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Exercise 1. Three Qubit Bit Flip Code.

Let |ψ〉 = α|000〉+ β|111〉, with |α|2 + |β|2 = 1, be an encoding of the qubit α|0〉+ β|1〉.

(a) Compute the eigenvalues and eigenvectors of the observables Z1Z2 := Z ⊗ Z ⊗ I and
Z2Z3 := I⊗ Z ⊗ Z.

(b) Perform the measurement of the observable Z1Z2 followed by the observable Z2Z3 on
the faulty state X1|ψ〉 with X1 := X ⊗ I ⊗ I. What are the corresponding outcomes,
measurements probabilities and post-measurement states?

(c) Do the same calculations for the states |ψ〉, X2|ψ〉 and X3|ψ〉.

(d) How can a single bit-flip error in |ψ〉 be corrected by using the information obtained by
the measurements of Z1Z2 and Z2Z3?

Solution.

(a) The spectral decomposition of the Pauli matrix Z is given by Z = (+1)|0〉〈0|+(−1)|1〉〈1|. The eigenvectors
of Z1Z2 corresponding to the eigenvalue +1 are therefore |000〉, |001〉, |110〉 and |111〉. The eigenvectors of
Z1Z2 corresponding to the eigenvalue −1 are given by |010〉, |011〉, |100〉 and |101〉.
For the observable Z2Z3 we obtain the eigenvectors |000〉, |100〉, |011〉 and |111〉 corresponding to the
eigenvalue +1 and the eigenvectors |010〉, |110〉, |001〉 and |101〉 corresponding to the eigenvalue −1.

(b) Applying the bit flip on the first qubit gives the state X1|ψ〉 = α|100〉+ β|011〉. Measuring the observable
Z1Z2 then yields −1 with probability 1 as X1|ψ〉 is an element of the space spanned by the eigenvectors
corresponding to the eigenvalue −1 (see previous item). Furthermore, this implies that the state X1|ψ〉 is
not altered by this measurement.

Measuring Z2Z3 yields the outcome +1 with probability 1 as X1|ψ〉 is an element of the space spanned by
the eigenvectors corresponding to the eigenvalue +1. Again, the state is not changed by this measurement.

(c) By using the same reasoning as above we can show that

• |ψ〉 : measuring Z1Z2 yields +1 and Z2Z3 yields +1.

• X2|ψ〉 : measuring Z1Z2 yields −1 and Z2Z3 yields −1.

• X3|ψ〉 : measuring Z1Z2 yields +1 and Z2Z3 yields −1.

The states are not changed by any of these measurements.

(d) The previous two items imply that the following strategy corrects a single bit flip error:

• Measuring +1, +1 ⇒ do nothing

• Measuring −1, +1 ⇒ apply X1

• Measuring −1, −1 ⇒ apply X2

• Measuring +1, −1 ⇒ apply X3

Exercise 2. Shor code.

Let |ψ〉 be the nine qubit Shor-encoding of the qubit α|0〉 + β|1〉. Assume that |ψ〉 is exposed
to a noise process which introduces a bit and a phase flip error on the fourth qubit yielding the
faulty state Z4X4|ψ〉.
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(a) Perform the measurement Z4Z5 followed by Z5Z6 on Z4X4|ψ〉. What are the correspond-
ing outcomes, measurement probabilities, and post-measurement states? Infer from the
measurement results where the bit flip operation has to be applied in order to correct one
of the errors.

(b) Measure the observables X1X2X3X4X5X6 and X4X5X6X7X8X9 on the bit-flip corrected
state of part (a). What are the corresponding outcomes, measurements probabilities and
post-measurement states? What can be inferred about the error(s) left in the state from
the measurement results?

(c) Apply the operator Z4Z5Z6 to the resulting state of the previous part. What is the final
state?

(d) How would you correct the error ZiXi|ψ〉, where the position i of the error is not known?

Solution.

(a) First note that the faulty state is given by

Z4X4|ψ〉 = α

(
|000〉+ |111〉√

2

)
⊗
(
−|100〉+ |011〉√

2

)
⊗
(
|000〉+ |111〉√

2

)
+ β

(
|000〉 − |111〉√

2

)
⊗
(
−|100〉 − |011〉√

2

)
⊗
(
|000〉 − |111〉√

2

)
.

The projector P 45
+ which projects onto the eigenbasis of Z4Z5 corresponding to the eigenvalue +1 is given

by (see Exercise 1)
P 45
+ = I⊗ I⊗ I⊗ (|00〉〈00|+ |11〉〈11|)⊗ I⊗ I⊗ I⊗ I ,

where each identity operator I acts on a single qubit. Similarly, for the projector P 45
− corresponding to the

eigenvalue −1 has the following expression:

P 45
− = I⊗ I⊗ I⊗ (|01〉〈01|+ |10〉〈10|)⊗ I⊗ I⊗ I⊗ I .

It is not hard to see that Z4X4|ψ〉 ∈ range(P 45
− ), i.e. that Z4X4|ψ〉 is an element of the space spanned

by the eigenvectors of Z4Z5 corresponding to the eigenvalue −1. As Z4X4|ψ〉 ∈ range(P 45
− ) it holds that

P 45
− Z4X4|ψ〉 = Z4X4|ψ〉 and therefore the state is not changed by the measurement. For the measurement
Z5Z6 we obtain the following projectors

P 56
+ = I⊗ I⊗ I⊗ I⊗ (|00〉〈00|+ |11〉〈11|)⊗ I⊗ I⊗ I
P 56
− = I⊗ I⊗ I⊗ I⊗ (|01〉〈01|+ |10〉〈10|)⊗ I⊗ I⊗ I .

This time we have that Z4X4|ψ〉 ∈ range(P 56
+ ) and therefore obtain the measurement result +1 with

probability 1. Again, the state is not altered by the measurement.

As we have outcomes −1 and +1 we can conclude, by using Exercise 1, that we have to apply X4 in order
to correct the bit flip on the fourth qubit.

(b) Applying the bit flip operation X4 on the faulty state yields the bit flip corrected state

X4(Z4X4|ψ〉) = −Z4X4X4|ψ〉 = −Z4|ψ〉 , (S.1)

where we used that X4 and Z4 anti-commute and that X4X4 = I.
Let |+〉 := 1/

√
2(|0〉 + |1〉) and |−〉 := 1/

√
2(|0〉 − |1〉). Note that X|+〉 = (+1)|+〉 and X|−〉 = (−1)|−〉.

The projector P+ corresponding to the eigenbasis of the observable X1X2X3 belonging to the eigenvalue
+1 is then given by

P+ = |+ ++〉〈+ + +|+ |+−−〉〈+−−|+ | −+−〉〈−+−|+ | − −+〉〈− −+| .

And similarly, for the projector belonging to the eigenvalue −1 we obtain

P− = | − −−〉〈− − −|+ |+ +−〉〈+ +−|+ | −++〉〈−+ +|+ |+−+〉〈+−+| .

The corresponding projectors for the measurement X1X2X3X4X5X6 are then given by

P 1..6
+ = P+ ⊗ P+ ⊗ I⊗3 + P− ⊗ P− ⊗ I⊗3

P 1..6
− = P+ ⊗ P− ⊗ I⊗3 + P− ⊗ P+ ⊗ I⊗3 .
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By using that 1/
√

2(|000〉+ |111〉) ∈ range(P+) and 1/
√

2(|000〉− |111〉) ∈ range(P−) we can conclude that
with probability 1 the measurement outcome −1 is obtained, and therefore the state is not changed by the
measurement.

For the measurement X4X5X6X7X8X9 we obtain the projectors

P 4..9
+ = I⊗3 ⊗ P+ ⊗ P+ + I⊗3 ⊗ P− ⊗ P−
P 4..9
− = I⊗3 ⊗ P+ ⊗ P− + I⊗3 ⊗ P− ⊗ P+ ,

and therefore, we obtain the outcome −1 with probability 1. Again, the state is not changed.

As we have the measurement outcomes −1 and −1 we can conclude, by using Exercise 1 and the fact that
a phase flip in the {|0〉, |1〉} basis is a bit flip in the {|+〉, |−〉} basis, that a phase flip error has occurred
in the second block of three qubits.

(c) Note that (Z ⊗ Z ⊗ I)|000〉 = |000〉 and (Z ⊗ Z ⊗ I)|111〉 = |111〉. Applying Z4Z5Z6 on the state given in
(S.1) then yields

(Z4Z5Z6)(−Z4|ψ〉) = −Z5Z6|ψ〉 = −|ψ〉 .
Hence, we have recovered the initial state |ψ〉 (with a global phase).

(d) The same procedure as above can be used.

(i) Measure Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9. This leaves the state unchanged, and then given the
measurement outcomes (syndrome), we can correct the bit flip error. More specifically, we have the
four cases in part (b) and (c) of Exercise 1 in either block 123, 456, or 789, and can determine where
to apply an X operator.

(ii) For the phase flip we can measure X1X2X3X4X5X6 and X4X5X6X7X8X9. This determines which
block the Z error occurs in. Specifically, -1 +1 eigenvalues mean the Z error is in block 123, -1 -1
eigenvalues mean the Z error is in block 456, +1 -1 eigenvalues mean the Z error is in block 789. By
applying a Z operation to each qubit in the block with an error −|ψ〉 is left.

Exercise 3. Quantum Fourier Transform.

The quantum Fourier transform is just a discrete Fourier transform written in terms of kets.
Given an orthonormal basis {|0〉 . . . |N − 1〉}, it is defined to be the linear operator with the
following action on the basis states,

|j〉 7−→ 1√
N

N−1∑
k=0

e2πi jk/N |k〉 . (1)

(a) Argue that this operation is unitary.

Solution. Let us show that the inverse of this operation is also its adjoint. We know that the inverse
Fourier transform is given by

|k〉 7−→ 1√
N

N−1∑
j=0

e−2πi jk/N |j〉 . (S.2)

(This can be verified explicitely by plugging it into (1) and checking that we get back |j〉 again.)

The matrix elements of the transformation (1), written as a linear operator U , are given by ukj = 〈k |U |j〉 =
1√
N

e2πi jk/N . The inverse transform has the matrix elements vjk = 1√
N

e−2πi jk/N = u∗kj , which is also the

adjoint of U .

(b) Compute the Fourier transform of the n-qubit state |0 . . . 0〉.
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Solution. It suffices to set k = 0 in (1) to notice that the Fourier transform of |0 . . . 0〉 is simply the
completely uniform vector (i.e. a uniform superposition of all basis states),

U |0 . . . 0〉 =
1√
N

N−1∑
j=0

|k〉 . (S.3)
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