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Problem Set 1
G. Abelof, J. Cancino, F. Dulat, B. Mistlberger, Prof. N. Beisert

1. Classical particle in an electromagnetic field
Consider the classical Lagrangian density of a particle of mass m and charge q, moving in
an electromagnetic field, specified by the electric potential φ(x) and the magnetic vector
potential Ai(x):

L =
m

2
(∂tx

i)2 + qAi(x)∂tx
i − qφ(x). (1)

Find

a) The canonical momentum conjugate to the coordinate xi.

b) The equations of motion corresponding to the Lagrangian density.

c) The Hamiltonian of the system

Compare your results to a free particle.

2. Stress-energy tensor
Consider the variational principle:

δS = 0 = δ

∫
d4xL(φ, π). (2)

The Lagrangian density L is a function of the two classical fields φ(x) and πµ(x) = ∂µφ(x).
Note that L does not depend directly on the space-time coordinate xµ, but only indirectly
through φ and π. Show that the conserved Noether current associated with infinitesimal
space-time translations

xµ → xµ + εµ (3)

is the stress-energy tensor T µν given by

T µν =
∂L
∂πµ

∂νφ− gµνL. (4)

Remind yourself how a general function f(xµ) of the space-time coordinates will transform
under an infinitesimal translation.
Note that xµ is a standard Minkowski-space coordinate, so that x0 is the time.
ηµν = diag(−1,+1,+1,+1) is the metric tensor.
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3. Coherent quantum oscillator
Consider the Hamiltonian of a quantum harmonic oscillator:

H =
p2

2m
+
mω2x2

2
. (5)

a) Introduce ladder operators to diagonalise the Hamiltonian.

b) Calculate the expectation values of the number operator N ∼ a†a as well as of the x
and p operator in a general number state |n〉.

c) Calculate the variances ∆x, ∆p and ∆N in the same state |n〉 and use them to
determine the Heisenberg uncertainty of |n〉.

d) Show that the coherent state

|α〉 = eαp|0〉 (6)

is an eigenstate of the annihilation operator you defined in a).

e) Calculate the time-dependent expectation values of x, p and N :

〈α|x(t)|α〉 (7)

〈α|p(t)|α〉 (8)

〈α|N(t)|α〉 (9)

as well as the corresponding variances to determine the uncertainty of the state |α〉.
Compare your result with the result obtained in c).

4. Relativistic point particle
The action of a relativistic point particle is given by

S = −α
∫
P
ds (10)

with the relativistic line element

ds2 = −gµνdXµdXν = dt2 − dx2 − dy2 − dz2 (11)

and α a (yet to be determined) constant.
The path P between two points Xµ

1 and Xµ
2 can be parametrised by a parameter τ . With

that, the integral of the line element ds becomes an integral over the parameter

S = −α
∫ τ2

τ1

dτ

√
−gµν

∂Xµ

∂τ

∂Xν

∂τ
. (12)

a) Parametrise the path by the time coordinate t (i.e. x0) and take the non-relativistic
limit |∂0xµ| � 1 to determine the value of the constant α.

b) Derive the equations of motion by varying the action. Hint: You may want to deter-
mine the canonically conjugate momentum first.
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1. Causality
Consider a scalar field φ(x) as defined in the lecture. First we want to calculate the
amplitude

∆+(x− y) = 〈0|φ(x)φ(y)|0〉 (1)

for a particle to propagate from point x to point y.

a) Calculate ∆+(x− y) for time-like separation, i.e. x0 − y0 = t, xi − yi = 0.

b) Calculate ∆+(x− y) for space-like separation, i.e. x0 − y0 = 0, xi − yi = ri.

The next thing we need to check is whether a measurement at x can affect another
measurement at y. To do this one computes the commutator [φ(x), φ(y)]. If it vanishes,
the two measurements cannot affect each other and causality is preserved.

c) Show that the commutator vanishes for a space-like separation of x and y.

2. Complex scalar field
We want to investigate the theory of a complex scalar field φ = φ(x). The theory is
described by the Lagrangian (density):

L = −∂µφ∗∂µφ−m2φ∗φ. (2)

As a complex scalar field has two degrees of freedom, we can treat φ and φ∗ as independent
fields with one degree of freedom each.

a) Find the conjugate momenta π(~x) and π∗(~x) to φ(~x) and φ∗(~x) and the canonical
commutation relations. (Note: we choose π = ∂L/∂φ̇ rather than π = ∂L/∂φ̇∗.)

b) Find the Hamiltonian of the theory.

c) Introduce creation and annihilation operators to diagonalise the Hamiltonian.

d) Show that the theory contains two sets of particles of mass m.

e) Consider the conserved charge

Q = − i
2

∫
d3~x (πφ− φ∗π∗). (3)

Rewrite it in terms of ladder operators and determine the charges of the two particle
species.

3. Momentum
Consider the Lagrangian

L = −1

2
∂µφ ∂

µφ− 1

2
m2φ2 (4)

of a real scalar field φ = φ(x).

a) Write down the stress-energy tensor of the theory using the general result obtained
in the previous exercise sheet.

b) Derive

P µ =

∫
d3~p

(2π)3 2e(~p)
pµ(~p) a†(~p)a(~p) (5)

starting from P µ =
∫
d3~x T 0µ.

c) Calculate the commutator [P µ, φ(x)] and interpret the result.
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1. The Feynman propagator for a real scalar field
Consider a real scalar field φ(x).

a) Use the Fourier expansion of φ(x) to show that

∆+(x) ≡ 〈0|φ(x)φ(y)|0〉 =

∫
d3~p

(2π)3 2e(~p)
exp
(
−ie(~p)t− i~p · ~x

)
(1)

with e(~p) =
√
~p 2 +m2.

b) Use Cauchy’s residue theorem to show that ∆+(x) can be also written as

∆+(x) = i

∫
C+

d4p

(2π)4
e−ip·x

p2 +m2
, (2)

where the integration over the contour C+, which is given in the left figure below,
corresponds to the (complex) variable p0.

The Feynman propagator for the real scalar field is defined as

GF(x− y) = iθ(x0 − y0)∆+(x− y) + iθ(y0 − x0)∆+(y − x). (3)

c) Show that it satisfies the defining relation for a propagator

(−∂2 +m2)GF(x) = δd+1(x). (4)

d) Show that

GF(x) =

∫
CF

d4p

(2π)4
e−ip·x

p2 +m2
, (5)

with the contour CF given in the right figure below.

e) Show that the integral in eq.(5) is equivalent to an integral over the real axis

GF(x) =

∫
R

d4p

(2π)4
e−ip·x

p2 +m2 − iε
. (6)
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2. Conservation of charge with complex scalar fields
Consider a free complex scalar field described by

L = −(∂µφ
∗)(∂µφ)−m2φ∗φ (7)

a) Show that the transformation

φ(x) −→ φ′(x) = eiαφ(x) (8)

leaves the Lagrangian density invariant.

b) Find the conserved current associated with this symmetry.

If we now consider two complex scalar fields, the Lagrangian density is given by

L = −(∂µφ
∗
a)(∂

µφa)−mφ∗aφa a = 1, 2. (9)

c) Show that
φa(x) −→ φ′ a(x) = Ma

bφ
b(x) (10)

with M ∈ U(2) =
{
A ∈ C2×2 : A−1 = A† = (A∗)T

}
is a symmetry transformation.

d) Show that now there are four conserved charges, one given by the generalisation of
part b), and the other three given by

Qi =
i

2

∫
d3~x

(
φ∗a(σ

i)abπ
∗ b − πa(σi)abφb

)
, (11)

where σi are the Pauli matrices.

3. Symmetry of the stress-energy tensor
Consider a relativistic scalar field theory specified by some Lagrangian L(φ, ∂φ).

a) Compute the variation of L(φ(x), ∂φ(x)) under infinitesimal Lorentz transformations
(note: ωµν = −ωνµ)

xµ −→ xµ − ωµνxν . (12)

b) Assuming that L(x) transforms as a scalar field, i.e. just like φ(x), derive another
expression for its variation under Lorentz transformations.

c) Compare the two expressions to show that the two indices of the stress-energy tensor
are symmetric

T µν =
δL

δ(∂µφ)
∂νφ− ηµνL = T νµ. (13)
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1. Properties of γ-matrices
The γ-matrices satisfy a Clifford algebra,1

{γµ, γν} = −2ηµν1. (1)

a) Show the following contraction identities using (1):

1. γµγµ = −4 · 1.

2. γµγνγµ = 2γν .

3. γµγνγργµ = 4ηνρ1.

4. γµγνγργσγµ = 2γσγργν .

b) Show the following trace properties using (1):

1. tr γµ1 · · · γµn = 0 if n is odd.

2. tr γµγν = −4ηµν .

3. tr γµγνγργσ = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ).

2. Dirac and Weyl representations of the γ-matrices
Using the Pauli matrices together with the identity,

σ0 ≡
(

1 0
0 1

)
, σ1 ≡

(
0 1
1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0
0 −1

)
, (2)

we can realize the Dirac representation of the γ-matrices,

γ0D ≡ σ0 ⊗ σ3, γjD ≡ σj ⊗ iσ2 (j = 1, 2, 3), (3)

where

A⊗B ≡
(
b11A b12A
b21A b22A

)
. (4)

Denoting the Pauli matrices collectively by σµ and defining (σ̄0, σ̄i) = (σ0,−σi). we can
then define the γ-matrices in the Weyl representation:

γµW ≡
(

0 σµ

σ̄µ 0

)
. (5)

Show that both representations satisfy the Clifford algebra (1). Can you show their
equivalence, i.e. γµW = TγµDT

−1 for some matrix T?
−→

1The minus sign is due to our choice of metric ηµν = diag(−1,+1,+1,+1)! Alternatively, we might
use a plus sign (as in the opposite signature) and instead multiply all γ-matrices by a factor of i.
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3. Spinors, spin sums and completeness relations
In this exercise we will use the Weyl representation (5) defined in the previous exercise.

a) Show that (p · σ)(p · σ̄) = −p2.

b) Prove that the below 4-spinor us(~p) solves Dirac’s equation (pµγ
µ −m1)us(~p) = 0

us(~p) =

(√
p · σ ξs√
p · σ̄ ξs

)
, (6)

where ξ± form a basis of 2-spinors.

c) Suppose, the 2-spinors ξ+ and ξ− are orthonormal. What does it imply for ξ†sξs and∑
s∈{+,−}

ξsξ
†
s ? (7)

d) Show that ūs(~p)us(~p) = 2m for s ∈ {+,−}.

e) Show the completeness relation:∑
s∈{+,−}

us(~p)ūs(~p) = pµγ
µ +m1. (8)

4. Gordon identity
Prove the Gordon identity,

ūt(~q)γ
µus(~p) =

1

2m
ūt(~q)

[
−(q + p)µ − 1

2
[γµ, γν ](q − p)ν

]
us(~p). (9)

Hint: You can do this using just (1).
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1. Spinor rotations
The Dirac equation is invariant under Lorentz transformations Ψ ′(x′) = SΨ(x) if the
spinor transformation matrix S satisfies

Λµν S
−1γνS = γµ. (1)

For an infinitesimal Lorentz transformation Λµν = ηµν + δωµν this is fulfilled if

S = 1 + 1
8
δωµν [γ

µ, γν ]. (2)

a) Find the infinitesimal spinor transformation δS for a rotation around the 3-axis, i.e.
only δω12 = −δω21 6= 0.

b) Finite transformations are obtained by considering a consecutive application of in-
finitely many, N →∞, infinitesimal transformations δω = ω/N

S = lim
N→∞

(
1 +

1

8

ωµν
N

[γµ, γν ]

)N
= exp

(
1
8
ωµν [γ

µ, γν ]
)
. (3)

Compute the finite rotation with angle ω12 around the same axis as before. Also
compute the finite transformation Λ = exp(ω) for vectors.

c) What happens to the individual components of a spinor under this transformation?
What is the period of the transformation in the angle ω12? Compare it to the finite
rotation for vectors.

2. Completeness for gamma matrices
An arbitrary product of γ-matrices is proportional to one of the following 16 linearly
independent matrices γa (here a is a multi-index which specifies the type of matrix,
S,P,V,A,T, along the corresponding indices if any)

• Γ S = 1,

• ΓP = γ5,

• ΓV,µ = γµ,

• ΓA,µ = iγ5γµ,

• ΓT,µν = i
2
[γµ, γν ].

a) Show that the trace of any product of Γ matrices is given by tr(Γ aΓ b) = 4δab. For
simplicity we ignore the signs arising from the Lorentz signature.

b) Show that for any a 6= b there is a n 6= S such that Γ aΓ b = αΓ n with some α ∈ C.

c) Show that the matrices are linearly independent and therefor form a complete basis
of 4 × 4 spinor matrices. Hint: To do this consider a sum

∑
a αaΓ

a = 0. What can
be said about the coefficients?

−→
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3. Fierz identity

a) Use the linear independence of the Γ a matrices to show that

δαγ δ
β
δ =

∑
i

1

4
(Γi)

α
δ(Γi)

β
γ. (4)

Hint: Decompose an arbitrary matrix Mα
β =

∑
imi(Γ

i)αβ and find the coefficients
mi.

b) Use the result from a) to show the Fierz identity:

(Γ i)αβ(Γ j)γδ =
∑
k,l

1

16
tr(Γ iΓ lΓ jΓ k)(Γ k)αδ(Γ

l)γβ. (5)

c) Find the Fierz transformation for the spinor products

• (ū1u2)(ū3u4),

• (ū1γ
µu2)(ū3γµu4).
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1. Helicity and Chirality
In four dimensions we can define the chirality operator

γ5 = iγ0γ1γ2γ3. (1)

a) Show that γ5 satisfies {
γ5, γµ

}
= 0, (2)(

γ5
)2

= 0. (3)

b) The helicity operator h(~p) is defined as

h(~p) =
1

|~p|

(
σipi 0

0 σipi

)
. (4)

Show that helicity and chirality are equivalent for a massless spinor us(~p).

c) Consider the Dirac Lagrangian

L = ψ̄ (iγµ∂µ −m)ψ. (5)

Find the corresponding Hamiltonian.

d) Show that chirality is not conserved for a massive fermion. Hint: You do not need to
compute the time-evolution, just show that it is non-trivial.

e) Show that helicity is conserved but not Lorentz invariant.

f) Show that the Dirac Lagrangian is invariant under a chiral transformation U =
exp(−iαγ5) of the fields for m = 0, and derive the associated conserved current.
Show that having a non-zero mass breaks the symmetry.

2. Discrete symmetries
Recall the ΓX matrices from the last exercise sheet. Using these products of γ matrices,
we can define the following bilinears:

S = ψ̄Γ Sψ, (6)

P = ψ̄Γ Pψ, (7)

V µ = ψ̄Γ V,µψ, (8)

Aµ = ψ̄ΓA,µψ, (9)

T µν = ψ̄Γ T,µνψ. (10)

a) Calculate their behaviour under parity transformations P (ψ(t, ~x)) = γ0ψ(t,−~x).

b) Show that the Dirac Lagrangian (5) is invariant under CPT as well as under P .

c) Starting from the Dirac Lagrangian, write down a similar Lagrangian that is CPT
invariant but not P invariant.

−→
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3. Electrodynamics
Consider the Lagrange density

L(Aµ) = −1

4
FµνF

µν − JµAµ , where Fµν = ∂µAν − ∂νAµ , (11)

and Jµ is some external source field.

a) Show that the Euler–Lagrange equations are the inhomogenous Maxwell equations.
The usual electromagnetic fields are defined by Ei = −F 0i and εijkBk = −F ij. Are
these all Maxwell equations?

b) Construct the stress-energy tensor for this theory.

c) Convince yourself that the stress-energy tensor is not symmetric. In order to make it
symmetric consider

T̂ µν = T µν + ∂λK
λµ,ν , (12)

where Kλµν is anti-symmetric in the first two indices. By taking

Kλµ,ν = F µλAν (13)

show that the modified stress energy tensor T̂ µν is symmetric, and that it leads to
the standard formulae for the electromagnetic energy and momentum densities

E = 1
2
( ~E 2 + ~B 2) , ~S = ~E × ~B . (14)

d) For fun: Show that all of Maxwell’s equations can summarised as

γνγργσ∂νFρσ = −2γνJν . (15)
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1. Polarisation vectors of a massless vector field
Each Fourier mode in the plane wave expansion of a massless vector field has the form

A(λ)
µ (~p;x) = N(~p) ε(λ)µ (~p) eip·x (1)

Without any loss of generality the polarisation vectors ε
(λ)
µ (~p) can be chosen to form a

four-dimensional orthonormal system satisfying

ε(λ)µ (~p) ε(κ)µ(~p) = ηλκ. (2)

a) Show that the following choice satisfies (2)

ε(0)µ (~p) = nµ, (3)

ε(1)µ (~p) = (0,~ε (1)(~p)), (4)

ε(2)µ (~p) = (0,~ε (2)(~p)), (5)

ε(3)µ (~p) = (pµ + nµ(p · n))
/
|p · n|, (6)

where nµ = (1, 0) and ~p · ~ε (k)(~p) = 0 as well as ~ε (k)(~p) · ~ε (l)(~p) = δkl.

b) Use the polarisation vectors to verify the completeness relation

3∑
λ=0

ηλλ ε
(λ)
µ (~p) ε(λ)ν (~p) = ηµν . (7)

c) Show for the physical modes of the photon that

2∑
λ=1

ε(λ)µ (~p) ε(λ)ν (~p) = ηµν −
pµpν

(p · n)2
− pµnν + pνnµ

p · n
. (8)

−→
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2. Spinor helicity framework
The spinor helicity framework is a method to conveniently work with massless particles
and their helicity modes.
Write a momentum 4-vector pµ as a 2× 2 matrix P

P = σµpµ. (9)

a) Show that the inverse transformation is given by pµ = −1
2

tr(σ̄µP ).

b) Show that detP = −p2.
c) Explain why the momentum P of a massless particle can be expressed as a product

of a (bosonic) 2-spinor λ and its hermitian conjugate λ†

P = λλ†. (10)

Is λ uniquely determined through p? What can you say about the energy p0?

d) Show that the Lorentz-invariant integral over the light cone can be expressed as a
plain integral over all λ’s∫

dp1 dp2 dp3
(2π)3 2e(~p)

f(~p) =

∫
dλ1dλ

∗
1 dλ2dλ

∗
2

4(2π)4
f(~p(λ, λ†)). (11)

Hint: As a fourth variable for the integral on the l.h.s. you may use the undetermined
complex phase ϕ = − i

2
log(λ1/λ

∗
1) of λ1 integrated over 0 ≤ ϕ < 2π.

Given some non-trivial 2-spinor µ (not proportional to λ), two polarisation vectors with
helicity h = ±1 can be constructed as

ε(+)
µ (~p) =

µ†σ̄µλ

µ†σ2λ∗
, ε(−)µ (~p) =

λ†σ̄µµ

λTσ2µ
. (12)

e) Show that p · ε(±)(~p) = 0.

f) Show that a change in µ acts as a gauge transformation on the polarisation vectors,

i.e. δε
(±)
µ ∼ pµ. Hint: Parametrise δµ as a linear combination of µ and λ.

3. The photon propagator with a gauge fixing term
Consider the Lagrangian for a free massless vector field modified by a gauge fixing term

L = −1
4
FµνF

µν − 1
2
ξ(∂λA

λ)2. (13)

a) Show that the Lagrangian is equivalent to the following one up to a total derivative

L′ = −1
2
∂µAν∂

µAν − 1
2
(ξ − 1)(∂λA

λ)2. (14)

b) Show that the equal-time commutation relations are (you may use L or L′)[
Aµ(t, ~x), Aν(t, ~y)

]
= 0, (15)[

Aµ(t, ~x), Ȧν(t, ~y)
]

= i

(
ηµν +

ξ − 1

ξ
δµ0 δ

ν
0

)
δ3(~x− ~y), (16)[

Ȧµ(t, ~x), Ȧν(t, ~y)
]

= −i ξ − 1

ξ

(
δµ0 δ

νk + δν0δ
µk
)
∂kδ

3(~x− ~y). (17)

c) Show that the propagator is given by

Gµν(x) =

∫
d4p

(2π)4
e−ip·x

1

p2

(
ηµν +

ξ − 1

ξ

pµpν

p2

)
. (18)
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1. The massive vector field
On this sheet we will develop the QFT for the free massive spin-1 field Vµ.
We start with the Lagrangian for the electromagnetic field and simply add a mass term

L = 1
2
∂µV ν∂µVν − 1

2
∂µV ν∂νVµ − 1

2
m2V µVµ. (1)

a) Derive the Euler–Lagrange equations of motion for Vµ.

b) By taking a derivative of the equation, show that Vµ is a conserved current.

c) Show that Vµ satisfies the Klein–Gordon equation.

2. Hamiltonian formulation
The Hamiltonian formulation of the massive vector is somewhat tedious due to the pres-
ence of constraints.

a) Derive the momenta Πµ conjugate to the fields Vµ. Considering the space and time
components separately, what do you notice?

Your observation is related to constraints. The time component V0 of the vector field is
completely determined by the spatial components and their conjugate momenta (without
making reference to time derivatives)

b) Use the equations derived in problem 1 to show that

V0 = −m−2∂kΠk, V̇0 = ∂kVk. (2)

c) Substitute this solution for V0 and V̇0 into the Lagrangian and perform a Legendre
transformation to obtain the Hamiltonian. Show that

H =

∫
d3~x

(
1
2
ΠkΠk + 1

2
m−2∂kΠk∂lΠl

+ 1
2
∂kVl∂kVl − 1

2
∂lVk∂kVl + 1

2
m2VkVk

)
. (3)

d) Derive the Hamiltonian equations of motion for Vk and Πk, and compare them to the
results of problem 1.

3. Commutators
The unequal time commutators [Vµ(x), Vν(y)] = ∆V

µν(x − y) for the massive vector field
read

∆V
µν(x) =

(
ηµν −m−2∂µ∂ν

)
∆(x), (4)

where ∆(x) is the corresponding function for the scalar field.

a) Show that these obey the equations derived in problem 1.

b) Show explicitly that they obey the constraint equations in 2b), i.e.

[m2V0(x) + ∂kΠk(x), Vν(y)] = [V̇0(x)− ∂kVk(x), Vν(y)] = 0. (5)

c) Confirm that the equal time commutators take the canonical form

[Vk(~x), Vl(~y)] = [Πk(~x), Πl(~y)] = 0, [Vk(~x), Πl(~y)] = iδklδ
3(~x− ~y). (6)

−→
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4. Coupled Maxwell and Dirac fields
Quantum electrodynamics describes a coupled system of a Maxwell and an electrically
charged Dirac field. The Lagrangian density for this theory is given by

L = ψ̄ (iγµ∂µ −m)ψ − 1
4
FµνF

µν − eψ̄γµψAµ. (7)

a) Derive the classical equations of motion.

b) Obtain the stress-energy tensor and show that it is invariant under the gauge trans-
formation

A′µ(x) = Aµ(x) + ∂µα(x), (8)

ψ′(x) = exp [−ieα(x)]ψ(x). (9)

c) Show that the total energy and momentum of the system are conserved.
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1. 4-point interaction in scalar QED
Consider a U(1) gauge theory with two complex massive scalar fields φ, χ and one vector
field Aµ. Each of the scalar fields is coupled to the gauge field and they both have the
same coupling e. The Lagrangian density of the theory is given by

L = −1
2
(Dµφ)†Dµφ− 1

2
(Dµχ)†Dµχ− 1

2
m2φ†φ− 1

2
m2χ†χ− 1

4
FµνF

µν (1)

with the covariant derivative
Dµ = ∂µ + ieAµ(x) (2)

and F µν , the electro-magnetic field strength tensor. Use the Feynman gauge fixing term.

In this exercise we are interested in obtaining the time-ordered 4-point correlation function
for two fields of type φ and two fields of type χ. To be precise we want to compute the
first interaction term of φ with χ in the expansion in the perturbative parameter e.

a) First find the interaction Hamiltonian Hint of the theory.

b) Perform an expansion of the time ordered 4-point correlation function in e up to the
first term that allows for an interaction with the gauge field Aµ

〈0|T
{
φ(x1)φ

†(x2)χ(x3)χ
†(x4)

}
|0〉int

= lim
T→∞(1−iε)

〈0|T
{
φ(x1)φ

†(x2)χ(x3)χ
†(x4) exp

[
−i
∫ T
−T dtHint(t)

]}
|0〉

〈0|T
{

exp
[
−i
∫ T
−T dtHint(t)

]}
|0〉

. (3)

Hint: You may discard the terms which do not contribute to the correlator.

c) Make use of Wick’s theorem to contract the fields in the interaction term you obtained
in problem b).

d) Focus on the contribution(s) where φ and χ interact non-trivially: Insert the Fourier
transformed propagators of the scalar and vector fields into your result

GF(x− y) = i〈0|T{φ†(x)φ(y)}|0〉 =

∫
d4p

(2π)4
e−ip(x−y)

p2 +m2 − iε
,

Gµν
F (x− y) = i〈0|T{Aµ(x)Aν(y)}|0〉 =

∫
d4p

(2π)4
ηµνe−ip(x−y)

p2 − iε
. (4)

Simplify your result by performing the integration over the internal spatial variables.
How can you interpret the individual factors in your result?

e) How can you interpret the terms that do not lead to an interaction of φ and χ? Can
you find a diagrammatic representation of those terms? How do you interpret the
limit of T →∞ in equation (3)?

f) Optional: How will your result in d) change if you use a different gauge? E.g. use a
Lorentz gauge fixing term with ξ 6= 1. Hint: The gauge affects only Gµν

F ; try partial
fractions to simplify the result.

1
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1. Linear sigma model with trivial vacuum
Consider a model of N real scalar fields Φi that couple to each other through a quartic
interaction that is symmetric under SO(N) rotations of the N fields. The Lagrangian of
this model is

L = −1
2
∂µΦi∂µΦ

i − 1
2
m2ΦiΦi − 1

8
λ
(
ΦiΦi

)2
. (1)

a) Derive the corresponding Hamiltonian and show that

V (Φ) = 1
2
m2ΦiΦi + 1

8
λ
(
ΦiΦi

)2
(2)

is the potential term of the Hamiltonian.

First consider the case m2 > 0, convince yourself that for λ = 0 the Hamiltonian is
just an N -fold copy of the Klein–Gordon Hamiltonian. For small λ we can calculate a
perturbation series in λ.

b) Show that the Wick contraction of the Φi fields is

Φi(x)Φj(y) = −iδijGF(x− y), (3)

where GF is the Feynman propagator for a Klein-Gordon scalar field of mass m.

c) Show that there is one interaction vertex given by

= −iλ
(
δijδkl + δilδjk + δikδjl

)
. (4)

d) Let N = 2 and compute at leading order in λ the differential cross section dσ/dΩ for

Φ1Φ1 → Φ2Φ2, (5)

Φ1Φ2 → Φ1Φ2, (6)

Φ1Φ1 → Φ1Φ1. (7)

Note that the differential cross section for four particles in the centre of mass frame
is given by

dσ

dΩ
=
|M |2

64π2s
, (8)

where s is the centre of mass energy squared of the system and M is the matrix
element describing the process.

−→

1



2. Linear sigma model with non-trivial vacuum
Next we consider the case where m2 =: −µ2 < 0. Convince yourself that V (Φ) has a
local maximum at Φi = 0. As the potential is bounded from below, the minimum must
be located at a non-vanishing value of Φi. Moreover, the theory is invariant under global
SO(N) rotations of the fields, and all points on the sphere with equal |Φ| must also be
minima of V (Φ). The ground state of our field theory is therefore given by some non-zero
constant field Φi. We choose Φi to point along the N -th direction or use a SO(N) rotation
to that end. We parametrise the quantum fields around the vacuum as

Φi(x) = φi(x), i = 1, . . . , N − 1, (9)

ΦN(x) = v + σ(x). (10)

a) Determine the vacuum expectation value v, i.e. the field value in the minimum, in
terms of µ and λ by minimising the potential V (Φ).

b) Insert the ansatz for Φ in terms of φ and σ and the expression for v into the Lagrangian
(or Hamiltonian) and show that the new Lagrangian (Hamiltonian) describes a theory
of a massive field σ and N − 1 massless fields φi.

c) Convince yourself that the φ and σ fields interact through a new set of cubic and
quartic vertices and determine the Feynman rules for all propagators and vertices.

φi(x)φj(y) = σ(x)σ(y) = (11)

(12)

d) Let N = 2 and compute at leading order in λ the differential cross section dσ/dΩ for

φ1φ1 → φ2φ2, (13)

φ1φ2 → φ1φ2, (14)

φ1φ1 → φ1φ1. (15)

Note that there are now four Feynman diagrams contributing to the amplitude at
leading order

M = + + + . (16)

2
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1. Optical theorem
Use the unitarity of the S-matrix, S†S = 1, to show that

Mfi −M∗
if = i

∑
n

(2π)4δ4(pf − pn)MfnM
∗
in , (1)

with Sij = δij + (2π)4δ4(pi − pj)iMij.

2. Møller scattering

a) Calculate the O(e2) contribution to the scattering matrix element for Møller scatter-
ing:

e−(p1, α1) + e−(p2, α2) −→ e−(p3, α3) + e−(p4, α4) (2)

through direct evaluation in position space.

b) Repeat the calculation in part a) using the Feynman rules for QED in momentum
space.

3. Kinematics in 2→ 2 scattering
Consider a 2→ 2 particle scattering process with the kinematics p1 + p2 → p3 + p4.

a) Show that in the centre-of-mass frame the energies e(~pi) and the norms of momenta
|~pi| of the incoming and the outgoing particles are entirely fixed by the total centre-
of-mass energy s and the particle masses mi.

b) Show that the scattering angle θ between ~p1 and ~p3 is given by

θ = arccos

(
s(t− u) + (m2

1 −m2
2)(m

2
3 −m2

4)√
λ(s,m2

1,m
2
2)
√
λ(s,m2

3,m
2
4)

)
, (3)

with the Mandelstam variables given by

s = −(p1 + p2)
2, t = −(p1 − p3)2, u = −(p1 − p4)2, (4)

and the Källén function defined as

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. (5)

c) Show that s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

d) Determine tmin and tmax from the condition |cos θ| ≤ 1, and study the behaviour of
tmin and tmax in the limit s� m2

i .

−→

1



4. Muon pair production
Follow the steps below to calculate the total cross section for the process e+e− → µ+µ−.

a) Draw all the diagrams that contribute to this process at the lowest non-trivial order,
and use the Feynman rules for QED in momentum space to obtain the scattering
amplitude M .

b) Compute |M |2. Assuming that the particle spins are not measured, sum over the
spins of the outgoing particle, and average over those of the incoming ones. This
should help you bring your expression for |M |2 into a much simpler form. Hint: You
might find the completeness relations for spinors useful.

c) The differential cross section in the center-of-mass frame is given by

dσ =
|M |2

4|~p1|
√
s

d3~p3
(2π)3 2e(~p3)

d3~p4
(2π)3 2e(~p4)

(2π)4δ4(p1 + p2 − p3 − p4). (6)

Use the result for |M |2 that you obtained above, and integrate over ~p3 and ~p4 to
obtain the total cross section σ =

∫
dσ.

2
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1. Volume of higher-dimensional spheres
The integrands of D-dimensional loop integrals often are spherically symmetric functions
F (~x) = F (|~x|) (or they can be brought into this form, see Problem 2). The angular part of
the integral in spherical coordinates yields the volume of the (D − 1)-dimensional sphere
SD−1 ∫

dD~xF (|~x|) = Vol(SD−1)

∫ ∞
0

rD−1dr F (r). (1)

In particular, in view of the dimensional regularisation scheme, where D is assumed to be
a real number, we need a suitable formula for the volume as an analytic function of D.
Use the well-known result ∫ ∞

−∞
dx exp(−x2) =

√
π, (2)

to show that the volume of the (D − 1)-sphere is

Vol(SD−1) =
2πD/2

Γ(D/2)
. (3)

2. Feynman and Schwinger parameters

a) To evaluate loop diagrams one combines propagators with the use of Feynman pa-
rameters. The basic version is

1

AB
=

∫ 1

0

dx

[xA+ (1− x)B]2
, (4)

but it can be generalised to n propagators elevated to some arbitrary power

1∏n
i=1A

νi
i

=
Γ (
∑n

i=1 νi)∏n
i=1 Γ(νi)

∫ 1

0

(
n∏
i=1

dxi

)
δ

(
1−

n∑
i=1

xi

) ∏n
i=1 x

νi−1
i

[
∑n

i=1 xiAi]
∑n

i=1 νi
. (5)

Prove (5) recursively.

b) Another useful parametrisation is the Schwinger parametrisation:

1

Aν
=

1

Γ(ν)

∫ ∞
0

dααν−1e−αA. (6)

Prove (6).

3. Electron self energy structure
In QED, the electron two-point function F (p, q) = −i(2π)4δ4(p+ q)M(p) receives contri-
butions from self energy diagrams.

a) Draw the Feynman diagrams corresponding to the one- and two-loop contributions.
Which of these diagrams are one-particle irreducible?

b) For the one-loop case, write down the expression for M(p) using the massive QED
Feynman rules in momentum space and argue why the integral is divergent.

c) Explain why one can make the ansatz

M = p · γ MV +mMS, (7)

where MV,S are scalar functions. Write down integral expressions for them.

1
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1. A one-loop correction to scattering in QED
The aim of this exercise is to gain an insight into the calculation of loop corrections to
scattering amplitudes. To this end consider the one-loop corrections to e−e− → e−e−

scattering in QED.

a) Draw all amputated and connected graphs that would contribute to this process. You
should find 10 different contributions.

b) How does the field strength renormalisation factor for the spinors, Zψ = 1+Z
(2)
ψ + . . .,

contribute at this perturbative order? How does the field strength renormalisation of
the photon ZA contribute to the process? Can you sketch suitable Feynman graphs?

Now focus on the following diagram:

c) Write the scattering matrix element corresponding to the amputated Feynman graph,
and bring it to the following form

iM = ū(~q ′)(−ieγµ)u(~q)
−i

(p− p′)2 − iε

∫
dDk

(2π)D
ū(~p ′)

Zµ
N ′

u(~p). (1)

d) Use a suitable Feynman parametrisation to rewrite the denominator N ′ as

1

N ′
= 2

1∫
0

dx

1∫
0

dy

1∫
0

dz
δ(1− x− y − z)

N3
, (2)

where
N = k2 − 2k · (xp+ yp′)− iε. (3)

Complete the square and show that N can be written as

N = k′2 + (1− z)2m2 + xy (p− p′)2 − iε, k′ = k − xp− yp′. (4)

−→

1



e) Show that the numerator Zµ can be brought to the form

Zµ =
(
k′2 + 2(1− 4z + z2)m2 − 2(z + xy)(p− p′)2

)
γµ

− z(1− z)m[γµ, γν ](p′ − p)ν . (5)

To do so, use:

• the anticommutation relations for γ-matrices

(p · γ)γµ = −2pµ − γµ(γ · p), (6)

• the Dirac equation,

ū(~p ′)γµp′µ = mū(~p ′), pµγ
µu(~p) = mu(~p), (7)

• the symmetry of the integration over k′, which allows the following tensorial
replacements in the numerator

k′µ → 0, k′µk′ν → 1

D
ηµνk′2, (8)

• the symmetry of the integral under the interchange x↔ y,

• the Gordon identity

ū(~p ′)γµu(~p) =
1

2m
ū(~p ′)

(
−(p+ p′)µ − 1

2
[γµ, γν ](p′ − p)ν

)
u(~p). (9)

For the remainder of this problem, you may assume that the virtuality of the photon is
small, (p− p′)2 � m2.

f) Using the results obtained in exercise sheet 12, integrate over the loop momentum k′.
Note: Split off a divergent contribution, and cut off the integral as discussed in the
lecture. Can you interpret the residual dependence on the cutoff?

g) Integrate over x and y. Note: Cut off the integral if needed. Can you interpret the
residual dependence on the cutoff?
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