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Exercise 1. Properties of the variational distance

Given two probability distributions PX and QX with the same alphabet, the variational distance between
them is defined as

D(PX , QX) =
1

2

∑
x

|PX(x)−QX(x)|. (1)

(a) Operational meaning. Suppose that you are given one of two dice, P and Q, at random with
equal probability. Your task is to guess which die you were given. You know that both dice are
biased: the probability of obtaining the different outcomes X = {1, . . . , 6} are given by distributions
PX for die P and QX for Q. You are allowed to throw the die only once. Show that your probability
of guessing correctly is given by

Pr(X) =
1

2
(1 +D(PX , QX)) . (2)

(b) Triangle inequality. Show that, for any three probability distributions PX , QX and RX ,

D(PX , QX) +D(QX , RX) ≥ D(PX , RX). (3)

(c) Distance to uniform distribution. Let PX = (p, 1 − p) be a binary probability distribution.
Show that

D(PX , 1− PX) = 2D(PX , Ux), (4)

where UX = ( 1
2 ,

1
2 ) is the uniform distribution.

(d) Joint distributions. Let PXY be a joint probability distribution, with marginals PX and PY that
have the same alphabet. Show that

(i) D(PX , PY ) ≤ Pr[X 6= Y ],

(ii) D(1− PX , PY ) ≤ Pr[X = Y ].

Exercise 2. Playing Eve

You are Eve, and are trying your best to thwart Alice and Bob’s plans to share a secret key using the
quantum key distribution protocol BB84. You will hack into their insecure quantum channel, capture
the qubit sent by Alice, measure it in some basis, and then send it to Bob. [Note that this is not the
most general attack possible.] You are trying to pick the best possible basis to measure Alice’s qubit.
Remember that you want to minimize the errors that can be detected by Alice and Bob, while trying to
maxime the number of bits you guess correctly. Let’s try a few different bases. For each case, compute
the fraction of bits that you guess correctly, and the error rate induced in Alice and Bob’s key, after
sifting.

(a) In your first attempt, you will measure all of Alice’s qubits in the Z basis.

(b) In your second attempt, you will pick X or Z at random, with equal probability, for each qubit.

(c) More generally, you can measure in an orthonormal basis of the form{
cos

θ

2
|0〉+ sin

θ

2
|1〉, cos

θ + π

2
|0〉+ sin

θ + π

2
|1〉
}
.

For instance, picking θ = 0 gives you the Z basis, while θ = π
2 results in the X basis. What happens

for θ = π
4 ?
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Exercise 3. Chained Bell inequalities

Consider the following setting. Alice and Bob own one black box each. Alice’s box takes an input a from
a set A = {0, 2, . . . , 2N − 2} and outputs a bit x ∈ {0, 1}. Similarly, Bob’s box takes an input b from a
set B = {1, 3, . . . , 2N − 1} and outputs y ∈ {0, 1}.

We define the following measure of correlations,

IN = Pr(X = Y |A = 0, B = 2N − 1) +
∑
|a−b|=1

Pr(X 6= Y |A = a,B = b) (5)

We want IN to be small, because then it is possible to show that the outcomes of adjacent inputs a and
b = a± 1 are the same, and unknown to an adversary, with high probability. [This is a generalization of
the theorem from the lecture, with I2 7→ IN .]

(a) We will see a physical example of a family of “black boxes” that achieves IN → 0. Each box
corresponds to a quantum measurement device that acts on a single qubit. The qubits to be
measured, one in Alice’s box and one in Bob’s, are maximally entantled.

Let {|↑〉, |↓〉} be an orthonormal basis for a qubit (for instance the Z basis). Suppose that Alice’s
choices of input a correspond to a POVM {Ea0 , Ea1}, on a single qubit, with Ea0 is the projector
onto state | a2N π〉, and Ea1 is the projector onto state |

(
a
2N + 1

)
π〉, with |θ〉 = cos θ2 |↑〉 + sin θ

2 |↓〉.
The same holds for Bob’s measurements b. Furthermore, suppose that the POVMs on Alice’s and
Bob’s sides act each on a qubit of the Bell state 1√

2
(|00〉+ |11〉) .

Show that, in these conditions,

IN = 2N sin2 π

4N
≤ π2

8N
. (6)

(b) How would you adapt the protocol from the lecture to take advantge of this Bell inequality?

2


