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Definitions: von Neumann entropy. In this series we will derive some useful properties of the von
Neumann entropy: the quantum version of Shannon entropy.

The von Neumann entropy of a density operator ρ ∈ S(HA) is defined as

H(A)ρ = − tr
(
ρ log ρ

)
= −

∑
i

λi log λi, (1)

where {λi}i are the eigenvalues of ρ.

Given a composite system HA ⊗HB ⊗HC we write H(AB)ρ to denote the entropy of the reduced state
of a subsystem, ρAB = trC(ρABC). When the state ρ is obvious from the context we drop the indices.

The conditional von Neumann entropy is defined as

H(A|B)ρ = H(AB)ρ −H(B)ρ. (2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob (who holds the B part of the quantum
state ρAB) still has about Alice’s state.

The strong sub-additivity property of the von Neumann entropy is very useful. It applies to a tripartite
composite system HA ⊗HB ⊗HC ,

H(A|BC)ρ ≤ H(A|B)ρ. (3)

Tips: Handy properties of von Neumann entropy

1. Definition: H(A)ρ = − tr
(
ρ log ρ

)
= −

∑
i λi log λi, where:

(a) {λi}i are the eigenvalues of ρ;

(b) the logarithm is log2;

(c) to evaluate the entropies, 0 log 0 = 0;

(d) nonation: we sometimes see just H(A) or even H(ρ).

2. Positivity: H(A)ρ ≥ 0 (because 0 ≤ λi ≤ 1).

3. Entropy of pure states: H(A)|ψ〉 = 0 (because the density matrix has a single eigenvalue
1 for eigenvector |ψ〉).

4. Basis independence: H(A)ρ = H(A)UρU† for unitaries U , because the eigenvalues are not
affected by a change of basis.

5. Conditional entropy: H(A|B)ρ = H(AB)ρ −H(B)ρ.

6. Strong subadditivity: H(A|BC)ρ ≤ H(A|B)ρ. In other words, knowing more cannot hurt.

Exercise 1. Properties of the von Neumann Entropy.

(a) Prove the following general properties of the von Neumann entropy:

(i) H(A)ρ > 0 for any ρA.
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(ii) If ρAB is pure, then H(A)ρ = H(B)ρ.

Hint. Use the Schmidt decomposition of bipartite pure states: for any |ψ〉AB, there exist
coefficients pk, and two orthonormal sets of vectors {|χk〉A}k and {|φk〉B}k, such that |ψ〉AB =∑
k

√
pk |χk〉A ⊗ |φk〉B.

(iii) If two systems are independent, ρAB = ρA ⊗ ρB, then H(AB)ρ = H(A)ρA +H(B)ρB .

(b) Consider a bipartite state that is classical on subsystem Z: ρZA =
∑
z pz|z〉〈z|Z⊗ρzA for some basis

{|z〉Z}z of HZ . Show that:

(i) The conditional entropy of the quantum part, A, given the classical information Z is

H(A|Z)ρ =
∑
z

pzH(A|Z = z), (4)

where H(A|Z = z) = H(A)ρzA .

(ii) The entropy of A is concave,

H(A)ρ ≥
∑
z

pzH(A|Z = z). (5)

(iii) The entropy of a classical probability distribution {pz}z cannot be negative, even if one has
access to extra quantum information, A,

H(Z|A)ρ ≥ 0. (6)

Remark: Eq (6) holds in general only for classical Z. Bell states are immediate counterex-
amples in the fully quantum case.

Tips— In this exercise you have to prove some more properties of von Neumann entropy. The
first one is rather surprising: if two systems share a pure state, then the entropy of each of the
systems is the same, independently of their dimensions. In other words, if you have a pure state
|ψ〉 in a system represented by the hilbert space H , then you can decompose the system in two
parts, H = HA ⊗HB, in any way you want and the entropy of A will always be equal to the
entropy of B, even if you choose to split H in a way such that |HA| � |HB|.

A B
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Figure 1: If ρAB is pure H(A)ρ = H(B)ρ, independently of dimensions of subsystems A and B.

To prove this, try writting a Schmidt decomposition of |ψ〉 (page 27 of the script).

The next property studies two systems that are in a product state, ρAB = ρA⊗ρB. The systems
are independent of each other—whatever operations or measurements you perform on A will
not affect ρB and vice-versa. In this non-correlated case one would expect that the uncertainty
about the global state is just the sum of the uncertainty about the two local subsystems—and,
for once, quantum mechanics respects common sense, with H(AB) = H(A) +H(B).

To prove that property, you may start by expanding the reduced states in their eigenbases,

ρA =
∑
k

γk|k〉〈k|A, ρB =
∑
`

λ`|`〉〈`|B.
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Now expand the composed state ρAB = ρA⊗ρB in those bases and compute its entropy directly.

In part b) we look at a special category of bipartite states, those that are classical on one of the
subsystems. These states are introduced on pages 34–35 of the script. They have the form

ρZA =
∑
z

pz|z〉〈z|Z ⊗ ρzA (T.1)

for a fixed basis {zZ}z of the first subsystem HZ and a probability distribution {pz}z.

It help to look at one example of such a state. Consider two qubits, the computational basis
and the classicaly correlated state

ρZA = p |0〉〈0| ⊗
(
α β
γ δ

)
+ (1− p) |1〉〈1| ⊗

(
α′ β′

γ′ δ′

)

Actually, the first system can be a classical bit, since no cross terms like |0〉〈1| appear there.
The reduced state of system A is just

ρA = trZ(ρZA) = p

(
α β
γ δ

)
+ (1− p)

(
α′ β′

γ′ δ′

)
,

and in general, for a hybrid classical-quantum state of the form of Eq. T.1,

ρA =
∑
z

pz ρ
z
A.

The reduced state of the classical system is

ρZ = trA(ρZA) = p(α+ δ) |0〉〈0|+ (1− p)(α′ + δ′) |1〉〈1|,

or, in general,

ρz =
∑
z

pz tr(ρzA) |z〉〈z|.

These hybrid states may be interpreted as “state ρzA was prepared on system A with probability
pz, and in that case the classical register Z shows the value z, i.e., it is in the pure state |z〉.” A
measurement on system Z performed in basis {z}z would allow us to determine which ρzA had
been prepared, because the total state would became |z〉〈z| ⊗ ρzA. Since in that case the reduced
state of A would be ρzA, we call that “the state of system A conditioned on the measurement
outcome z of system Z”, ρzA = ρA|Z=z.

Let us now go back to the exercise. You are asked to prove that for states like that of Eq. T.1,

H(AZ) = H(Z)ρ +
∑
z

pz H(A|Z = z)

= H(Z)ρ +
∑
z

pz H(A)ρzA .

I suggest that you expand the matrices ρzA in their eigenbases, for instance

ρzA =
∑
k

λzk |kz〉〈kz|.
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If you now write ρZA using those expressions for ρzA and compute its entropy, you should get
the desired result.

I won’t help you in part (b) (ii). Part (b) (iii) asks you to show that for these states H(Z|A) ≥ 0.
One trick that may help is to imagine a system Y that is just a copy of Z and a state

ρZAY =
∑
k

pz|z〉〈z| ⊗ ρzA ⊗ |y〉〈y|.

You may check that the entropy of this state is the same than that of ρAB. In fact, you can
show that H(ZAY ) = H(ZA) and H(Z) = H(Y ). Now use strong subaddivity to show what
you want.

Exercise 2. Von Neumann Entropy and Entanglement.

(a) Compute the entropies H(A), H(AB) and the conditional entropy H(A|B) of the Bell state

|Φ+〉AB =
1√
2

(|00〉AB + |11〉AB) ; (7)

(b) Calculate the conditional entropies H(A|BC), H(AB|C) and H(A|B) of the GHZ state

|GHZ〉ABC =
1√
2

(|000〉ABC + |111〉ABC) . (8)

Consider a separable state ρAB, i.e. a state that can be written as a convex combination of product states:

ρAB =
∑
k

pk ρ
(k)
A ⊗ ρ

(k)
B , (9)

where {pk}k is a probability distribution.

(c) Prove that the von Neumann entropy is always positive for such a state,

H (A|B)ρ > 0 . (10)

Remark: This means that, whenever the conditional entropy is negative, you are necessarily in possession
of an entangled state.

Hint. First use the results of point (b) of the previous exercise to prove that the conditional von Neumann

entropy is concave, i.e. if ρAB =
∑
k pk ρ

(k)
AB, then

H (A|B)ρ >
∑
k

pkH (A|B)ρ(k) . (11)
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