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Exercise 1. Bell-type Experiment.

Consider a 2-qubit Hilbert space ##4p = 74 ® 5 with basis {|00), |01),]10),|11)} in the Bell
state

[¢F) = \2 (10)410) + [1)a[1)B) - (1)

Two parties, Alice and Bob, get half of state [1)™) so that Alice has qubit A and Bob has qubit
B. The POVM corresponding to a measurement can be written in function of the angle o that
the measurement basis makes with the {|0),|1)} basis,

M = {la)al et )a 1}, fa) =cos S [0) +sin (1), |at) = —sin T |0) +cos T [1),

where the 1/2 factor comes from the Bloch sphere notation. We label the outcomes + for |a)
and — for |at).

Suppose Alice performs such a measurement M on her qubit.

(a) Find the description Bob would give to his partial state on B after he knows that Alice
performed the measurement MG on A. What description would Alice give to pp given
that she knows what measurement outcome she received?

(b) If Bob does the measurement M% = {|0)(0],|1)(1|} on B, what is the probability dis-
tribution for his outcomes, Prg? How would Alice describe his probability distribution,
PrB\A?

(c) In part a) and b) Alice and Bob have different descriptions of the quantum state pp and
probability distribution of measurement outcomes on that state. Explain how this sub-
jective assignment of the scenarios at B does not contradict with the actual measurement
outcomes Bob will get after doing the measurement MOB.

From now on look at the case where Alice and Bob can choose two different bases each:
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(d) The joint probabilities Pyy . (z,y) of Alice and Bob obtaining outcomes z and y when
they measure A = a and B = b are given in the following table.
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with € = § sin?(7/8) ~ 0.07.
Compute

IN(Pxyjap) =P(X =Y[A=0,B=3)+ » PX#Y[A=a,B=0).
la—b|=1

This quantity, similar to a Bell inequality, captures non-locality of quantum correlations:
classically, it is at least equal to 1, whereas for quantum correlations it can be smaller than
1.

Correlations of the above form that exist within quantum theory cannot be created clas-
sically. However, they are not the most general distributions we could consider if we are
only contained by the no-signalling principle: there are in fact other joint distributions that
cannot be obtained by measurements on a quantum state, but that nonetheless would not
allow for instantaneous information transmission over distance (signalling). To see this,
look at the following joint probability distribution, a so-called PR box:
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Show that the PR box
(i) is non-signalling: P(X|a,b;) = P(X|a,b2),Va;
(ii) is non-local: Pxy e # Px|aPys;
We shall now see how the above quantum correlation (coming from the Bell state) can be

simulated using such a PR box combined with deterministic strategies. Imagine that Alice
and Bob are given:

e with probability 1 — p a PR-box;
e with probability p/4, one of four deterministic boxes, that always outcome ++, +—,

—+ and —— respectively.

Find p so that the final joint probability distribution equals the one of the Bell state given
above.

Suppose that Alice and Bob are allowed to perform more measurements with closer angles
(so that the overlap between two consecutive bases is larger). What happens to p?

See also: J. S. Bell, Phys. Vol. 1, No. 8, pp. 195-200, 196}.



