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Exercise 1. Composing Systems: The Tensor Product.

You have learned from quantum mechanics that the composition of two systems described by
states |ψA〉 ∈ HA and |ψB〉 ∈ HB is described by a state in the tensor product space |ψ〉 =
|ψA〉 ⊗ |ψB〉 ∈ HA ⊗HB. The tensor product space is defined by its basis elements: if {|φiA〉}
and {|φjB〉} are bases of HA and HB, respectively, then

HA ⊗HB = span
{
|φiA〉 ⊗ |φ

j
B〉
}
. (1)

The tensor product satisfies the following basic properties:(
|ψA〉+ |ψ′

A〉
)
⊗ |ψB〉 = |ψA〉 ⊗ |ψB〉+ |ψ′

A〉 ⊗ |ψB〉 ; (2)

(α|ψA〉)⊗ |ψB〉 = α · |ψA〉 ⊗ |ψB〉 , (3)

and the same properties hold on the second term.

(a) Consider two qubits, HA = HB = C2, with respective bases {|0A〉, |1A〉} and {|0B〉, |1B〉}.
The tensor product space admits the basis {|0A〉⊗|0B〉, |0A〉⊗|1B〉, |1A〉⊗|0B〉, |1A〉⊗|1B〉}.
Write the state of each of the following systems in this basis.

(i) System A in state |0A〉 and system B in state |1B〉.
(ii) System A in state 1√

2
(|0A〉+ |1A〉) and system B in state |1B〉.

(iii) System A in state 1√
2

(|0A〉+ |1A〉) and system B in state 1√
2

(|0B〉+ |1B〉).

Solution.

(i) The joint system is in the state |0A〉 ⊗ |1B〉.
(ii) The joint state is 1√

2
(|0A〉 ⊗ |1B〉+ |1A〉 ⊗ |1B〉).

(iii) The joint state is

1√
2

(|0A〉+ |1A〉)⊗
1√
2

(|0B〉+ |1B〉) =
1

2
(|0A〉 ⊗ |0B〉+ |0A〉 ⊗ |1B〉+ |1A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) .

(S.1)

An important property of the tensor product space is that there are states in HA ⊗HB which
cannot themselves be written as a tensor product of states from each space, i.e. they cannot be
written in the form |ψA〉 ⊗ |ψB〉.

(b) Consider two qubits, HA = HB = C2, with respective bases {|0A〉, |1A〉} and {|0B〉, |1B〉}.
Consider the state

|Φ+〉 =
1√
2

(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) . (4)

Show that this state vector cannot be written as a tensor product of two individual state
vectors in HA and HB.
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Solution. Suppose the state |Φ+〉 could be written as the product of two vectors in each Hilbert space,
|Φ+〉AB = |φ〉A⊗|ψ〉B . Then both |φ〉 and |ψ〉 could be decomposed into the canonical basis of each Hilbert
space,

|φ〉 = α0 |0A〉+ α1 |1A〉 ;

|ψ〉 = β0 |0B〉+ β1 |1B〉 .

Then

|φ〉 ⊗ |ψ〉 = α0β0|0A〉 ⊗ |0B〉+ α0β1|0A〉 ⊗ |1B〉+ α1β0|1A〉 ⊗ |1B〉+ α1β1|1A〉 ⊗ |1B〉 ,

which in comparision to |Ψ+〉 = 1√
2

(|0A〉 ⊗ |0A〉+ |1B〉 ⊗ |1B〉) yields the following set of equations for
α1/2 and β1/2,

α0β0 =
1√
2

; α0β1 = 0 ;

α1β1 =
1√
2

; α1β0 = 0 .

It is obvious that this system does not admit any solution. (i.e., α0β1 = 0 implies either α0 = 0 or β1 = 0,

so the equations on the left cannot be both non-zero.)

(c) Show that the state given in (b) can be written as

|Φ+〉 =
1√
2

(|+A〉 ⊗ |+B〉+ |−A〉 ⊗ |−B〉) , (5)

with |±A〉 = 1√
2

(|0A〉+ |1A〉)

Solution. Simply write out

1√
2

(|+A〉 ⊗ |+B〉+ |−A〉 ⊗ |−B〉)

=
1

2
√

2

(
|0A〉 ⊗ |0B〉+ |0A〉 ⊗ |1B〉+ |1A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉

+ |0A〉 ⊗ |0B〉 − |0A〉 ⊗ |1B〉 − |1A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉
)

=
1√
2

(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) . (S.2)

(d) (Extra question, with an introduction to tomography.) We have shown that no state vector
can appropriately describe the system A from point (b). However, it can be described
by a density operator. Determine the density operator ρ for that system by considering
explicitely the probabilities of the outcomes of the measurements in the bases {|0A〉, |1A〉},
{|+A〉, |−A〉}, and {|+iA〉, |−iA〉} (where |±iA〉 = 1√

2
(|0A〉 ± i|1A〉)).

Hints. By “measuring in a specific basis”, it is meant to measure an observable that is diagonal

in that basis. Recall also that the probability for measuring the outcome |φ〉 is given by 〈φ |ρ |φ〉.

Solution. If the system A is measured in the basis {|0A〉, |1A〉}, then we need to collapse the system onto
|0A〉 or |1A〉:

〈0A|
1√
2

(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) =
1√
2
|0B〉 , (S.3)

since 〈0A |0A〉 = 1 and 〈0A |1A〉 = 0. We also have similarly

〈1A|
1√
2

(|0A〉 ⊗ |0B〉+ |1A〉 ⊗ |1B〉) =
1√
2
|1B〉 . (S.4)
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The measurement outcome probabilities are simply the square of the norm of the resulting vector, which
is 1/2 each. In this case, they have to be 1/2 anyway by symmetry of the two cases.

The considerations for measuring in the basis |±A〉 are exactly the same, since we have seen in point (c)
that the state takes the same form in the other basis.

The considerations for measuring in the basis |±iA〉 are again exactly the same, as once can easily check.

Then the state, in the Bloch sphere representation, has to lie in the middle of all three axes. So it has to
be the fully mixed state, given at the center of the Bloch sphere,

ρ =

(
1/2 0
0 1/2

)
. (S.5)

Important Morale. The reduced state on one party of a fully entangled state is the fully mixed state.

In the density operator formalism, everything stays the same: the composition of two systems
described by density operators ρA ∈ S (HA) and ρB ∈ S (HB) respectively, is described by a
density operator ρ ∈ S (HA ⊗HB) = S (HA)⊗ S (HB). The important difference, however, is
that ρ is not necessarily ρA ⊗ ρB. Moreover, in contrast to state vectors, whatever the state
of the joint system is, one can always write down the density operator of one part of the joint
system, called reduced state or marginal state. The reduced state is obtained by partial trace.

(e) Write out the density operators for the following systems using basis elements of HA⊗HB

given in point (a). (Use the matrix notation for convenience.)

(i) Two qubits in the state |Φ+〉 defined in point (b).

(ii) Two qubits that are randomly prepared either jointly in state |0A〉 ⊗ |0B〉 or in the
joint state |1A〉 ⊗ |1B〉, with probability 1/2 each.

(iii) (Greenberger-Horne-Zeilinger state or cat state.) Three qubits A, B, and C in the
state described by the vector

|GHZ〉 =
1√
2

(|0A〉 ⊗ |0B〉 ⊗ |0C〉+ |1A〉 ⊗ |1B〉 ⊗ |1C〉) . (6)

(iv) The N -qubit version of the GHZ state,

|GHZN 〉 =
1√
2

(|01〉 ⊗ · · · ⊗ |0N 〉+ |11〉 ⊗ · · · ⊗ |1N 〉) . (7)

(v) The maximally entangled state between two systems A and B, of N qubits each. Let
{|iA/B〉}i be a basis for each system. The state is given by

|ΨN 〉 =
1√
2N

∑
i

|iA〉|iB〉 . (8)

Solution. The solution to this exercise is attached on page 5.

(f) Calculate the following reduced states from point (e) and give their density operators.

(1.) The reduced state of system (i) on qubit A (respectively on qubit B).

(2.) The reduced state of system (ii) on qubit A (respectively on qubit B).
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(3.) The reduced state of the GHZ state (iii) on the two first qubits, A and B.

(4.) The reduced state of the N -qubit GHZ state (iv) on all but the last qubit, i.e. just
tracing out the N -th qubit.

(5.) The reduced state of the maximally entangled state |ΨN 〉 of point (v) on party A.

Hint. Factorize the state vector cleverly.

(6.) The reduced state of the maximally entangled state |ΨN 〉 on the k first qubits of A
and B (i.e. tracing out the N − k last qubits of A and B).

Solution. The solution to this exercise is attached on page 7.
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Solution to Exercise 1.
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6



Solution to Exercise 1.
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