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Definitions: von Neumann entropy. In this series we will derive some useful properties of
the von Neumann entropy: the quantum version of Shannon entropy.

The von Neumann entropy of a density operator ρ ∈ S(HA) is defined as

H(A)ρ = − tr
(
ρ log ρ

)
= −

∑
i

λi log λi, (1)

where {λi}i are the eigenvalues of ρ.

Given a composite system HA ⊗ HB ⊗ HC we write H(AB)ρ to denote the entropy of the
reduced state of a subsystem, ρAB = trC(ρABC). When the state ρ is obvious from the context
we drop the indices.

The conditional von Neumann entropy is defined as

H(A|B)ρ = H(AB)ρ −H(B)ρ. (2)

In the Alice-and-Bob picture this quantifies the uncertainty that Bob (who holds the B part of
the quantum state ρAB) still has about Alice’s state.

The strong sub-additivity property of the von Neumann entropy is very useful. It applies to a
tripartite composite system HA ⊗HB ⊗HC ,

H(A|BC)ρ ≤ H(A|B)ρ. (3)

Exercise 1. Properties of the von Neumann Entropy.

(a) Prove the following general properties of the von Neumann entropy:

(i) H(A)ρ > 0 for any ρA.

(ii) If ρAB is pure, then H(A)ρ = H(B)ρ.

Hint. Use the Schmidt decomposition of bipartite pure states: for any |ψ〉AB, there exist

coefficients pk, and two orthonormal sets of vectors {|χk〉A}k and {|φk〉B}k, such that |ψ〉AB =∑
k

√
pk |χk〉A ⊗ |φk〉B.

(iii) If two systems are independent, ρAB = ρA⊗ ρB, then H(AB)ρ = H(A)ρA +H(B)ρB .

(b) Consider a bipartite state that is classical on subsystem Z: ρZA =
∑

z pz|z〉〈z|Z ⊗ ρzA for
some basis {|z〉Z}z of HZ . Show that:

(i) The conditional entropy of the quantum part, A, given the classical information Z is

H(A|Z)ρ =
∑
z

pzH(A|Z = z), (4)

where H(A|Z = z) = H(A)ρzA .

(ii) The entropy of A is concave,

H(A)ρ ≥
∑
z

pzH(A|Z = z). (5)
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(iii) The entropy of a classical probability distribution {pz}z cannot be negative, even if
one has access to extra quantum information, A,

H(Z|A)ρ ≥ 0. (6)

Remark: Eq (6) holds in general only for classical Z. Bell states are immediate
counterexamples in the fully quantum case.

Exercise 2. Von Neumann Entropy and Entanglement.

(a) Compute the entropies H(A), H(AB) and the conditional entropy H(A|B) of the Bell
state

|Φ+〉AB =
1√
2

(|00〉AB + |11〉AB) ; (7)

(b) Calculate the conditional entropies H(A|BC), H(AB|C) and H(A|B) of the GHZ state

|GHZ〉ABC =
1√
2

(|000〉ABC + |111〉ABC) . (8)

Consider a separable state ρAB, i.e. a state that can be written as a convex combination of
product states:

ρAB =
∑
k

pk ρ
(k)
A ⊗ ρ

(k)
B , (9)

where {pk}k is a probability distribution.

(c) Prove that the von Neumann entropy is always positive for such a state,

H (A|B)ρ > 0 . (10)

Remark: This means that, whenever the conditional entropy is negative, you are necessarily in
possession of an entangled state.

Hint. First use the results of point (b) of the previous exercise to prove that the conditional von Neumann

entropy is concave, i.e. if ρAB =
∑
k pk ρ

(k)
AB, then

H (A|B)ρ >
∑
k

pkH (A|B)ρ(k) . (11)
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