us into believing that
we see Bell violations in our experiments, while we actually do not [6, 7]. (However, most
physicists find the results convincing enough.)

Here we should also take the opportunity to point out that one can construct hidden
variable theories that do give the same predictions as quantum mechanics (“pilot-wave
theory” or “Bohmian mechanics”, see [1]) but the price is that we have to give up locality,
i.e., these theories contain superluminal communication in some sense.
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8.4 Cirel’son’s inequality

So far we have seen that every local hidden variable theory (or more precisely every
classically local distribution) gives rise to the bound 2 in the CHSH inequality. However,
the previous example shows that we can reach up to 2

√
2 within quantum mechanics.

The question is if we can reach even higher values. By a quantum analogue of the CHSH
inequality we can show that local quantum measurements cannot yield anything beyond
the value 2

√
2.

Lemma 8.4.1. The function H(x) :=
√

2 + 2x+
√

2− 2x is such that maxx∈[−1,1]H(x) =

2
√

2.

Theorem 8.4.2. (Cirel’son’s inequality [4]) Let A0, A1, B0, B1 be observables with spec-
trum in [−1, 1]. Let ρAB ∈ S=(HA ⊗HB). Then∣∣∣∣tr(A0 ⊗ B0ρAB) + tr(A0 ⊗ B1ρAB)

+ tr(A1 ⊗ B0ρAB)− tr(A1 ⊗ B1ρAB)

∣∣∣∣ ≤ 2
√

2.

(8.17)

Proof. Let ρAB =
∑
k λk|ψk〉〈ψk| be an eigenvalue decomposition (or any other convex

decomposition into pure states). The following is essentially just an application of the
triangle inequality and the Cauchy-Schwarz inequality.∣∣∣∣tr(A0 ⊗ B0ρAB) + tr(A0 ⊗ B1ρAB)

+ tr(A1 ⊗ B0ρAB)− tr(A1 ⊗ B1ρAB)

∣∣∣∣
≤
∑
k

λk

∣∣∣∣〈ψk|A0 ⊗ B0|ψk〉+ 〈ψk|A0 ⊗ B1|ψk〉

+ 〈ψk|A1 ⊗ B0|ψk〉 − 〈ψk|A1 ⊗ B1|ψk〉
∣∣∣∣

≤
∑
k

λk

∣∣∣∣(〈ψk|A0 ⊗ 1̂ + 〈ψk|A1 ⊗ 1̂
)

1̂⊗ B0|ψk〉
∣∣∣∣

+
∑
k

λk

∣∣∣∣(〈ψk|A0 ⊗ 1̂− 〈ψk|A1 ⊗ 1̂
)

1̂⊗ B1|ψk〉
∣∣∣∣

≤
∑
k

λk

∥∥∥∥A0 ⊗ 1̂|ψk〉+A1 ⊗ 1̂|ψk〉
∥∥∥∥∥∥∥∥1̂⊗ B0|ψk〉

∥∥∥∥
+
∑
k

λk

∥∥∥∥A0 ⊗ 1̂|ψk〉 − A1 ⊗ 1̂|ψk〉
∥∥∥∥∥∥∥∥1̂⊗ B1|ψk〉

∥∥∥∥
≤
∑
k

λk

[∥∥|αk〉+ |γk〉
∥∥+

∥∥|αk〉 − |γk〉∥∥],

(8.18)
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where
|αk〉 := A0 ⊗ 1̂|ψk〉, |γk〉 := A1 ⊗ 1̂|ψk〉. (8.19)

In the last inequality above, we made use of the assumption that Bb has its spectrum in
[−1, 1]. Due to the analogous assumption on Aa, it follows that ‖αk‖ ≤ 1 and ‖γk‖ ≤ 1,
and xk := Re〈αk|γk〉 ∈ [−1, 1]. If we combine these observations with Lemma 8.4.1 we
find ∑

k

λk

[∥∥|αk〉+ |γk〉
∥∥+

∥∥|αk〉 − |γk〉∥∥]
≤
∑
k

λk

[√
2 + 2Re〈αk|γk〉+

√
2− 2Re〈αk|γk〉

]
=
∑
k

λk
[√

2 + 2xk +
√

2− 2xk
]

=
∑
k

λkH(xk)

≤2
√

2.

(8.20)

8.5 Beyond quantum

A recurrent theme throughout this chapter has been that of two subsystems that are pre-
vented from communicating while we perform experiments on them. We have furthermore
seen that all our considerations can be phrased in terms of different classes of conditional
probability distributions. Here we take this line of thoughts to its ultimate conclusion, and
ask what kind of conditional probability distributions we obtain if the only restriction we
impose is that they should not allow Alice and Bob to communicate. First of all, what do
we mean by this? As an example, suppose that we would have the conditional probability
distribution PX,Y |a,b(x, y) = δx,bδy,a. This is a deterministic distribution where Alice’s
output x is always equal to Bob’s input b, and where Bob’s output y is always equal to
Alice’s input a. In other words, if we had a device (or a pair of devices) that would behave
according to this conditional distribution, it would allow Alice and Bob to communicate
perfectly.

To exclude all communication, Alice should not be able to detect Bob’s inputs, and
vice versa. Moreover, they should not even have an increased chance at guessing correctly
what inputs the other is choosing. To impose this, we must make sure that if Bob does
not know Alice’s measurement outcomes x, then his conditional probability distribution
PY |a,b(y) :=

∑
x PX,Y |a,b(x, y) does not depend on Alice’s choices a, and similarly that

Alice’s marginal distribution does not depend on Bob’s choices. We formalize this with
the following definition.
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Classically local

Quantum

Nonsignaling

Conditional probability distributions

Figure 8.3: The bipartite conditional probability distributions with a fixed and finite
number of possible inputs and outputs x, y, a, b form a convex polytope. In
this polytope, the non-signaling, quantum, and classically local distributions
form a sequence of nested subsets. The classically local and the non-signaling
sets are both convex polytopes, while the quantum set is convex but not a
polytope.

Definition 8.5.1. A conditional probability distribution is called non-signaling if∑
y

PX,Y |a,b(x, y) =
∑
y

PX,Y |a,b′(x, y), ∀a, b, b′, ∀x,

∑
x

PX,Y |a,b(x, y) =
∑
x

PX,Y |a′,b(x, y), ∀a, a′, b, ∀y.
(8.21)

We can now check that all conditional distributions arising from bipartite quantum
measurements, as in equation (8.6), are non-signaling. By letting ρA = trBρAB , and use
the fact that {Bby}y is a POVM, we find∑

y

PX,Y |a,b(x, y) =
∑
y

tr(Aax ⊗BbyρAB)

=tr(Aax ⊗ 1̂BρAB)

=tr(AaxρA).

(8.22)

Hence, Alice cannot notice any of Bob’s choices. By instead summing over x, we find the
analogous statement for Bob.
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We can conclude that bipartite quantum measurements always give rise to non-signaling
distributions. However, there do exist non-signaling distributions that cannot be reached
by local quantum measurements. One way to prove this is to show that there exists a
non-signaling distribution that violates Cirel’son’s inequality in Theorem (8.4.2). The
following non-signaling distribution gives such an example.

PX,Y |(a,b)=(0,0)(1, 1) =
1

2
, PX,Y |(a,b)=(0,0)(−1,−1) =

1

2
,

PX,Y |(a,b)=(0,1)(1, 1) =
1

2
, PX,Y |(a,b)=(0,1)(−1,−1) =

1

2
,

PX,Y |(a,b)=(1,0)(1, 1) =
1

2
, PX,Y |(a,b)=(1,0)(−1,−1) =

1

2
,

PX,Y |(a,b)=(1,1)(1,−1) =
1

2
, PX,Y |(a,b)=(1,1)(−1, 1) =

1

2
.

(8.23)

The first row of the above equations tells us that if the measurement settings are a = 0
and b = 0, then Alice and Bob always get the same output, where the two possibilities
x = y = 1 and x = y = −1 occur with equal probability. The same is true for the settings
(0, 1) and (1, 0), while if they happen to choose the settings a = 1 and b = 1, then Alice
and Bob are guaranteed to get opposite outputs x = −y. Note that if Alice does not
know Bob’s outputs, then Alice only sees that she gets the outputs 1 or −1 with equal
probability, irrespective of Bob’s input b (as well as irrespective of her own input a). The
analogous conclusion holds for Bob, and thus (8.23) describes a non-signaling distribution.

For this choice of conditional distribution we furthermore have〈
XY |(a, b) = (0, 0)

〉
+
〈
XY |(a, b) = (0, 1)

〉
+
〈
XY |(a, b) = (1, 0)

〉
−
〈
XY |(a, b) = (1, 1)

〉
=4.

(8.24)

Hence, this goes beyond Cirel’son’s bound of 2
√

2, and we can conclude that this condi-
tional distribution cannot be generated by local quantum measurements.

Note that if we could build a pair of devices that implement the conditional probability
distribution in equation (8.23), then Alice and Bob would be able win the game that we
introduced in Section 8.1 each time they play it. Unfortunately, it looks like our universe
does not allow such machines.

If such correlations do not exist in our world, why should we bother about them? One
reason is that these more general types of theories may help us to understand why quantum
mechanics looks the way it does. For example, one could ask why quantum mechanics does
not allow these more ‘violent’ types of correlations. After all, they are allowed by relativity
theory, so why should nature not allow them? (Well, as far as we know they are not allowed
in nature, but who knows.) As of today, no one really has a good answer, and questions
like this are presently a rather active research topic. (For an introduction, see [11].)
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