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0 Overview

Quantum Field Theory is the quantum theory of fields just like Quantum
Mechanics describes quantum particles. Here, a the term “field” refers to one of
the following:

• A field of a classical field theory, such as Electromagnetism.
• A wave function of a particle in Quantum Mechanics. This is why QFT is

sometimes called “Second Quantisation”.
• A smooth approximation to some property in a solid, e.g. the displacement of

atoms in a lattice.
• Some function of space and time describing some physics.

Usually, excitations of the quantum field will be described by “particles”. In QFT
the number of these particles is not conserved, they are created and annihilated
when they interact. It is precisely what we observe in elementary particle physics,
hence QFT has become the mathematical framework for this discipline.

This lecture series gives an introduction to the basics of quantum field theory. It
describes how to quantise the basic types of (relativistic) fields, how to handle
their quantum operators and how to treat (sufficiently weak) interactions.
Furthermore, we discuss symmetries, infinities and running couplings. The goal of
the course is a derivation of particle scattering processes in basic QFT models.

The continuation of this lecture course, QFT II, introduces an alternative
quantisation framework, the path integral.1 It is applied towards formulating the
Standard Model of Particle Physics by means of non-abelian gauge theory and
spontaneous symmetry breaking.

What Else is QFT? Many points of view.

After attending this course, you may claim QFT is all about another 1000 ways to
treat free particles and harmonic oscillators. True, some of the few systems we can
solve exactly in theoretical physics; everything else is approximation. Physics, not
maths!

Look more carefully: QFT is a very rich subject, can learn about many things,
some of which have attained a mythological status:

• anti-particles, anti-matter,
• vacuum energy,
• tachyons,
• ghosts,

1Path integral much more convenient to use than canonical quantisation discussed here. How-
ever, some important concepts are not as obvious as in canonical quantisation, e.g. notion of
particles, scattering and importantly unitarity.
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• infinities,
• mathematically inconsistent (?).

Infinities. How to deal with infinities?

Quote Dirac about QED (1975): “I must say that I am very dissatisfied with the
situation, because this so-called ‘good theory’ does involve neglecting infinities
which appear in its equations, neglecting them in an arbitrary way. This is just
not sensible mathematics. Sensible mathematics involves neglecting a quantity
when it is small — not neglecting it just because it is infinitely great and you do
not want it!”

Almost true, but it’s neither neglecting nor in an arbitrary way.

Infinities are one reason why QFT is claimed to be mathematically ill-defined or
even inconsistent. Yet QFT is a well-defined and consistent calculational
framework to predict certain particle observables to extremely high precision.

Many points of view, one is that it’s our own fault: QFT is somewhat idealised,
assumes infinitely extended fields (IR) with infinite spatial resolution (UV);2 no
wonder that the theory produces infinities. Still, better to stick to idealised
assumptions and live with infinities than use enormous discrete systems (actual
solid state systems).

A physics reason why these infinities can be absorbed somehow: Our observable
everyday physics should neither depend on how large the universe actually is (IR)
nor on how smooth or coarse-grained space is (UV).

Can use infinities to learn about allowable particle interactions. Leads to curious
effects: running coupling and quantum anomalies.

More later (towards the end of the semester).

Uniqueness. A related issue is uniqueness of the formulation. Alike QM, QFT
does not have a unique or universal formulation.

For instance, many meaningful things in QM/QFT are actually equivalence classes
of objects. More convenient to work with specific representatives of these classes.
Have to bear in mind that only equivalence class is meaningful, hence many ways
to describe the same physical object.

Usage of classes goes further, not just classes objects. Often have to consider
classes of models rather than specific models. Something we have to accept,
something QFT forces upon us.

We’ll notice that QFT does what it wants, not necessarily what we want. Cannot
expect to get what we want using bare input parameters. Different formulations of
the same model naively may give different results. Must learn to adjust the input
to the desired output, then find agreement. Just have to make sure that there is
more output than input, otherwise QFT would be nice but meaningless exercise.

2Two sources for infinities: UV and IR.
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Nice feature: Can hide infinities there in a self-consistent way.

Enough. Just some words of warning: Must give up some views on physics you
have become used to. Only then you can understand something new.3 Let’s start
with something concrete. Discuss the tricky issues when they arise.

Important Concepts.

• unitarity – probabilistic framework.
• locality – interactions are strictly local.
• causality – special relativity.
• symmetries – exciting algebra and geometry.
• analyticity – complex analysis.

0.1 Prerequisites

• Classical mechanics (brief review in first lecture)
• Quantum mechanics (brief review in first lecture)
• Electrodynamics (as a simple classical field theory)
• Mathematical methods in physics (HO, Fourier transforms, . . . )

0.2 Contents

1. Classical and Quantum Mechanics (2 lectures)
2. Classical Free Scalar Field (3 lectures)
3. Scalar Field Quantisation (5 lectures)
4. Symmetries (5 lectures)
5. Free Spinor Field (8 lectures)
6. Free Vector Field (6 lectures)
7. Interactions (4 lectures)
8. Correlation Functions (6 lectures)
9. Particle Scattering (4 lectures)

10. Scattering Matrix (5 lectures)
11. Loop Corrections (5 lectures)

Indicated are the approximate number of 45-minute lectures. Altogether, the
course consists of 54 lectures which includes one overview lecture.

0.3 References

There are many text books and lecture notes on quantum field theory. Here is a
selection of well-known ones:

• M. E. Peskin, D. V. Schroeder, “An Introduction to Quantum Field Theory”,
Westview Press (1995)

3E.g. in special relativity: space and time become space time.
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• C. Itzykson, J.-B. Zuber, “Quantum Field Theory”, McGraw-Hill (1980)
• P. Ramond, “Field Theory: A Modern Primer”, Westview Press (1990)
• M. Srendnicki, “Quantum Field Theory”, Cambridge University Press (2007)
• M. Kaku, “Quantum Field Theory”, Oxford University Press (1993)
• online: D. Tong, “Quantum Field Theory”, lecture notes,
http://www.damtp.cam.ac.uk/user/tong/qft.html

• online: M. Gaberdiel, “Quantenfeldtheorie”, lecture notes (in German),
http://www.itp.phys.ethz.ch/people/gaberdim

• . . .

Peskin & Schroeder may be closest to this lecture course.4

4We will not follow Peskin & Schroeder literally.
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Chapter 1
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1 Classical and Quantum Mechanics

To familiarise ourselves with the basics, let us review some elements of classical
and quantum mechanics. Then we shall discuss some problems of combining
quantum mechanics with special relativity.

1.1 Classical Mechanics

Consider a classical non-relativistic particle in a potential. Described by position
variables qi(t) and action functional S[q] 1 2

S[q] =

∫ t2

t1

dt L(qi(t), q̇i(t), t) (1.1)

A typical Lagrangian function is

L(~q, ~̇q) = 1
2
m~̇q 2 − V (~q). (1.2)

with mass m and V (q) external potential.

A classical path extremises (minimises) the action S. Determine saddle-point
δS = 0 by variation of the action3

δS =

∫ t2

t1

dt

(
δqi(t)

∂L

∂qi
+ δq̇i(t)

∂L

∂q̇i

)
=

∫ t2

t1

dt δqi(t)

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
+

∫ t=t2

t=t1

d

(
δqi(t)

∂L

∂q̇i

)
!

= 0 (1.3)

First term is equation of motion (Euler–Lagrange)

δS

δqi(t)
=
∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (1.4)

Second term due to partial integration is boundary e.o.m., usually ignore.4

Example. Harmonic oscillator (free particle for ω = 0)

L(~q, ~̇q) = 1
2
m~̇q 2 − 1

2
mω2~q 2, −m(~̈q + ω2~q) = 0. (1.5)

1L is often time-independent: L(qi, q̇i, t) = L(qi, q̇i).
2A single time derivative q̇i usually suffices.
3Einstein summation convention: there is an implicit sum over all values for pairs of equal

upper/lower indices.
4Usually fix position qi(tk) = const. (Dirichlet) or momentum ∂L/∂q̇i(tk) = 0 (Neumann) at

boundary.
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1.2 Hamiltonian Formulation

The Hamiltonian framework is the next step towards canonical quantum
mechanics.

Define conjugate momentum pi as5

pi =
∂L

∂q̇i
(1.6)

and solve for q̇i = q̇i(q, p, t).6 Define phase space as (qi, pi).

Lagrangian function L(q, q̇, t) replaced by Hamiltonian function H(q, p, t) on phase
space. Define H(qi, pi, t) as Legendre transformation of L

H(q, p, t) = piq̇
i(q, p, t)− L(q, q̇(q, p, t), t). (1.7)

Let us express e.o.m. through H. General variation reads

δH = δpiq̇
i − δqi ∂L

∂qi
(1.8)

where we substituted definition of momenta pi twice. Use Euler–Lagrange
equation and momenta to simplify further

δH = δpiq̇
i − δqiṗi. (1.9)

Now, Hamiltonian e.o.m. q̇i = ∂H/∂pi and ṗi = −∂H/∂qi.
Introduce Poisson brackets for functions f, g on phase space

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (1.10)

Express time evolution for phase space functions f(p, q, t) 7

df

dt
=
∂f

∂t
− {H, f}. (1.11)

Works well for f = qi and f = pi.

Example. Harmonic oscillator

~p = m~̇q, H = ~p·~̇q − m

2
~̇q 2 +

mω2

2
~q 2 =

1

2m
~p 2 +

m

2
ω2~q 2. (1.12)

Hamiltonian equations of motion

~̇q = −{H, ~q} =
∂H

∂~p
=

1

m
~p, ~̇p = −{H, ~p} = −∂H

∂~q
= −mω2~q. (1.13)

5This is a choice, could also use different factors or notations.
6Suppose the equation can be solved for q̇.
7The Hamiltonian H is a phase space function.
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Convenient change of variables

~a =
1√

2mω
(mω~q + i~p) , ~a∗ =

1√
2mω

(mω~q − i~p) , (1.14)

with new Poisson brackets

{f, g} = −i ∂f
∂ai

∂g

∂a∗i
+ i

∂f

∂a∗i

∂g

∂ai
. (1.15)

Separated first-order time evolution for ~a,~a†

H = ω~a†~a, ~̇a = −iω~a, ~̇a† = +iω~a†. (1.16)

1.3 Quantum Mechanics

In canonical quantisation classical objects are replaced by elements of linear
algebra:

• The state (qi, pi) becomes a vector |ψ〉 in a Hilbert space V .
• A phase space function f becomes a linear operator F on V .
• Poisson brackets {f, g} become commutators −i~−1[F,G].8

State equation of motion (Schrödinger), wave equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (1.17)

Probabilistic role of wave function: |〈φ|ψ〉|2 is probability. Requires:

• 〈ψ|ψ〉 is positive.
• 〈ψ|ψ〉 can be normalised to 1 by scaling |ψ〉.
• 〈ψ|ψ〉 is conserved

d

dt
〈ψ|ψ〉 = (i~)−1〈ψ|(H −H†)|ψ〉 = 0. (1.18)

Hamiltonian is hermitian (self-adjoint). Unitary time evolution:
|ψ(t2)〉 = U(t2, t1)|ψ(t1)〉.
• 〈ψ|F |ψ〉 is expectation value of operator F . Obeys classical time evolution.

Example. Harmonic oscillator, free particle.

Momentum operator and Hamiltonian9

~p = −i~ ∂
∂~q

, [qi, pj] = i~δij, H = − ~2

2m

(
∂

∂~q

)2

+
mω2

2
~q 2. (1.19)

8Cannot always be translated literally, but up to simpler terms.
9Note: ~p = −i~~∂~q vs. E = +i~∂t. On wave function |ψ〉 =

∫
dd~q ψ(~q, t)|~q〉, however: ~p|ψ〉 =

+i~
∫
dd~q ~∂ψ(~q, t)|~q〉 and E|ψ〉 = +i~

∫
dd~q ∂tψ(~q, t)|~q〉
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Free particle: momentum eigenstate (Fourier transforms)

|~p〉 =

∫
dd~q e−i~

−1~p·~q|~q〉, |~q〉 =

∫
dd~p

(2π~)d
ei~
−1~p·~q|~p〉. (1.20)

|~p〉 is energy eigenstate with E = ~p 2/2m.

Harmonic oscillator: use operators ai and a†i

~a =
1√

2mω

(
mω~q + ~

∂

∂~q

)
, ~a† =

1√
2mω

(
mω~q − ~

∂

∂~q

)
, (1.21)

with commutators
[ai, a†j] = ~δij. (1.22)

Quantum Hamiltonian has extra vacuum energy E0 = 1
2
d~ω

H = 1
2
ωaia†i + 1

2
ωa†ia

i = ω~a†~a+ 1
2
d~ω = ω~a†~a+ E0. (1.23)

• Can add any E0 to Hamiltonian. No effect. E0 is irrelevant. Unless: E couples
to something else (e.g. gravity).
• Same effect as adding iα(~q·~p− ~p·~q) to H.10 Classically invisible. Quantum

energy shift ∆E0 = −dα~. Quantum ordering ambiguity. Harmless, affects
trivial E0.
• Quantum theory does as it pleases, e.g. introduce/shift E0. Best to consider all

allowable terms in the first place.

Construct spectrum: Start from vacuum state |0〉 to be annihilated by ~a (has
energy E = E0, but irrelevant)

ai|0〉 = 0. (1.24)

Add excitations ni ≥ 0 and normalise state 〈~n|~n〉 = 1

|~n〉 =

(
d∏
i=1

(a†i )
ni

√
ni

)
|0〉. (1.25)

Energy eigenstate with E = ~ωN + E0 where N =
∑d

i=1 ni is total excitation
number. Crucial property

[H,~a†] = ω~a†. (1.26)

1.4 Quantum Mechanics and Relativity

Let us set ~ = 1, c = 1 for convenience.11

Attempts to set up a relativistic version of quantum mechanics have failed. Let us
see why.

10No ambiguity for ~p 2 and ~q 2, but useful to consider all second degree polynomials in ~p and ~q.
11Can be recovered from considerations of physical units.
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Non-relativistic and relativistic energy relation

e =
~p 2

2m
, vs. e2 = ~p 2 +m2 or e =

√
~p 2 +m2. (1.27)

Natural guess for relativistic wave equation (Klein–Gordon)(
−
(
∂

∂t

)2

+

(
∂

∂~q

)2

−m2

)
|ψ〉 = 0. (1.28)

Has several conceptual problems:

Probabilistic Properties. The norm 〈ψ|ψ〉 of non-relativistic QM is conserved
only for first-order wave equation.

There is a real conserved quantity

Q =
i

2m

(
〈ψ| ∂

∂t
|ψ〉 − ∂

∂t
〈ψ|ψ〉

)
, (1.29)

Problem:

• Q is not positive definite.
• Not suitable for probabilistic interpretation!12

One can define a positive definite measure, but it is not local.

Why consider probabilities in a time slice in the first place?

Causality. Consider the overlap

〈~q2|U(t2, t1)|~q1〉 (1.30)

for a pair of spacetime points (t1, q1) and (t2, q2). Probability amplitude for
particle moving from 1 to 2.

Problem:

• Overlap non-zero if points are space-like separated.
• forbidden region: violation of causality?
• at least: exponential suppression (tunnelling).

Negative-Energy Solutions. Second-order wave equation. For every
positive-energy solution

|~p,+, t〉 =

∫
dd~q e−i~p·~q−ie(~p)t|~q〉 (1.31)

there is a negative-energy solution

|~p,−, t〉 =

∫
dd~q e−i~p·~q+ie(~p)t|~q〉. (1.32)

Problems:
12As we shall see, Q is rather similar to an electric charge.
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• Negative-energy particles not observed.13

• Positive-energy particle could fall to negative-energy state. A lot of energy
released to produce other particles.

Could insist on positive energies by wave equation

i
∂

∂t
|ψ〉 =

√
−
(
∂

∂~q

)2

+m2 |ψ〉. (1.33)

Problems:

• Square root of operator hard to define.
• Certainly non-local wave-equation.

Particle Creation. Special relativity allows energy to be converted to rest mass
of particles.

• Relativistic quantum mechanics should allow such processes.
• Quantum mechanics usually assumes a fixed particle number.

Dirac Equation. The Dirac equation was an attempt to overcome some
problems

∂

∂t
|ψ〉 = αk

∂

∂qk
|ψ〉+ βm|ψ〉. (1.34)

Relativistic wave equation; implies Klein–Gordon equation.

Probabilistic interpretation:

• First-order wave equation.
• 〈ψ|ψ〉 is conserved and positive definite.
• Positivity requires Bose statistics.

Spin:

• Operators αk imply spin-1/2 particles.
• No spin-0 particles reproducible.
• Half-integer spin requires Fermi statistics.

Negative-energy solutions:

• Exist (with different spin d.o.f.).
• Separation from positive energies is non-local.

Dirac equation has the same problems as Klein–Gordon.

Conclusion. Klein–Gordon and Dirac equations:

• Perfectly acceptable relativistic wave equations.
• No probabilistic interpretation.
• Model without particle production.

13Extract energy from making particle faster!
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1.5 Conventions

Units. We shall work with natural units ~ = c = 1.

• c = 299 792 458 m s−1 therefore s := 299 792 458 m.
• ~ = 1.055 . . .× 10−34 kg m2 s−1 therefore kg := 2.843 . . .× 1042 m−1.
• can always reinstall appropriate units by inserting 1 = c = ~.
• particle physics unit electron Volt (eV): m = 5.068× 106 eV−1,

s = 1.519× 1015 eV−1, kg = 5.610× 1035 eV.
• convert back to SI units:

eV = 5.068× 106 m−1 = 1.519× 1015 s−1 = 1.783× 10−36 kg.

Euclidean space. Write a three-vector x as

• xj with Latin indices k, l, · · · = 1, 2, 3.
• ~x = (x1, x2, x3) = (x, y, z).

Scalar product between two vectors

~a·~b :=
3∑

k=1

akbk = a1b1 + a2b2 + a3b3. (1.35)

Vector square
~a 2 := ~a·~a = a2

1 + a2
2 + a2

3. (1.36)

Totally anti-symmetric epsilon-tensor εijk with normalisation

ε123 = +1. (1.37)

Use to define cross product
(a× b)k = εijkaibj. (1.38)

Minkowski Space. Four vectors, Greek indices µ, ν, . . . = 0, 1, 2, 3:

• position vector xµ := (x0, x1, x2, x3) = (t, ~x).
• momentum covector pµ := (p0, p1, p2, p3) = (e, ~p).

Summation convention: repeated index µ means implicit sum over µ = 0, 1, 2, 3

xµpµ :=
3∑

µ=0

xµpµ = et+ ~x·~p. (1.39)

Minkowski metric: signature (−+++)

ηµν = ηµν = diag(−1,+1,+1,+1). (1.40)

Raise and lower indices (wherever needed):

xµ := ηµνx
µ = (−t, ~x), pµ := ηµνpµ = (−e, ~p). (1.41)
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Scalar products of two vectors or two covectors, e.g.

p·p := −e2 + ~p 2. (1.42)

Our conventions:

• Mass shell p2 = −m2: p2 < 0 massive, p2 = 0 massless, p2 > 0 tachyonic.
• Light cone: (x− y)2 < 0 time-like, (x− y)2 = 0 light-like, (x− y)2 > 0 space-like.

(1.43)

Why?

• notation follows space (not time). xµ = (t, ~x) p
µ

= (t, ~x)

• xi = xi but x0 = −x0 = t.
• pi = pi but p0 = −p0 = e.
• Wick rotations natural: just rotate time t→ it and obtain Euclidean metric.

How to convert?

• flip sign of every ηµν and ηµν .
• find out which (co)vectors match: xµ and pµ agree literally, xµ and pµ flip the

sign.
• flip sign for every scalar product of vectors of same type: e.g.
p2 +m2 ↔ −p2 +m2.
• preserve scalar product between different vectors: xµpµ.14

• note: ~p opposite sign compared to Peskin & Schroeder; mild problem: sign of ~p
and e is merely convention.

Name Spaces. We have only 26 Latin letters at our disposal and some are more
attractive than others. Have to recycle:

• e may be 2.71 . . ., but also energy,
• π may be 3.14 . . ., but also momentum conjugate to field φ,
• i may be

√
−1, but also useful for counting.

• κ may look like k or K on the blackboard.

14Therefore also x·p unchanged (two signs cancel).
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• H may be Hamilton function or operator.
• . . .

Will typically not say explicitly which letter means what:

• May even use same letter for different meanings in one formula.
• Can guess meaning from the context, e.g. i in exp(πi . . .) vs.

∑n
i=1.

• Indices typically do not mix with other symbols.
• Could try to avoid, but may also clutter notation.
• It’s a fact of life (and the literature).
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2 Classical Free Scalar Field

In the following we shall discuss one of the simplest field theory models, the
classical non-interacting relativistic scalar field.

2.1 Spring Lattice

Before considering field, start with an approximation we can certainly handle:
lattice.

Consider an atomic lattice:

• 1D or 2D cubic lattice,
• atoms are coupled to neighbours by springs,1

• atoms are coupled to rest position by springs,
• atoms can move only orthogonally to lattice (transverse),
• boundaries: periodic identification.

(2.1)

model parameters and variables:

• lattice separation r,
• number of atoms N (in each direction),
• mass of each atom µ,
• lattice spring constant κ,
• return spring constant λ,
• shift orthogonal to lattice qj,k

Lagrangian Formulation. Lagrange function

L = Lkin − Vlat − Vrest (2.2)

1Springs are useful approximations because they model first deviation from rest position; always
applies to small excitations.
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Standard non-relativistic kinetic terms

Lkin = 1
2
µ

N∑
i,j=1

q̇2
i,j. (2.3)

Potential for springs between atoms (ignore x, y-potential)2

Vlat = 1
2
κ

N∑
i,j=1

(qi−1,j − qi,j)2 + 1
2
κ

N∑
i,j=1

(qi,j−1 − qi,j)2. (2.4)

Some spring potential to drive atoms back to rest position

Vrest = 1
2
λ

N∑
i,j=1

q2
i,j. (2.5)

Quadratic in q’s: bunch of coupled HO’s. Equations of motion

µq̈i,j
− κ(qi−1,j − 2qi,j + qi+1,j)
− κ(qi,j−1 − 2qi,j + qi,j+1)

+ λqi,j = 0. (2.6)

Note: spatially homogeneous equations. Use discrete Fourier transform to solve
(respect periodicity)

qi,j(t) =
1

N2

N∑
k,l=1

ck,l√
2µωk,l

exp

(
−2πi

N
(ki+ lj)− iωk,lt

)

+
1

N2

N∑
k,l=1

c∗k,l√
2µωk,l

exp

(
2πi

N
(ki+ lj) + iωk,lt

)
(2.7)

Used freedom to define coefficients ck,l to introduce prefactors.Complex conjugate
coefficients c∗k,l in second term ensure reality of qi,j. Note: c∗k,l represents mode of
opposite momentum and energy w.r.t. ck,l!

E.o.m. translates to dispersion relation:

µω2
k,l = λ+ 4κ sin2 πk

N
+ 4κ sin2 πl

N
. (2.8)

(2.9)

2Can ignore due to d2 = d2x + d2y + d2z, shifts potential by an irrelevant constant. Moreover
longitudinal and transverse excitations decouple.
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Hamiltonian Formulation. Define momenta

pi,j :=
∂L

∂q̇i,j
= µq̇i,j. (2.10)

Derive Hamiltonian function as Legendre transform of L

H = Hkin + Vlat + Vrest with Hkin =
1

2µ

N∑
i,j=1

p2
i,j. (2.11)

Then define canonical Poisson brackets

{f, g} :=
N∑

i,j=1

(
∂f

∂qi,j

∂g

∂pi,j
− ∂f

∂pi,j

∂g

∂qi,j

)
. (2.12)

In other words {qi,j, pj,k} = δi,kδj,l and {q, q} = {p, p} = 0.

Fourier Modes. Introduce new complex variables (Fourier transform)

ak,l =
1√

2µωk,l

N∑
i,j=1

exp

(
2πi

N
(ki+ lj)

)(
µωk,lqi,j + ipi,j

)
. (2.13)

Transformed Hamiltonian is very simple

H =
1

N2

N∑
k,l=1

ωk,la
∗
k,lak,l. (2.14)

Poisson brackets for new variables are simple, too

{ai,j, a∗k,l} = −iN2 δi,kδj,l,

{ai,j, ak,l} = {a∗i,j, a∗k,l} = 0. (2.15)

Can convince oneself that equations of motion hold

ȧk,l = −{H, ak,l} = −iωk,lak,l,
ȧ∗k,l = −{H, a∗k,l} = +iωk,la

∗
k,l. (2.16)

and solved by above Lagrangian solution

ak,l(t) = ck,l exp(−iωk,lt), a∗k,l(t) = c∗k,l exp(+iωk,lt). (2.17)

2.2 Continuum Limit

Now turn this spring lattice into a smooth field ϕ:

• send number of sites N →∞.
• box of size L in all directions; lattice separation r = L/N → 0.
• positions x = ir = iL/N ,
• field qi,... = ϕ(~x),
• generalise to d spatial dimensions, e.g. d = 1, 2, 3.

Some useful rules
N∑
i=1

→ 1

r

∫
dx, qi − qi−1 → r(∂ϕ) (2.18)
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Lagrangian Formulation. Substitute this in Lagrangian

L→
∫
dd~x

(
µ

2rd
ϕ̇2 − κ

2rd−2
(~∂ϕ)2 − λ

2rd
ϕ2

)
. (2.19)

Diverges as r → 0, but can rescale parameters. Suitable rescalings

µ = rdµ̄, κ = rd−2κ̄, λ = rdλ̄, (2.20)

Parameters become densities. Lagrangian functional

L[ϕ, ϕ̇](t) =

∫
dd~x

(
1
2
µ̄ϕ̇2 − 1

2
κ̄(~∂ϕ)2 − 1

2
λ̄ϕ2

)
. (2.21)

Can furthermore rescale field ϕ = κ̄−1/2φ

L[φ, φ̇](t) =

∫
dd~x

(
1
2
µ̄κ̄−1φ̇2 − 1

2
(~∂φ)2 − 1

2
λ̄κ̄−1φ2

)
. (2.22)

Derive e.o.m.: start with action functional S[φ]

S[φ] =

∫
dt L[φ](t) =

∫
dt dd~xL

(
φ(~x, t), ∂iφ(~x, t), φ̇(~x, t)

)
; (2.23)

useful to express (homogeneous) Lagrange functional L[φ](t) through Lagrangian

density L(φ, ~∂φ, φ̇) (the Lagrangian).

Vary action functional (discard boundary terms)

δS[φ] =

∫
dt dd~x δφ

(
∂L
∂φ
− ∂

∂xi
∂L

∂(∂iφ)
− d

dt

∂L
∂φ̇

)
+ . . .

!
= 0. (2.24)

Write general Euler–Lagrange equation for fields

∂L
∂φ

(~x, t)− ∂

∂xi
∂L

∂(∂iφ)
(~x, t)− d

dt

∂L
∂φ̇

(~x, t) = 0. (2.25)

In our case
− µ̄κ̄−1φ̈+ ~∂ 2φ− λ̄κ̄−1φ = 0; (2.26)

agrees with continuum limit of discrete e.o.m.. Now denote as speed of light c and
mass m

µ̄κ̄−1 = c−2 = 1, λ̄κ̄−1 = m2, (2.27)

to discover Klein–Gordon equation (set c = 1)

− c−2φ̈+ ~∂ 2φ−m2φ = 0. (2.28)
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Plane Wave Solutions. Consider solutions on infinite space and time.
Homogeneous equation solved by Fourier transformation

φ(~x, t) =

∫
dd~p

(2π)d 2e(~p)
α(~p) exp

(
−i~p·~x− ie(~p)t

)
+

∫
dd~p

(2π)d 2e(~p)
α∗(~p) exp

(
+i~p·~x+ ie(~p)t

)
(2.29)

with (positive) energy e(~p) on mass shell (often called ω(~p))

e(~p) =
√
~p 2 +m2. (2.30)

Agrees with discrete solution identifying momenta as

p = 2πk/L,
N∑
k=1

→ L

2π

∫
dp, ck,... =

α(~p)√
2e(~p)rd

. (2.31)

Some remarks on factors and conventions:

• Fourier transforms on R produce factors of 2π, need to be put somewhere.
Convention to associate (2π)−1 to every dp: d̄p := dp/2π.
No factors of 2π for dx. No factors of 2π in exponent.
• Combination dd~p/2e(~p) is a useful combination: Relativistic covariance. Reason

for conversion factor in ck,....

2.3 Relativistic Covariance

The Klein–Gordon equation can be written manifestly relativistically3 4

− ∂µ∂µφ+m2φ = −∂2φ+m2φ = 0. (2.32)

Also Lagrangian and action manifestly relativistic

L = −1
2
(∂φ)2 − 1

2
m2φ2, S =

∫
dDxL. (2.33)

To understand the relativistic behaviour of the solution, consider integration over a
mass shell p2 +m2 = 0 ∫

dDp δ(p2 +m2)θ(p0) f(p)

=

∫
dd~p de δ(−e2 + ~p 2 +m2)θ(e) f(e, ~p)

=

∫
dd~p de

2e
δ(e−

√
~p 2 +m2)θ(e) f(e, ~p)

=

∫
dd~p

2e(~p)
f(e(~p), ~p) (2.34)

3∂2 often written as D’Alembertian �.
4Signature of spacetime is −+++!
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Solution is just Fourier transform

φ(x) =

∫
dDp

(2π)D
φ(p) exp

(
−ipµxµ

)
(2.35)

with momentum space field defined on shell only

φ(p) = 2πδ(p2 +m2)
(
θ(p0)α(~p) + θ(−p0)α∗(−~p)

)
. (2.36)

Momentum space e.o.m. obviously satisfied

(p2 +m2)φ(p) = 0. (2.37)

α(~p) and α∗(~p) define amplitudes on forward/backward mass shells.

(2.38)

Note that φ(p) obeys reality condition (from φ(x)∗ = φ(x))

φ(p)∗ = φ(−p). (2.39)

2.4 Hamiltonian Field Theory

Now that we have a nice relativistic formulation for the Klein–Gordon field φ(x),
let’s separate space from time. 5

Position Space. Define momentum π (field) conjugate to φ

π(~x, t) =
δL

δφ̇(~x)
(t) =

∂L
∂φ̇

(~x, t) = φ̇(~x, t). (2.40)

Determine Hamiltonian

H[φ, π] =

∫
dd~x πϕ̇− L[φ, φ̇]

=

∫
dd~x

(
1
2
π2 + 1

2
(~∂φ)2 + 1

2
m2φ2

)
. (2.41)

5Formalism breaks relativistic invariance, physics remains relativistic.
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Not relativistically covariant, not designed to be.6

Define Poisson brackets for phase space functionals f, g

{f, g} =

∫
dd~x

(
δf

δφ(~x)

δg

δπ(~x)
− δf

δπ(~x)

δg

δφ(~x)

)
. (2.42)

Poisson brackets of fields yield delta-functions7

{φ(~x), π(~y)} =

∫
dd~z δd(~x− ~z)δd(~y − ~z) = δd(~x− ~z). (2.43)

Momentum Space. Now introduce momentum modes8

a(~p) =

∫
dd~x exp (i~p·~x)

(
e(~p)φ(~x) + iπ(~x)

)
, (2.44)

and inverse Fourier transformation

φ(~x) =

∫
dd~p

(2π)d 2e(~p)
a(~p) exp(−i~p·~x)

+

∫
dd~p

(2π)d 2e(~p)
a∗(~p) exp(+i~p·~x),

π(~x) = − i

2

∫
dd~p

(2π)d
a(~p) exp(−i~p·~x)

+
i

2

∫
dd~p

(2π)d
a∗(~p) exp(+i~p·~x). (2.45)

Compute Poisson brackets for Fourier modes9 10

{a(~p), a∗(~q)} = −i 2e(~p) (2π)dδd(~p− ~q). (2.46)

In other words

{f, g} = −i(2π)d
∫
dd~p 2e(~p)

(
δf

δa(~p)

δg

δa∗(~p)
− δf

δa∗(~p)

δg

δa(~p)

)
. (2.47)

Hamiltonian translates to

H =
1

2

∫
dd~p

(2π)d
a∗(~p)a(~p) =

∫
dd~p

(2π)d 2e(~p)
e(~p)a∗(~p)a(~p). (2.48)

Hence e.o.m. for field oscillator

ȧ(~p) = −{H, a(~p)} = −ie(~p)a(~q),

ȧ∗(~p) = −{H, a∗(~p)} = +ie(~p)a∗(~q). (2.49)

One HO for every momentum. Solution

a(~p, t) = α(~p) exp(−ie(~p)t), a∗(~p, t) = α∗(~p) exp(+ie(~p)t). (2.50)

6Hamiltonian governs time translation.
7Formula for variation δφ(~x)/δφ(~z) = δd(~x− ~z).
8Have some additional factors compared to some literature.
9Conventional 2π for delta-function in momentum space.

10Factor 2e(~p) appropriate relativistic measure for mass shell.
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Quantum Field Theory I
ETH Zurich, HS12

Chapter 3
Prof. N. Beisert

3 Scalar Field Quantisation

We can now go ahead and try to quantise the classical scalar field using the
canonical procedure described before. We will encounter some infinities, and
discuss how to deal with them. Then we shall investigate a few basic objects in
QFT.

3.1 Quantisation

Start with the Hamiltonian formulation of the scalar field discussed earlier.

Equal-Time Commutators. Phase space consists of the field φ(~x) and the
conjugate momentum π(~x) with Poisson bracket1

{φ(~x), π(~y)} = δd(~x− ~y). (3.1)

Hence the canonical quantisation implies operators φ(~x) and π(~x)

[φ(~x), π(~y)] = iδd(~x− ~y). (3.2)

Note that φ and π are now operator-valued fields (rather: distributions).2

Field States. Next have to define some states. Straight QM would lead to a
state |φ0〉 for every field configuration φ0(~x) such that

φ(~x)|φ0〉 = φ0(~x)|φ0〉, π(~x)|φ0〉 = −i δ

δφ0(~x)
|φ0〉. (3.3)

Can be done formally, but not so convenient. Sketch of an eigenstate

|0〉 =

∫
Dφ exp

(
−1

2

∫
dd~x dd~y Ω(~x, ~y)φ(~x)φ(~y)

)
. (3.4)

1At the moment, the fields are defined on a common time slice t, e.g. t = 0. Later we discuss
unequal times.

2The delta-function is a distribution, also the fields should be considered distributions. Distri-
butions are linear maps from test functions to numbers (or operators in this case). In physics, we
write them as integrals with a distributional kernel (e.g. the delta-function). Sometimes we also
perform illegal operations (e.g. evaluate delta-function δ(x) at x = 0).
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Momentum Space. The classical field is a bunch of coupled HO’s, let us
diagonalise them and use creation and annihilation operators.

Go to momentum space, and pick a and a† appropriately, same transformation as
above

a(~p) =

∫
dd~x exp (i~p·~x)

(
e(~p)φ(~x) + iπ(~x)

)
,

φ(~x) =

∫
dd~p

(2π)d 2e(~p)
a(~p) exp(−i~p·~x)

+

∫
dd~p

(2π)d 2e(~p)
a†(~p) exp(+i~p·~x),

π(~x) = − i

2

∫
dd~p

(2π)d
a(~p) exp(−i~p·~x)

+
i

2

∫
dd~p

(2π)d
a†(~p) exp(+i~p·~x). (3.5)

Commutation relations in momentum space

[a(~p), a†(~q)] = 2e(~p) (2π)dδd(~p− ~q). (3.6)

Substitute fields into Hamiltonian paying attention to ordering

H =
1

4

∫
dd~p

(2π)d
(
a†(~p)a(~p) + a(~p)a†(~p)

)
=

1

4

∫
dd~p

(2π)d
(
2a†(~p)a(~p) + [a(~p), a†(~p)]

)
=

1

2

∫
dd~p

(2π)d
a†(~p)a(~p) +

1

2

∫
dd~p e(~p) δd(~p− ~p). (3.7)

Vacuum Energy. Introduce a vacuum state |0〉 annihilated by all a(~p). Two
problems with vacuum energy H|0〉 = E0|0〉

E0 =
1

2

∫
dd~p e(~p) δd(~p− ~p) : (3.8)

• delta-function is δd(~p− ~p) = δd(0) is ill-defined,
• integral 1

2

∫
dd~p e(~p) diverges.

These are self-made problems:

• We considered an infinite volume. Not reasonable to expect a finite energy. IR
problem! The delta-function has units of volume. It measures the volume of the
system δd(~p− ~p) ∼ V →∞. Consider energy density instead!

• Integral 1
2

∫ P
0
dd~p e(~p) represents vacuum energy density. Infinitely many

oscillators per volume element, not reasonable to expect finite energy density.
UV problem! Introduce cutoff |~p| < P to obtain 1

2

∫ P
0
dd~p e(~p) ∼ P d+1.

Finite lattice has similar effect to regularise IR and UV.

To avoid IR infinities in QFT:
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• Put the system in a finite box. Possible but inconvenient. Rather work with
infinite system and cope with IR divergences. E.g. consider energy density.

To avoid UV infinities in QFT:

• By definition we want a field theory, not a discrete model. Physics: Should be
able to approximate by discrete model.
• Regularisation: impose momentum cut-off, consider a lattice, other tricks

without physical motivation, . . .
• Renormalisation: remove terms which would diverge.
• Remove regularisation: obtain finite results.

Here: simply drop E0.

• There is no meaning to an absolute vacuum energy.
• May add any constant to Hamiltonian (to compensate E0).
• Makes no observable difference in any physical process.
• Vacuum energy only a philosophical or religious question.
• Later on, infinities lead to interesting effects.

Renormalised Hamiltonian Hren

Hren := H − E0 =
1

2

∫
dd~p

(2π)d
a†(~p)a(~p). (3.9)

Nice, vacuum has zero energy.

Normal Ordering. The ordering of variables in classical H plays no role. In
quantum theory it does! It is responsible for vacuum energy E0.

How to map some classical observable O to a quantum operator?

A possible map is normal ordering N(O):

• Express O in terms of a and a∗ → a†.
• Write all a†’s to the left of all a’s.

Here, renormalised Hamiltonian is the normal ordering of H

Hren = N(H). (3.10)

There are other ordering prescriptions for operators:

• Normal ordering depends on the choice of vacuum state. There may be other
normal-ordering prescriptions associated to different “vacuum” states.
• There are other useful ordering prescriptions which we will encounter, e.g. time

ordering.

3.2 Fock Space

We have:

• a collection of HO’s labelled by momentum ~p,
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• a vacuum state |0〉 with energy E = 0.

Discuss other related states.

Single-Particle States. Can now excite vacuum

|~p〉 := a†(~p)|0〉. (3.11)

Energy eigenstate with energy
E = +e(~p). (3.12)

Energy of a particle with momentum ~p and mass m.

Negative-Energy Solutions. Note:

• Energy is positive E > 0.
• State a(~p)|0〉 would have negative energy. Does not exist by construction.

Problem of negative-energy particles solved!

• a†(~p) creates a particle of momentum ~p a positive energy +e(~p) from the
vacuum. a†(~p) is particle creation operator.
• a(~p) removes a particle of momentum ~p and thus removes the positive energy

+e(~p) from the state.

a(~p)|~q〉 = a(~p)a†(~q)|0〉 = [a(~p), a†(~q)]|0〉
= 2e(~p) (2π)d δd(~p− ~q) |0〉. (3.13)

a(~p) is particle annihilation operator.3

(3.14)

Interpretation of position space operators not as straight:
φ(~x) = φ†(~x) as well as π(~x) = π†(~x) create or annihilate a particle at position ~x.
Result is typically superposition.

3a(~p) is not an anti-particle (although this is sometimes claimed). It has negative energy while
anti-particles (like particles) have positive energy. For the real scalar, the particle is its own
anti-particle.
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Normalisation. Let us define proper normalisation for the vacuum

〈0|0〉 = 1. (3.15)

Normalisation of a single-particle state:

〈~p|~p〉 = 2e(~p) (2π)d δd(~p− ~p) =∞. (3.16)

Known problem from QM: Plane-wave states have infinite extent, smeared over all
space, unphysical. Recall δd(~p− ~p) represents volume of space.

Consider peaked wave packet state |f〉 (test function) instead

|f〉 :=

∫
ddp f(~p)

(2π)d 2e(~p)
|~p〉. (3.17)

For suitable f(~p) this state has a finite normalisation

〈f |f〉 =

∫
ddp |f(~p)|2

(2π)d 2e(~p)
. (3.18)

Multi-Particle States and Fock Space. Now excite more than one harmonic
oscillator

|~p1, ~p2, . . . , ~pn〉 := a†(~p1) a†(~p2) · · · a†(~pn) |0〉. (3.19)

The energy is given by the sum of particle energies4

E =
n∑
k=1

e(~pk). (3.20)

All particles are freely interchangeable

|. . . , ~p, ~q, . . .〉 = |. . . , ~q, ~p, . . .〉 (3.21)

because creation operators commute

[a†(~p), a†(~q)] = 0. (3.22)

Bose statistics for indistinguishable particles: Wave function automatically totally
symmetric in QFT.

A generic QFT state (based on the vacuum |0〉) is a linear combination of
k-particle states with k not fixed. This vector space is called Fock space. It is the
direct sum

VFock = V0 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ . . . , Vn = (V1)⊗sn (3.23)

of n-particle spaces Vn where

• V0 = C merely contains the vacuum state |0〉.
4Use [H, a†(~p)] = e(~p)a†(~p) to show H|n〉 = Ha†1 . . . a

†
n|0〉 = [H, a†1]a†2 . . . a

†
n|0〉 + . . . +

a†1 . . . a
†
n−1[H, a†n]|0〉 = E|n〉.
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• V1 = Vparticle is the space of single particle states |~p〉 with positive energy.
• Vn is the symmetric tensor product of n copies of V1.

Consider non-relativistic physics:

• The available energy is bounded from above. Much smaller than particle rest
masses m = e(0).
• Relevant part of Fock space with n bounded. For example: V1, V2 or V1 ⊕ V2.
• Multiple-particle QM is a low-energy limit of QFT. Becomes QFT when number

of particles is unbounded.

Conservation Laws. The Hamiltonian H measures the total energy E.

There is also a set of operators to measure total momentum ~P

~P :=

∫
dd~p

(2π)d 2e(~p)
~p a†(~p)a(~p). (3.24)

with eigenvalue ~P =
∑n

k=1 ~pk on state |~p1, . . . ~pn〉. Vacuum carries no momentum.

Combine into relativistic vector Pµ = (H, ~P ) of operators

Pµ :=

∫
dd~p

(2π)d 2e(~p)
pµ(~p) a†(~p)a(~p), pµ(~p) := (e(~p), ~p). (3.25)

Another useful operator is the particle number operator n

N :=

∫
dd~p

(2π)d 2e(~p)
a†(~p)a(~p). (3.26)

It measures the number of particles n in a state |~p1, . . . ~pn〉

NVn = nVn. (3.27)

The relativistic momentum vector and the number operator are conserved

[H,Pµ] = [H,N ] = 0. (3.28)

Moreover, they carry no momentum

[Pµ, Pν ] = [Pµ, N ] = 0. (3.29)

In fact, there are many conservation laws. Any two operators made from number
density operators commute

n(~p) := a†(~p)a(~p), [n(~p), n(~q)] = 0. (3.30)

Hence such operators are conserved, carry no momentum and no particle number:

[H,n(~p)] = [Pµ, n(~p)] = [N, n(~p)] = 0. (3.31)

In a free theory there are infinitely many conservation laws.5

5Should not say this: Free theory is trivial.
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3.3 Complex Scalar Field

Let us discuss a slightly more elaborate case of the scalar field, the complex scalar,
where we first encounter anti-particles.

The complex scalar field φ(x) has the Lagrangian6 7

L = −∂µφ∗ ∂µφ−m2φ∗φ = −|∂φ|2 −m2|φ|2. (3.32)

For the conjugate momentum we obtain8

π =
∂L
∂φ̇

= φ̇∗, π∗ =
∂L
∂φ̇∗

= φ̇. (3.33)

In the quantum theory we then impose the canonical commutators

[φ(~x), π(~y)] = [φ(~x)†, π(~y)†] = iδ(~x− ~y). (3.34)

The equation of motion associated to the above Lagrangian is the very same
Klein–Gordon equation. However, now complex solutions φ(x) are allowed. Field
operators (with time dependence, see below) now read:

φ(x) =

∫
dd~p

(2π)d 2e(~p)
b(~p) exp(−ip·x)

+

∫
dd~p

(2π)d 2e(~p)
a†(~p) exp(+ip·x),

φ†(x) =

∫
dd~p

(2π)d 2e(~p)
a(~p) exp(−ip·x)

+

∫
dd~p

(2π)d 2e(~p)
b†(~p) exp(+ip·x), (3.35)

Note the strange appearance of a and b. For a 6= b we have φ 6= φ† while a = b
implies a real field φ = φ†. Non-trivial commutation relations:

[a(~p), a†(~q)] = [b(~p), b†(~q)] = 2e(~p) (2π)dδd(~p− ~q). (3.36)

and quantum Hamiltonian

Hren :=
1

2

∫
dd~p

(2π)d
(
a†(~p)a(~p) + b†(~p)b(~p)

)
. (3.37)

The complex scalar carries a charge, +1 for φ and −1 for φ†.

6The prefactor 1
2 of the real scalar field (φ2) is now absent. It is a convenient symmetry factor.

Here the appropriate symmetry factor is 1 because φ∗ 6= φ. More on symmetry factors later.
7One can also set φ(x) = (φ1+iφ2)/

√
2 and φ∗(x) = (φ1−iφ2)/

√
2 and obtain two independent

scalar fields with equal mass.
8One may just as well define π = ∂L/∂φ̇∗ = φ̇. It is a matter of convention, and makes no

difference if applied consistently.
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• The operator a† creates a particle with charge +1.
• The operator b has negative energy, it should remove a particle. The operator

carries the same charge as a†, hence the corresponding particle should have
charge −1.

Two types of particles: particle and anti-particle. Opposite charges, but equal
mass and positive energies. Conclusion:

• a† creates a particle,
• b annihilates an anti-particle,
• b† creates an anti-particle,
• a annihilates a particle,
• vacuum annihilated by a’s and b’s.

(3.38)

3.4 Correlators

Have quantised field. States have an adjustable number of indistinguishable
particle with definite momentum. Now what? Consider particle propagation in
space and time.

Schrödinger Picture. Steps:

• create a particle at xµ = (t, ~x),
• let the state evolve for some time s− t,
• measure the particle at yµ = (s, ~y).

Could use φ(~x) or π(~x) to create particle from vacuum.9 Use φ because π = φ̇ can
be obtained from time derivative.

In Schrödinger picture the states evolve in time

i
d

dt
|Ψ, t〉 = H |Ψ, t〉 (3.39)

9The operators also annihilate particles, but not from the vacuum.
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We solve this as10

|Ψ, s〉 = exp
(
−iH(s− t)

)
|Ψ, t〉 (3.40)

Altogether the correlator reads

∆+(y, x) = 〈0|φ(~y) exp
(
−i(s− t)H

)
φ(~x)|0〉.

=

∫
dd~p

(2π)d 2e(~p)
exp
(
−ip·(y − x)

)
. (3.41)

Space and time take different roles. Nevertheless, final answer is perfectly
relativistic.

Heisenberg Picture. Heisenberg picture makes relativistic properties more
manifest. Translate time-dependence of state to time-dependence of operators

FH(t) := exp
(
+iH(t− t0)

)
FS(t) exp

(
−iH(t− t0)

)
, (3.42)

where t0 is the reference time slice on which quantum states are defined, say
t0 = 0. States are therefore time-independent in Heisenberg picture

FS(t)|Ψ, t〉 = FS(t) exp
(
−iH(t− t0)

)
|Ψ, t0〉

= exp
(
−iH(t− t0)

)
FH(t)|Ψ, t0〉. (3.43)

Field φ in Heisenberg picture

φ(x) = φ(~x, t) = exp
(
+iHt

)
φ(~x) exp

(
−iHt

)
=

∫
dd~p

(2π)d 2e(~p)

(
e−ip·xa(~p) + e+ip·xa†(~p)

)
(3.44)

• has complete spacetime dependence,
• is manifestly relativistic,
• no need to consider π = φ̇,
• obeys Klein–Gordon equation (∂2 −m2)∆+ = 0,
• same form as solution of Euler–Lagrange equations.

Correlator from Heisenberg picture (vacuum always the same)

∆+(y, x) = 〈0|φ(y)φ(x)|0〉. (3.45)

Same result, but more immediate and relativistic derivation.

Correlator. Let us discuss the correlation function

∆+(y, x) =

∫
dd~p

(2π)d 2e(~p)
exp
(
−ip·(y − x)

)
. (3.46)

10H is time-independent, hence time-translation is governed simply by exp(−iH∆t). Later we
shall encounter a more difficult situation.
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We know it in momentum space

∆+(y, x) =

∫
dd+1p

(2π)d+1
∆+(p) exp

(
−ip·(y − x)

)
.

∆+(p) = 2πδ(p2 +m2)θ(p0) (3.47)

How about position space?

• Due to translation symmetry: ∆+(y − x) = ∆+(y, x).
• Due to Lorentz rotations ∆+(x) = md−1F (m2x2).
• Distinguish three regions: future, past, elsewhere.

Klein–Gordon equation for F becomes

4rF ′′(r) + 2(d+ 1)F ′(r)− F (r) = 0 (3.48)

This is DG for Bessel functions Jα(z).11 Two solutions:

F±(r) = r−(d−1)/4J±(d−1)/2(i
√
r). (3.49)

First, consider future with x = (t, 0) where t = ±
√
−x2.12 Substitute in above

momentum space expression

∆+(x) =

∫
dd~p

(2π)d 2e(~p)
exp
(
−ite(~p)

)
.

=
Vol(Sd−1)

2(2π)d

∫ ∞
0

dp pd−1√
p2 +m2

exp
(
−it
√
p2 +m2

)
.

=
Vol(Sd−1)

2(2π)d

∫ ∞
m

de(e2 −m2)(d−2)/2 exp(−ite)

∼ e−imt for t→ ±∞. (3.50)

Oscillation with positive frequency m. Same for past. Fixes linear combination of
F± (Hankel Hα) 13

∆+(y − x) ∼ m(d−1)/2

(y − x)(d−1)/2
H(d−1)/2

(
m
√
−(y − x)2

)
. (3.51)

For space-like separation

∆+(x) ∼ e−mr for r =
√
x2 →∞. (3.52)

Non-zero, but exponentially decaying (range m). Fixes linear combination of F±
(modified Bessel Kα)

∆+(y − x) ∼ m(d−1)/2

(y − x)(d−1)/2
K(d−1)/2

(
m
√

(y − x)2
)
. (3.53)

11Bessel functions are well-known solutions for spherical waves.
12Can go to such a frame with x = (t, 0).
13The asymptotic behaviour e−imt determines which of the two Hankel functions H(1) and H(2)

applies to past and future.
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Same as in relativistic QM. Causality?

Before we discuss causality, let us summarise in this figure:

(3.54)

Note that there are also delta-function contributions for light-like separation.

Unequal-Time Commutator. Okay to violate causality as long as not
measured.

Correct question: Can one measurement at x influence the other at y? Consider
commutator

∆(y − x) := [φ(y), φ(x)]. (3.55)

We can relate to above correlators by inserting between vacua

∆(y − x) = 〈0|[φ(y), φ(x)]|0〉 = ∆+(y − x)−∆+(x− y). (3.56)

Observation:

• ∆+ is symmetric for space-like separations,
• φ(x) and φ(y) commute for space-like separations,
• follows also from invariance and equal-time commutator,
• causality preserved.

Note: two contributions cancel for space-like separations:

• Particle created at x and annihilated at y cancels against
• particle created at y and annihilated at x.

However, commutator non-trivial for time-like separations

∆(y − x) ∼ m(d−1)/2

(y − x)(d−1)/2
J(d−1)/2

(
m
√
−(y − x)2

)
. (3.57)

Time-like separated measurements can influence each other.

Finally we can recover equal-time commutators. For two fields φ the commutator
follows from symmetry of the integral

∆(0, ~y − ~x) =

∫
dd~p

(2π)d 2e(~p)

(
e−i~p·(~y−~x) − ei~p·(~y−~x)

)
= 0. (3.58)
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The commutator between a field φ and its conjugate π yields

∂

∂x0
∆(0, ~y − ~x) =

i

2

∫
dd~p

(2π)d
(
e−i~p·(~y−~x) + ei~p·(~y−~x)

)
= iδd(~x− ~y) (3.59)

in agreement with the fundamental commutator [φ(~y), π(~x)].

3.5 Sources

We have a free field, we have discussed correlators of two fields, but there is not
much else we can do besides adding interactions (later).

As a first step towards interactions, let us discuss driving the field by an external
source ρ(x)

− ∂2φ(x) +m2φ(x) = ρ(x). (3.60)

The source is non-zero only for some finite interval of time.

Question: Given an initial field φi(x) obeying the homogeneous Klein–Gordon
equation, how to determine the solution φ(x) of inhomogeneous Klein–Gordon
equation such that φ(x) = φi(x) for all t < t0 before activation of the source at t0?
In particular, what is the final field φf(x) which must also obey the homogeneous
Klein–Gordon equation.

(3.61)

Due to linearity we make the ansatz14

φ(x) = φi(x) +∆φ(x), ∆φ(x) =

∫
dd+1y GR(x− y) ρ(y) (3.62)

where GR is the retarded propagator or Green(’s) function

− ∂2GR(x) +m2GR(x) = δd+1(x), GR(x) = 0 for x0 < 0. (3.63)

The first equation is conveniently solved in momentum space

G(x) =

∫
dd+1p

(2π)d+1
e−ip·xG(p) (3.64)

with Klein–Gordon equation and solution15

p2G(p) +m2GR(p) = 1, G(p) =
1

p2 +m2
. (3.65)

14Admittedly, this is a perfectly classical problem already encountered in electrodynamics.
15As such, this solution is in fact slightly ill-defined, second condition resolves the ambiguities

as we shall see.
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Let us see how to incorporate the second relation. Write as

G(x) =

∫
dd~p

(2π)d
e−i~p·~x

∫
de

2π
e−iet

−1

e2 − e(~p)2

=

∫
dd~p

(2π)d
e−i~p·~x

∫
de

2π

−1

2e(~p)

(
e−iet

e− e(~p)
− e−iet

e+ e(~p)

)
. (3.66)

Solve Fourier integrals by residue theorem in complex plane. The integral over e
runs from −∞ to +∞; close contour! This is done by a semi-circle in the complex
plane with very large radius. Contribution must vanish, consider exponent:

exp(−iet) = exp(−itRe e) exp(t Im e). (3.67)

Only second term suppresses contribution:

• For t > 0 we need Im e < 0: Close contour in lower half.
• For t < 0 we need Im e > 0: Close contour in upper half.

(3.68)
We have two poles at e = ±e(~p) on the real axis = contour. Need to decide how
they contribute to residues.

For retarded propagator, we want GR(x) = 0 for t < 0. Achieved by shifting poles
slightly into lower half plane16

GR(p) =
1

p2 +m2 − ip0ε
. (3.69)

(3.70)

No poles in upper half plane, hence GR(x) for t < 0. For t > 0, however, both

16Alternatively, deform contour to close above points.
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poles contribute a residue, we obtain

GR(x) = iθ(t)

∫
dd~p

(2π)d 2e(~p)

(
e−ip·x − e+ip·x)

= iθ(t)
(
∆+(x)−∆+(−x)

)
= iθ(t)∆(x). (3.71)

Nice: relation between correlation functions and propagators. Yields position
space form for propagator.

Confirm that it satisfies defining relation:17

(−∂2 +m2)GR(x) = iθ(t) (−∂2 +m2)∆(x) +
∂

∂t

(
iδ(t)∆(x)

)
+ iδ(t) ∆̇(x) = δd+1(x). (3.72)

• First term vanishes because ∆ is on shell.
• Second term vanishes because [φ(~x), φ(~y)] = 0.
• Third term uses [φ(~x), φ(~y)] = iδd(~x− ~y).

We can now determine the contribution to φ from the source. Let us focus on the
future after the source is switched off18

∆φ(x) = i

∫
dd+1y ∆(x− y) ρ(y). (3.73)

Transform this to momentum space with

ρ(x) =

∫
dd+1p

(2π)d+1
e−ip·x ρ(p), ρ(p)∗ = ρ(−p) (3.74)

yields

∆φ(x) =

∫
dd~p

(2π)d 2e(~p)

(
ie−ip·x ρ(p)− ie+ip·x ρ∗(p)

)
. (3.75)

As we know the homogeneous Klein–Gordon equation is solved by

φi(x) =

∫
dd~p

(2π)d 2e(~p)

(
a(~p)e−ip·x + a†(~p)eip·x

)
. (3.76)

Let this represent the solution in the distant past. Then the solution φf in the
distant future is obtained by replacing

a(~p) 7→ a(~p) + iρ(e(~p), ~p). (3.77)

We notice that only the Fourier modes of the source ρ on the mass shell can
actually drive the field φ.

We can now ask how much energy, momentum or particle number the source ρ
transfers to the field, e.g.

∆E = 〈0|H(t > t1)|0〉 − 〈0|H(t < t0)|0〉. (3.78)

17Distribute the derivatives in a suitable way between θ and ∆.
18Can therefore set θ(y0 − x0) = 1.
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The contributions from the quantum modes a, a† drop out. What remains is
manifestly positive for E = P0 and N 19

∆Pµ =

∫
dd~p

(2π)d 2e(~p)
pµ(~p) |ρ(~p)|2,

∆N =

∫
dd~p

(2π)d 2e(~p)
|ρ(~p)|2. (3.79)

19∆N is not manifestly integer for an external field. However, if ρ is quantum, ρ†(~p)ρ(~p) should
again lead to an integer ∆N .
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Quantum Field Theory I
ETH Zurich, HS12

Chapter 4
Prof. N. Beisert

4 Symmetries

So far we have not discussed symmetries. QFT does not actually need symmetries,
but they help very much in restricting classes of models, providing stability and
simplifying calculations as well as results.1

For example, in most cases QFT’s have some symmetry of space and time.
Particularly in fundamental particle physics all models have relativistic invariance
or Poincaré symmetry.

Symmetries are some transformations of the fields φ→ φ′ that map solutions of
the equations of motion to other solutions. Hence they can be used to generate a
whole class of solutions from a single one.

We shall discuss the action of various types of symmetries, their groups and
representations, and the resulting conserved charges via Noether’s theorem. Most
of the discussion applies to classical and quantum field theories.

4.1 Internal Symmetries

Let us first discuss internal symmetries. In a QFT with several fields, these
typically transform the fields into each other in some way without making
reference to their dependence on space or time.

The simplest example is a complex scalar field φ(x) with Lagrangian and
corresponding equation of motion

L = −∂µφ∗∂µφ−m2φ∗φ,
∂2φ−m2φ = 0,

∂2φ∗ −m2φ∗ = 0.
(4.1)

Consider a global transformation of the fields

φ′(x) = e+iαφ(x), φ∗ ′(x) = e−iαφ∗(x). (4.2)

It maps a solution of the equations of motion to another solution2

∂2φ′ −m2φ′ = eiα
(
∂2φ−m2φ

)
= 0. (4.3)

Moreover the symmetry leaves the Lagrangian and the action invariant

L(φ′, ∂µφ
′) = L(φ, ∂µφ), S[φ′] = S[φ]. (4.4)

1For free particles symmetries are not that helpful, the true power of symmetries arises in
interacting situations.

2The transformed field φ′ satisfies the equation of motion because φ does. Same for complex
conjugate field φ∗.
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Any such transformation must be a symmetry because it maps extrema of the
action to extrema and hence solutions to solutions. Symmetries of the action are
more powerful than mere symmetries of the equations of motion. In the following
we will only consider symmetries of the action.3

Noether’s Theorem. Every continuous global symmetry of the action leads to
a conserved current and thus a conserved charge for solutions of the equations of
motion.

Let us derive the theorem: Consider a solution φ of the equations of motion. By
construction, any variation of the Lagrangian is a total derivative4

δL =
δL
δφ

δφ+
δL

δ(∂µφ)
∂µδφ

= ∂µ
δL

δ(∂µφ)
δφ+

δL
δ(∂µφ)

∂µδφ = ∂µ

(
δL

δ(∂µφ)
δφ

)
. (4.5)

Suppose now δφ is the infinitesimal field variation of a continuous symmetry. We
know that δS = 0, hence the Lagrangian can only change by some total derivative

δL = δα ∂µJ
µ
0 . (4.6)

Equating the two expressions for δL we find a current5

Jµ =
δL

δ(∂µφ)

δφ

δα
− Jµ0 (4.7)

which is conserved for every solution φ

∂µJ
µ = 0. (4.8)

Furthermore, a conserved current implies a conserved charge

Q(t) =

∫
dd~x J0(t, ~x) (4.9)

if we assume that the field vanishes sufficiently fast at spatial infinity

Q̇ =

∫
dd~x ∂0J

0 = −
∫
dd~x ∂kJ

k = 0. (4.10)

The conserved charge actually generates an infinitesimal symmetry transformation
via the Poisson brackets

[Q,F ] = −δF
δα

(4.11)

as can be shown using its defining relations.

3For example the scaling transformation φ(x) → eβφ(x) also maps solutions to solutions, but
it rescales the Lagrangian L′ = e2βL. If one considers QFT’s to be specified by their Lagrangians,
then this symmetry of the equations of motion relates two different models L and L′. We typically
us the freedom to redefine the fields to bring the Lagrangian in some canonical form.

4Usually we can ignore this term, here it is relevant.
5Any term of the form ∂νB

µν with antisymmetric indices on Bµν can be added to Jµ without
modifying any of the following relations.
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Example. Let us consider the complex scalar field. The field variation is defined
by

δφ = iφ δα, δφ∗ = −iφ∗ δα. (4.12)

The Lagrangian is invariant under the transformation δL = 0, hence Jµ0 = 0. The
other term reads

Jµ =
δL

δ(∂µφ)

δφ

δα
+

δL
δ(∂µφ∗)

δφ∗

δα

= (−∂µφ∗) (iφ) + (−∂µφ) (−iφ∗)
= −i(∂µφ∗φ− φ∗∂µφ). (4.13)

The naive divergence of the current reads

∂µJ
µ = −i(∂2φ∗φ− φ∗∂2φ). (4.14)

This indeed vanishes for a solution of the equations of motion.

The conserved charge reads

Q = i

∫
dd~x (φ̇∗φ− φ∗φ̇) = i

∫
dd~x (πφ− φ∗π∗). (4.15)

Transformed to momentum space we get

Q =

∫
dd~p

(2π)d 2e(~p)

(
a∗(~p)a(~p)− b∗(~p)b(~p)

)
. (4.16)

This charge is indeed time-independent and (Poisson) commutes with the
Hamiltonian. As expected, it obeys

{Q, φ} = −iφ = −δφ
δα

, {Q, φ∗} = +iφ∗ = −δφ
∗

δα
. (4.17)

We furthermore observe a relation to the number operators

Q = Na −Nb. (4.18)

In the quantum theory, Q therefore measures the number of particles created by a†

minus the number of particles created by b†.

Despite the similarities, there is a crucial difference to the number operator: The
charge Q is associated to a symmetry, whereas a single number operator N is not.6

In a symmetric theory with interactions, Q is conserved while N is in general not.

Quantum Action. Let us briefly state how to represent this symmetry in the
quantum theory where Q = Na −Nb becomes a quantum operator. It is obviously
hermitian

Q† = Q. (4.19)

6One might construct a non-local symmetry transformation corresponding the number operator
in a free field theory. However, this symmetry would not generalise to interactions.
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It obeys the following commutation relations with creation and annihilation
operators

[Q, a(x)] = −a(x), [Q, b(x)] = +b(x),

[Q, a†(x)] = +a†(x), [Q, b†(x)] = −b†(x). (4.20)

This tells us that particles of type a carry positive unit charge while the
antiparticles of type b carry negative unit charge.

The commutators of spacetime fields φ ∼ a† + b read

[Q, φ(x)] = +φ(x), [Q, φ†(x)] = −φ†(x), (4.21)

which tell us that φ and φ† carry charges +1 and −1, respectively. The
commutators are also in agreement with the classical result that charges generate
infinitesimal transformations, i.e.

[Q, φ] = +φ = −i δφ
δα

, [Q, φ†] = −φ† = −i δφ
†

δα
. (4.22)

For finite transformations we introduce the operator

U(α) = exp(iαQ). (4.23)

We can convince ourselves that it obeys the following algebra with the fields7

U(α)φ(x)U(α)−1 = e+iαφ(x) = φ′(x),

U(α)φ†(x)U(α)−1 = e−iαφ†(x) = φ† ′(x). (4.24)

So U(α) generates a finite symmetry transformation by means of conjugation while
Q generates the corresponding infinitesimal transformation by means of
commutators.

Note that the operator U(α) is unitary because Q is hermitian

U(α)† = exp(−iαQ†) = exp(−iαQ) = U(−α) = U(α)−1. (4.25)

A crucial property of symmetries in QFT is that they are represented by unitary
operators. This is required to make expectation values invariant under symmetry.

The symmetry group for the complex scalar is simply U(1).

The above discussions only applied to operators, let us finally discuss
transformations for states. States transform under finite transformations as

|Ψ ′〉 = U(α)|Ψ〉. (4.26)

Typically the vacuum is uncharged under symmetries8

Q|0〉 = 0. (4.27)

The transformation for all other states in the Fock space then follows from the
transformation of creation operators.

7Note that Qφ = φ(Q+ 1) implies exp(iαQ)φ = φ exp(iα(Q+ 1)) = eiαφ exp(iαQ).
8This is not a requirement. In fact, a charged vacuum is related to spontaneous symmetry

breaking and Goldstone particles, see QFT II. Note that ordering ambiguities arise in the determi-
nation of the charges, and are resolved by specifying the intended charge of the vacuum. Ordering
ambiguities do not matter for commutators.
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4.2 Spacetime Symmetries

Next we shall consider symmetries related to space and time. In relativistic
theories these are the spatial rotations and Lorentz boosts (altogether called
Lorentz symmetries) as well as spatial and temporal translations. In total they
form the Poincaré group.

Translations. Let us start with simple translations in space and time

(x′)µ = xµ − aµ. (4.28)

We demand that the fields merely change by shifting the position argument

φ′(x′) = φ(x). (4.29)

In other words the new field evaluated at the new position equals the old field at
the old position.9 Explicitly,

φ′(x) = φ(x+ a) or δφ(x) = δaµ∂µφ(x). (4.30)

In order for translations to be a symmetry, we have to require that the Lagrangian
does not explicitly depend on the position

∂L
∂xµ

= 0, L(φ(x), ∂µφ(x), x) = L(φ(x), ∂µφ(x)). (4.31)

Energy and Momentum. The Noether theorem equally applies to this
situation, let us derive the associated currents and charges. The variation of the
Lagrangian reads10

δL = δaµ
(
δL
δφ

∂µφ+
δL
δ∂νφ

∂µ∂νφ

)
= δaµ∂µ(L(φ, ∂φ)). (4.32)

We therefore obtain a contribution (J0)µν = δµνL. All in all we obtain a vector of
conserved currents T µν (with ∂µT

µ
ν = 0) where the index ν labels the d+ 1

dimensions for shifting

T µν =
δL

δ(∂µφ)
∂νφ− δµνL. (4.33)

This object is called energy-momentum (or stress-energy) tensor. For a real scalar
it reads

T µν = −∂µφ ∂νφ+ 1
2
δµν
(
(∂φ)2 +m2φ2

)
. (4.34)

The corresponding conserved charge is the momentum vector

Pµ =

∫
dd~x T 0

µ =

∫
dd~x

(
φ̇ ∂µφ+ 1

2
δ0
µ

(
(∂φ)2 +m2φ2

))
(4.35)

9In other words, the transformation is active. One could also define φ′(x) = φ(x′) corresponding
to a passive transformation.

10The derivative in the last term is meant to act on the x-dependence within the arguments φ(x)
and ∂φ(x) of L.
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We recover the Hamiltonian as its time component

H = P0 =

∫
dd~x

(
1
2
φ̇2 + 1

2
(~∂φ)2 + 1

2
m2φ2

)
, (4.36)

while the total spatial momentum simply reads

~P =

∫
dd~x φ̇ ~∂φ. (4.37)

Quantum Action. We have already encountered the quantum operators for
energy and momentum. Recall that in momentum space they read

Pµ =

∫
dd~p

(2π)d 2e(~p)
pµa

†(~p)a(~p). (4.38)

Performing a quantum commutator with the field yields

[Pµ, φ(x)] = −i∂µφ(x). (4.39)

As before, we can introduce an operator U(a) for finite shift transformations as the
exponential

U(a) = exp(iaµPµ). (4.40)

Conjugating a field with it yields the shifted field11

U(a)φ(x)U(a)−1 = exp(aµ∂µ)φ(x) = φ(x+ a) = φ′(x). (4.41)

Note that the operator U(a) is unitary because Pµ is hermitian.

Lorentz Transformations. Next, consider Lorentz transformations

(x′)µ = (Λ−1)µνx
ν . (4.42)

All upper (contravariant) indices transform according to the same rule as xµ under
Lorentz transformations, whereas lower (covariant) indices transform with the
matrix Λ, just as ∂µ does, e.g.

(∂′)µ = Λνµ∂ν . (4.43)

A product between a covariant and contravariant index is Lorentz invariant

(x′)µ(∂′)µ = Λρµ(Λ−1)µνx
ν∂ρ = xν∂ν . (4.44)

The matrix Λ has the defining property that it leaves the metric ηµν invariant

η′µν = ηρσΛ
ρ
µΛ

σ
ν = ηµν . (4.45)

11The exponentiated derivative exp(aµ∂µ)φ(x) generates all the terms in the Taylor expansion
of φ(x+ a) for small a.
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We can write this relation also as

(Λ−1)µν = ηνσΛ
σ
ρη
ρµ =: Λν

µ. (4.46)

It implies that it makes no difference whether indices are raised or lowered before
or after a Lorentz transformation. Correspondingly, scalar products between equal
types of vectors are invariant.

Lorentz transformations combine spatial rotations (the matrix acts on two of the
spatial dimensions) (

cosϕ − sinϕ
sinϕ cosϕ

)
= exp

(
0 −ϕ
ϕ 0

)
(4.47)

and Lorentz boosts (the matrix acts on time and one of the spatial dimensions)(
coshϑ sinhϑ
sinhϑ coshϑ

)
= exp

(
0 ϑ
ϑ 0

)
. (4.48)

There are also some discrete transformations which we shall discuss below. Here
we restrict to proper orthochronous Lorentz transformations which form the Lie
group SO+(d, 1).

We note that spatial rotations are generated by anti-symmetric matrices while
Lorentz boosts are generated by symmetric matrices. Composing various such
transformations in 2-dimensional subspaces of spacetime we conclude that Lorentz
rotations are generated as

Λµν = exp(ω)µν (4.49)

where ωµν is a matrix satisfying

ωkl = −ωlk, ω0
k = ωk0, ω0

0 = ωkk = 0. (4.50)

Lowering the first index ωµν = ηµρω
ρ
ν , this is equivalent to an anti-symmetric

matrix
ωµν = −ωνµ. (4.51)

Angular Momentum. For a (scalar) field the transformation reads

φ′(x) = φ(Λx), δφ = δωµνx
ν∂µφ. (4.52)

Lorentz invariance of the action requires the Lagrangian to transform in the same
way12

δL = δωµν x
ν∂µL = δωµν ∂

µ(xνL). (4.53)

Note that the measure dd+1x is Lorentz invariant. Comparing this to an explicit
variation of L(φ, ∂φ) implies the relation

δL
δ(∂µφ)

∂νφ =
δL

δ(∂νφ)
∂µφ. (4.54)

12The anti-symmetry of ωµν allows to pull xν past the derivative.
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This relation holds whenever ∂µφ appears only in the Lorentz-invariant
combination (∂φ)2 = ηµν(∂µφ)(∂νφ). For the energy-momentum tensor it implies
symmetry in both indices when raised or lowered to the same level

T µν = T νµ. (4.55)

The currents Jµ,ρσ = −Jµ,σρ corresponding to the anti-symmetric matrix δωρσ can
be expressed in terms of the energy momentum tensor T

Jµ,ρσ = T µρxσ − T µσxρ. (4.56)

Conservation of Jµ,ρσ is then guaranteed by conservation and symmetry of T

∂µJ
µ,ρσ = T σρ − T ρσ = 0. (4.57)

The integral of J is the Lorentz angular momentum tensor

Mµν =

∫
dd~x J0,µν =

∫
dd~x

(
T 0µxν − T 0νxµ

)
. (4.58)

For a scalar field in d = 3 dimensional space we obtain the well-known spatial
angular momentum

Jm = 1
2
εmklMkl =

∫
d3~x φ̇ ((~∂φ)× ~x)m. (4.59)

Furthermore, the momentum for Lorentz boosts reads13

Bm = M0m =

∫
d3~x

(
T 00xm

)
− Pmt. (4.60)

We can also write the Lorentz generators in momentum space14

Mµν = i

∫
dd~p

(2π)d2e(~p)

(
pµ∂νa∗(~p)a(~p)− pν∂µa∗(~p)a(~p)

)
. (4.61)

In the quantum theory, all components of the tensor Mµν are hermitian operators.
Consequently, the operators for finite transformations are unitary

U(ω) = exp( i
2
ωµνM

µν), U(ω)† = U(ω)−1. (4.62)

The interesting conclusion is that we have found a unitary representation of the
Poincaré group. As the latter is non-compact this representation is necessarily
infinite-dimensional. Indeed, the field φ(x) and Fock space carry infinitely many
degrees of freedom.

13Conservation basically implies that the motion of the centre of gravity (first term) is governed

by the momentum (second term). Note that our convention uses ~p ∼ −m~̇x.
14Its form is reminiscent of the position space form because Lorentz rotations in both spaces are

practically the same
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4.3 Poincaré Representations

Above we have derived Lorentz (Mµν) and momentum (P µ) generators for
relativistic transformations of a scalar field. Let us now discuss the algebraic
foundations and generalisations.

Some Basic Definitions. Here are some sketches of basic definitions in group
and representation theory.15

Group. A set G with an associative composition law G×G→ G (usually called
multiplication), a unit element and inverse map G→ G.

Algebra. A vector space A with a bi-linear composition law A⊗ A→ A (usually
called multiplication).

Lie Group. A group G that is also a manifold.

Lie Algebra. An algebra g with an anti-symmetric product [·, ·] (called Lie bracket)
that satisfies the Jacobi identity[

[a, b], c
]

+
[
[b, c], a

]
+
[
[c, a], b

]
= 0. (4.63)

The tangent space of a Lie group G at the unit element is a Lie algebra.

Quantum Group, Quantum Algebra. The algebra of operators in quantum
mechanics is called a quantum group or a quantum algebra. In addition to being
an algebra, it has a unit element and an inverse for most elements A∗ → A∗. It can
act as any of the above structures: It is an algebra. It has a subgroup A∗. The
subgroup may contain Lie groups. A Lie algebra can be realised by the map
[a, b] = a · b− b · a which automatically satisfies the Jacobi identity.

Representation. A map R : X → End(V ) from a group or an algebra X to linear
operators (matrices, endomorphism) on some vector space V . The representation
must reflect X’s composition law by operator composition (matrix multiplication).
If a · b = c then R(a)R(b) = R(c).

Representation of a Lie Algebra. The Lie bracket must be represented by a
commutator: If [a, b] = c then R(a)R(b)−R(b)R(a) = R(c).

Physics. The notation in physics often does not distinguish between abstract Lie
algebra generators a and their representations R(a), both may be denoted simply
by a. Likewise the distinction between Lie brackets and commutators may be
dropped (this is perfectly reasonable in a quantum algebra). Moreover the term
representation is used not only for an operatorial version of algebra generators, but
also for the space on which these operators act (in mathematics: module of the
algebra).

Poincaré Algebra. It is straight-forward to derive the algebra of infinitesimal
transformations from the operators derived earlier

[Mµν ,Mρσ] = iηνρMµσ − iηµρMνσ − iηνσMµρ + iηµσMνρ,

15See a textbook for proper definitions.
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[Mµν , P ρ] = iηνρP µ − iηµρP ν ,

[P µ, P ν ] = 0. (4.64)

These define the so-called Poincaré algebra. The operators Mµν generate the
algebra so(d, 1) of Lorentz (orthogonal) transformations in d+ 1 spacetime
dimensions. The spatial components M jk generate the algebra so(d) of rotations in
d spatial dimensions.

The Poincaré group is obtained by exponentiating the algebra

g(ω, a) = exp
(
i
2
ωµνM

µν + iaµP
µ
)
. (4.65)

More precisely it is the component of the Poincaré group connected to the identity
element. It includes Spin+(d, 1), the double cover of the proper orthochronous
Lorentz group, along with translations.

The above algebra generators and group elements should be viewed as abstract
objects in algebra without immediate connection to a physics problem. Above we
have found an explicit representation (M,P ) of the Poincaré algebra and the
corresponding representation U(ω, a) of the Poincaré group acting on Fock space of
a scalar particle. Since (M,P ) commute with the number operator N , the
representation is reducible.16

• The most relevant representation is the one acting on single particle states.
• The other representations are symmetric tensor powers of it.
• The vacuum transform in the trivial representation.
• The single-particle representation is complex, unitary, infinite-dimensional and

irreducible.

Unitary Irreducible Representations. We can reproduce what we have
learned about the free Klein–Gordon field from representation theory of the
Poincaré algebra. We can also learn how to generalise the construction. Let us
therefore investigate the unitary irreducible representations of the Poincaré group
(Wigner’s classification). These will be the elementary building blocks for physical
theories with relativistic invariance. The derivation will parallel the derivation of
unitary irreducible representations of the rotation group SO(3) ' SU(2) (in QM1)
which leads an understanding of spin. Here the result will characterise the types of
admissible particles in a relativistic QFT.

First, we should look for commuting (combinations of) elements of the algebra.
Their eigenvalues classify representations because if measured on one state, any
other state related to it by symmetry must have the same eigenvalue. The analog
for so(3) is the operator J2. There, a representation of spin j is uniquely
characterised by the eigenvalue j(j + 1) of J2.

We notice that the Poincaré algebra possesses a quadratic invariant

P 2 = P µPµ. (4.66)

16In other words, the action of (M,P ) neither creates nor annihilates particles and will therefore
maps Vn → Vn. The representation on Fock space thus splits into representations on the individual
Vn.
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This combination obviously commutes with all the momenta P µ. It also commutes
with the Lorentz generators Mµν because it is constructed as a scalar product.

The combination P 2 must be represented by a unique number on an irreducible
representation. Otherwise one could split the representation according to their
eigenvalues of P 2. Clearly, P 2 measures the mass of a particle

P 2 = −m2. (4.67)

For unitary representations P 2 must be real. There are three cases to be
distinguished

• P 2 < 0, i.e. massive particles,
• P 2 = 0, i.e. massless particles,
• P 2 > 0, i.e. tachyons.

We shall discuss the massive case in detail and comment only briefly on the others.

The next observation is that the momentum generators P µ span an abelian ideal17

of the Poincaré algebra. For abelian ideals the representation space is spanned by
simultaneous eigenvectors of all its elements. More concretely, the space is spanned
by momentum eigenstates |p〉 with Pµ|p〉 = pµ|p〉. We have already fixed
P 2 = −m2 and hence we must restrict to a mass shell p2 = −m2. As the
representation of finite transformations is given by exp(ia·P ), the representation is
necessarily complex.

(4.68)

This completes the discussion of the representation of momentum generators P µ.
What about the Lorentz generators Mµν?

The condition p2 = −m2 has two connected components with positive and negative
energy, respectively. Orthochronous Lorentz boosts can map between any two
momentum vectors on a single mass shell. Mapping between the two mass shells is
achieved only by discrete time reversal transformations which we will consider
later. For an irreducible representation of the orthochronous Poincaré group, all

17An ideal is a subalgebra such that brackets between its elements and elements of the algebra
always end up in the subalgebra, here [M,P ] ∼ P .
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energies must have the same sign. The positive-energy representation space is now
spanned by the vectors |+em(~p), ~p〉. For negative energies we can define states
|−em(~p), ~p〉 or alternatively use the hermitian conjugates
|+em(~p), ~p〉† ∼ 〈+em(~p), ~p|. Let us consider only positive energies from now on;
negative energy representations are analogous. All admissible momentum vectors p
can be mapped into each other by Lorentz transformations. For further discussions
let us restrict to p = (m, 0) which is as good as any other.

Among the Lorentz generators, there are some which change ~p. These are the
Lorentz boosts. The Lorentz boosts ensure that the following discussion for
p = (m, 0) equivalently applies to any other ~p.

The transformations which do not change p = (m, 0) are the spatial rotations
forming the orthogonal group SO(d) or its double cover Spin(d).18 This group is
called the little group (physics) or stabiliser (mathematics) of p. The
representation subspace with fixed ~p must therefore transform under a
representation of Spin(d). For the most relevant case of d = 3 spatial dimensions,
the unitary irreducible representations of Spin(3) = SU(2) are labelled by a
non-negative half-integer j. Their representation space is spanned by 2j + 1
vectors |−j〉, |−j − 1〉, . . . , |+j − 1〉, |+j〉 with definite z-component of spin. An
equivalent representation of Spin(d) must apply to all momenta ~p because it can
be shifted to the point ~p = ~0.19 We have now considered all algebra generators and
hence the representation is complete. The representation space is thus spanned by
the states |~p, j3〉 = |~p〉 ⊗ |j3〉.
Altogether we find that the massive UIR’s of the Poincaré algebra are labelled by
their mass m > 0, the sign of energy and a unitary irreducible representation of
Spin(d). In the case of d = 3, the latter UIR are labelled by a non-negative
half-integer j. The representation space for (m,±, j) is spanned by the vectors

|~p, j3〉(m,±,j) (4.69)

with continuous ~p and discrete j3 = −j,−j + 1, . . . , j − 1, j.

For spin j = 0 the representation space is simply spanned by momentum
eigenstates |~p〉 with arbitrary three-momentum ~p. These are just the single-particle
states of a scalar field. The conjugate states 〈~p| also transform in a UIR, but one
with negative momentum.

The next interesting case is j = 1
2

which we shall discuss in the following section.

In addition, there are massless representations of positive or negative energy. They
are classified by a representation of Spin(d− 1).20 For d = 3 the massless
representations of Spin(2) = U(1) are labelled by a positive or negative half-integer
h known as helicity. There is only one state in the representation (0,±, h) with

18Reflections extend SO(d) to O(d) or Spin(d) to Pin(d), but they are not included in the identity
component of the Poincaré algebra.

19Each momentum vector ~p has a different stabiliser subgroup Spin(d) ⊂ Spin(d, 1), but these
are all equivalent, and the same applies to their representation.

20In fact, the stabiliser is the euclidean group in d− 1 dimensions which also allows for so-called
continuous spin representations.
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given helicity
|~p〉(0,±,h). (4.70)

Last but not least, there is the trivial representation with P = 0. The Fock space
vacuum transforms under it. Finally, there are tachyonic representations with
P 2 > 0, but the latter are typically non-unitary.

4.4 Discrete Symmetries

In addition to the continuous symmetries discussed above, there are also relevant
discrete symmetries. The most prominent ones are parity, time reversal and charge
conjugation. Let us discuss them for the example of a complex scalar field.

Parity. Spatial rotations in d dimensions form the special orthogonal group
SO(d). However, also spatial reflections preserve all distances, and it is natural to
consider them among the symmetries, too. Reflections were long believed to be a
symmetry of nature, until the electroweak interactions were shown to violate
parity symmetry. On the mathematical side, reflections flip the orientation and
together with the rotations they form the general orthogonal group O(d).21

For an odd number of spatial dimensions d, it is convenient to introduce parity P
as the transformation which inverts all spatial components of the position vector

P : (t, ~x) 7→ (t,−~x). (4.71)

It is an element of O(d), but not of SO(d), and it is convenient to choose this
element because it does not introduce any preferred directions. There are many
more orientation-inverting elements in O(d); these can be obtained as products of
P with elements of SO(d). Hence it is sufficient to consider only P . In spacetime,
introducing parity enlarges the identity component of the Lorentz group SO+(d, 1)
to the orthochronous Lorentz group O+(d, 1).

A scalar field should transform under parity as follows

Pφ(t, ~x)P−1 = ηPφ(t,−~x),

Pφ†(t, ~x)P−1 = η∗Pφ
†(t,−~x), (4.72)

where the constant ηP is the intrinsic parity of the field φ. We want that two
parity transformations equal the identity P 2 = 1, therefore the parity can be either
positive or negative, ηP = ±1.

For the creation and annihilation operators it implies a transformation which
reverses the momentum

Pa(~p)P−1 = ηPa(−~p), Pa†(~p)P−1 = ηPa
†(−~p),

P b(~p)P−1 = ηPb(−~p), P b†(~p)P−1 = ηPb
†(−~p). (4.73)

It is a unitary operation.

21The double cover of O(d) is called Pin(d) in analogy to Spin(d) which is the double cover of
SO(d).
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Time Reversal. The other discrete transformation of the Lorentz group is time
reversal

T : (t, ~x) 7→ (−t, ~x). (4.74)

It enlarges the orthochronous Lorentz group O+(d, 1) to the complete Lorentz
group O(d, 1).

Time reversal is a rather special transformation due to the distinguished role of
time in quantum mechanics and special relativity.

For a field φ we expect

Tφ(t, ~x)T−1 = ηTφ(−t, ~x),

Tφ†(t, ~x)T−1 = η∗Tφ
†(−t, ~x). (4.75)

Comparing to the mode expansion of fields, this could be implemented by a linear
transformation of the type a†(~p) 7→ b(−~p). However, such a transformation would
not act well on Fock space because it would annihilate all states (but the
vacuum).22 Instead, time reversal (sometimes called motion reversal) is defined by
an anti-linear operator which also conjugates plain complex numbers, let us denote
it by T̄ . This inverts the plane wave factors e±ip·x and allows to map a† 7→ a†,
more explicitly

T̄ a(~p)T̄−1 = η∗T̄a(−~p), T̄ a†(~p)T̄−1 = ηT̄a
†(−~p),

T̄ b(~p)T̄−1 = ηT̄b(−~p), T̄ b†(~p)T̄−1 = η∗T̄b
†(−~p). (4.76)

The difference w.r.t. parity is merely the anti-linear feature of T̄ . Time reversal
actually allows for a complex ηT̄ only restricted by |ηT̄|2 = 1.

Charge Conjugation. Also the internal symmetry groups can come along with
several connected components. For example the complex scalar field has a global
U(1) = SO(2) symmetry. This can be extended to O(2) by adding a charge
conjugation symmetry.

We already know that the complex conjugate scalar field φ∗ or φ† satisfies the
same equations of motion as the original field φ. Charge conjugation symmetry
thus maps between the fields φ and φ†

Cφ(x)C−1 = ηCφ
†(x),

Cφ†(x)C−1 = η∗Cφ(x). (4.77)

Requiring that two charge conjugations square to unity, the parity ηC must be on
the complex unit circle |ηC|2 = 1.

Ca(~p)C−1 = η∗Cb(~p), Ca†(~p)C−1 = ηCb
†(~p),

Cb(~p)C−1 = ηCa(~p), Cb†(~p)C−1 = η∗Ca
†(~p). (4.78)

22Unless the vacuum is mapped to a different states, e.g. 〈0|, which makes this definition similar
to the conventional one.
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Although C maps φ 7→ φ†, it is a perfectly linear map. Charge conjugation is not
complex conjugation. One might as well make an anti-linear ansatz for C, but it
would lead to a transformation of the kind a† 7→ a which would again annihilate
almost all of Fock space.

There are several conceptual difficulties with charge conjugation parity:

• In the presence of a corresponding internal symmetry the parity ηC actually does
not have deeper meaning. In this case one can define a new charge conjugation
operation C ′ by conjugating C by the internal symmetry. This would lead to a
different ηC, and it makes sense to choose C ′ such that ηC = 1.
• Even if there is no continuous internal symmetry, there can be discrete internal

symmetries. For example, a possible transformation for a real scalar field is
φ 7→ −φ.
• In a model with multiple fields, several independent internal parities can coexist,

and there may not be a distinguished charge conjugation symmetry. In general,
one would expect C to invert all internal charges.
• In the presence of some internal parity C, the spacetime parities P and T

become somewhat ambiguous, as one could define P ′ = PC.23

Hence the choice of discrete symmetries C, P , T can be ambiguous, and its
sometimes tricky to identify the most suitable (or established) one.24

Implications. A discrete transformation is a symmetry if it commutes with the
Hamiltonian. It is natural to assume parity and time reversal as symmetries of
relativistic QFT models and of nature. For a scalar field, it appears impossible to
violate parity or time reversal. However, as we shall see, this need not be so for
other types of fields. In nature, indeed, some of these symmetries are violated.

Discrete symmetries also lead to conserved charges in the quantum theory. States
can be classified by their eigenvalue (parity) under the discrete symmetry.
Typically these parities are not additive (as the electrical charge, e.g.), but they
only take finitely many values (e.g. +1 or −1).

23This may appear strange at first sight as P ′ would conjugate the field φ. But by writing
φ = (φ1 + iφ2)/

√
2 we get two fields with opposite parities ηP.

24For example, the question of whether a certain discrete symmetry applies should be interpreted
as the question where there exist some choice of this discrete transformation that is a symmetry.
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5 Free Spinor Field

We have seen that next to the scalar field there exist massive representations of
Poincaré algebra with spin. The next higher case is spin j = 1

2
. It is described by

the Dirac equation, and as a field with half-integer spin it should obey Fermi
statistics.

5.1 Dirac Equation and Clifford Algebra

Dirac Equation. Dirac attempted to overcome some of the problems of
relativistic quantum mechanics by introducing a first-order wave equation.1

iγµ∂µψ −mψ = 0. (5.1)

Here the γµ are some suitably chosen operators acting on ψ. This wave equation
can be viewed as a factorisation of the second-order Klein–Gordon equation as
follows:

(iγν∂ν +m)(iγµ∂µ −m)ψ = (−γνγµ∂ν∂µ −m2)ψ = 0. (5.2)

The latter form becomes the Klein–Gordon equation provided that the γ’s satisfy
the Clifford algebra2 3

{γµ, γν} = γµγν + γνγµ = −2ηµν . (5.3)

This means that every solution of the Dirac equation also satisfies the
Klein–Gordon equation and thus describes a particle of mass m.

Clifford Algebra. The Clifford algebra obviously cannot be realised in terms of
plain numbers, but finite-dimensional matrices suffice. The realisation of the
Clifford algebra strongly depends on the dimension and signature of spacetime.

The simplest non-trivial case is three-dimensional space (without time). A
representation of the corresponding Clifford algebra is given by the 2× 2 Pauli
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

+i 0

)
, σ3 =

(
+1 0
0 −1

)
. (5.4)

1The combination of a gamma matrix and an ordinary vector γµBµ is often denoted by a slashed
vector /B.

2The indices of the two derivatives are automatically symmetric, hence only the symmetrisation
of γµγν must equal −ηµν .

3We will use conventional γ matrices for signature +−−− and the minus sign in the Clifford
algebra adjusts for our choice of opposite signature. Alternatively, one could multiply all γ-matrices
by i and drop the minus sign.
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One can convince oneself that these matrices obey the algebra4

σjσk = δjk + iεjklσl. (5.5)

This also implies the three-dimensional Clifford algebra

{σi, σj} = 2δij. (5.6)

In this course we will be predominantly be interested in the case of d = 3 spatial
dimensions plus time, i.e. spacetime with D = d+ 1 = 4 dimensions. There, the
smallest non-trivial representation of the Clifford algebra is four-dimensional
(coincidence!). The elements of this four-dimensional vector space are called
spinors, more precisely, Dirac spinors or 4-spinors.

There are many equivalent ways to write this representation as 4× 4 matrices.
The best-known ones are the Dirac, Weyl and Majorana representations. These
are often presented in the form of 2× 2 matrices whose elements are again 2× 2
matrices. The latter are written using the Dirac matrices. We shall mainly use the
Weyl representation

γ0 =

(
0 1
1 0

)
, γk =

(
0 +σk

−σk 0

)
. (5.7)

One can easily confirm that these matrices obey the Clifford algebra
{γµ, γν} = −2ηµν by means of the three-dimensional Clifford algebra. A useful
property of the Weyl representation is that all four gamma matrices are block
off-diagonal. The Dirac and Majorana representations have different useful
properties. In most situations, it is however convenient not to use any of the
explicit representations, but work directly with the abstract Clifford algebra.

Solutions. The Dirac equation is homogeneous therefore it is conveniently
solved by Fourier transformation

ψ(x) =

∫
d4p e−ip·xψ(p), (pµγ

µ −m)ψ = 0. (5.8)

To construct the solutions, let us introduce the matrices

Π± =
1

2m
(m± p·γ) (5.9)

such that the Dirac equation becomes Π−ψ = 0. We are interested in the kernel of
Π−.

As noted above, we have the identity

Π+Π−ψ =
1

4m2
(m2 + p2)ψ. (5.10)

4We will not introduce a distinguished symbol for unit matrices. 1 is the unit element. Here
the term δij has an implicit 2× 2 unit matrix.
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This operators acts identically on all components of ψ. Any solution therefore
requires the mass shell condition p2 = −m2.

On the mass shell p2 = −m2, the operators Π± act as orthogonal projectors:

Π±Π± = Π±, Π±Π∓ = 0. (5.11)

Now the operators Π± are very similar.5 Evidently, their kernels have the same
dimension. Therefore Π± both have half-maximal rank. The Dirac equation
therefore has two solutions for each on-shell momentum p.

A basis of two positive-energy solutions is denoted by

ua(~p), a = ±, (p·γ −m)ua(~p) = 0. (5.12)

Instead of introducing negative-energy solutions, we prefer to consider equivalent
positive-energy solutions of the opposite Dirac equation Π+ψ = 0

va(~p), a = ±, (p·γ +m)va(~p) = 0. (5.13)

To write such solutions explicitly, we can recycle the projectors Π± and set

u = Π+λ, v = Π−λ, (5.14)

where λ is some spinor. The properties of the projectors immediately show that u
and v are solutions to their respective equations. Note, however, that some
components of λ are projected out in u and in v.

Let us consider explicitly solutions in the Weyl representation. E.g. setting
λ = (κ, 0) with κ some 2-spinor, we find

u(~p) =
1

2m

(
m e(~p) + ~p·~σ

e(~p)− ~p·~σ m

)(
κ
0

)
=

1

2m

(
mκ

e(~p)κ− ~p·~σκ

)
,

v(~p) =
1

2m

(
mκ

−e(~p)κ+ ~p·~σκ

)
. (5.15)

There are two independent choices for the 2-spinor κ, hence there are two solutions
for u and v, respectively. One typically considers uγ(~p), vγ(~p), γ = ±, as two pairs
of fixed basis vectors for each momentum ~p.

Altogether the general solution can now be expanded as

ψ(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xuγ(~p)bγ(~p) + eip·xvγ(~p)a

†
γ(~p)

)
(5.16)

Here the negative-energy coefficient bγ is chosen differently from aγ because
gamma matrices are generally complex and therefore also the Dirac spinor ψ.

5We might as well have declared (iγµ∂µ +m)ψ = 0 to be the Dirac equation.
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5.2 Poincaré Symmetry

The Dirac equation is a relativistic wave equation. Translational invariant is
evident. Most importantly, we have not yet shown its Lorentz covariance (although
the resulting Klein–Gordon equation certainly is covariant).

Lorentz Symmetry. Let us therefore consider a Lorentz transformation
x′ = Λ−1x with Λ(ω) = exp(ω). Suppose ψ is a solution of the Dirac equation. It is
not sufficient to use the transformation rule for scalar fields ψ′(x′) = ψ(x). In
analogy to vectors we should also transform spinors. We make the ansatz

ψ′(x′) = S(ω)ψ(x), (5.17)

where S(ω) is a matrix that acts on Dirac spinors. We then substitute
ψ′(x) = Sψ(Λx) into the Dirac equation

0 = iγµ∂µψ
′ −mψ′

=
(
iγνSΛµν∂µψ − Smψ

)
(Λx)

= S
(
iS−1γνSΛµν∂µψ − iγµ∂µψ

)
(Λx)

= iS
(
ΛµνS

−1γνS − γµ
)
(∂µψ)(Λx). (5.18)

So the term in the bracket must vanish for invariance of the Dirac equation.

Indeed, the canonical Lorentz transformation of gamma matrices

γ′µ = (Λ−1)µν Sγ
νS−1, (5.19)

where not only the vector index is transformed by Λ−1, but also the spinor matrix
is conjugated by the corresponding spinor transformation S.6 In analogy to the
invariance of the Minkowski metric, η′ = η, the Dirac equation is invariant if the
gamma matrices are invariant

γ′µ = γµ. (5.20)

This condition relates S to the Lorentz transformation Λ.

The infinitesimal form of the invariance condition reads

[δS, γµ]− δωµνγν = 0, (5.21)

Now δS does not carry any vector indices, but it should be proportional to two
δωµν which carries two of them. We can only contract them to two gamma
matrices, and we make the ansatz δS = 1

2
αδωµνγ

µγν . Substituting this into the
invariance condition and using

[γργσ, γµ] = γρ{γσ, γµ} − {γρ, γµ}γσ. (5.22)

we arrive at (2α− 1)δωµνγ
ν = 0. We conclude that a Lorentz transformation for

spinors is given by the matrix

δS = 1
4
δωµνγ

µγν or S(ω) = exp
(

1
4
ωµνγ

µγν
)
. (5.23)

6In general, spinors are transformed by S from the left, co-spinors by the S−1 from the right.
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Comparing this result to the abstract form of finite Lorentz transformations as
U(ω) = exp( i

2
ωµνM

µν) we have derived a new representation on spinors

Mµν = − i
4
[γµ, γν ]. (5.24)

This representation obeys the Lorentz algebra derived above, i.e.
[Mµν ,Mρσ] = iM + . . ..

Double Cover. Spinor representations exist only for the double cover Spin(X)
of an orthogonal group SO(X). Let us observe this fact in a simple example.

Consider a rotation in the x-y-plane with angle ω12 = −ω21 = ϕ. The associated
finite Lorentz transformation matrix in the x-y-plane reads

Λ(ϕ) = exp(ω) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
. (5.25)

The associated spinor transformation reads

S(ϕ) = diag(e−iϕ/2, e+iϕ/2, e−iϕ/2, e+iϕ/2). (5.26)

The vector rotation Λ(ϕ) is 2π-periodic in ϕ whereas the spinor rotation is merely
4π-periodic. The rotation by ϕ = 2π is represented by the unit matrix for vectors,
but for spinors it is the negative unit matrix

Λ(2π) = 1 = (−1)F , S(2π) = −1 = (−1)F . (5.27)

The spin group thus has an element which represents a rotation by 2π
(irrespectively of the direction). On vector representations (integer spin) it acts as
the identity, on spinor representations (half-integer spin) it acts as −1. Due to the
relation between spin and statistics, the extra element is equivalent to (−1)F

where F measures the number of fermions (odd for spinors, even for vectors).

Chiral Representation. There is an important feature of the spin
representation Mµν which is best observed in the Weyl representation of gamma
matrices

γµ =

(
0 σµ

σ̄µ 0

)
. (5.28)

Here we have introduced the sigma matrices σµ, σ̄µ as an extension of the Pauli
matrices σk to four spacetime dimensions as follows

σ0 = σ̄0 =

(
1 0
0 1

)
, σ̄k = −σk. (5.29)

The Lorentz representation now reads

Mµν = − i
4

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ
)
. (5.30)
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This representation has block-diagonal form and therefore reduces to two
independent representations Mµν = diag(Mµν

L ,Mµν
R ) with

Mµν
L = − i

4
(σµσ̄ν − σν σ̄µ), Mµν

R = − i
4
(σ̄µσν − σ̄νσµ). (5.31)

In other words, the Dirac spinor ψ = (ψL, ψR) transforms in the direct sum of two
(irreducible) representations of the Lorentz group. The 2-spinors ψL and ψR are
called left-chiral and right-chiral spinors. The massive Dirac equation, however,
mixes these two representations

iσµ∂µψR −mψL = 0,

iσ̄µ∂µψL −mψR = 0. (5.32)

It is therefore convenient to use Dirac spinors for massive spinor particles. We
shall discuss the massless case later on.

The decomposition into chiral parts is not just valid in the Weyl representation of
the Clifford algebra. More abstractly, it is due to the existence of the matrix

γ5 = i
24
εµνρσγ

µγνγργσ = iγ0γ1γ2γ3. (5.33)

In the Weyl representation it reads γ5 = diag(−1,+1), it therefore measures the
chirality of spinors. In general, it anti-commutes with all the other gamma
matrices,

{γ5, γµ} = 0. (5.34)

This property implies that a single gamma matrix maps between opposite
chiralities, i.e. it inverts chirality. The property is also sufficient to prove
commutation with Mµν . Alternatively, it follows by construction of γ5 as a
(pseudo)-scalar combination of gamma matrices.

A further useful property is
γ5γ5 = 1, (5.35)

It can be used to show that the combinations 1
2
(1± γ5) are two orthogonal

projectors to the chiral subspaces.

Sigma Matrices. Let us briefly discuss the sigma matrices which are chiral
analogs of the gamma matrices. The sigma matrices obey an algebra reminiscent
of the Clifford algebra7 8

σµσ̄ν + σν σ̄µ = −2ηµν = σ̄µσν + σ̄νσµ. (5.36)

Inspection shows that all sigma matrices are hermitian

(σµ)† = σµ, (σ̄µ)† = σ̄µ. (5.37)

7The assignment of bars enables a 2-dimensional representation for this algebra unlike the
Clifford algebra which requires a larger 4-dimensional representation.

8Note that for any reasonable product of sigma matrices the sequence of factors will alternate
between σ and σ̄. This agrees with the fact that a single γ maps between the two chiralities.
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In other words, the four sigma matrices form a real basis for 2× 2 hermitian
matrices. Likewise one can confirm that that the matrices Mµν

L,R form a real basis
of 2× 2 complex traceless matrices.9 Furthermore,

(Mµν
L )† = −Mµν

R . (5.38)

These are just the defining relations for the fundamental representation of sl(2,C)
along with its conjugate representation.10

The Lorentz algebra so(3, 1) is indeed equivalent to the algebra sl(2,C). At the
level of groups, Spin+(3, 1) = SL(2,C) is the double cover of SO+(3, 1).

• A chiral 2-spinor of Spin+(3, 1) is equivalent to the fundamental representation
(space) of SL(2,C).
• Similarly, a 2-spinor of opposite chirality is equivalent to the conjugate

fundamental representation (space) of SL(2,C).
• Spinor representation exist only for the double-cover group Spin+(3, 1), but not

for the original Lorentz group SO+(3, 1).

5.3 Discrete Symmetries

In addition to the continuous Poincaré symmetry and an obvious U(1) internal
symmetry, there are several discrete symmetries and transformations which we
shall now discuss. These are also needed to formulate a Lagrangian.

Parity. Spatial parity ~x ′ = −~x is the simplest discrete symmetry. We make the
usual ansatz

ψ′(t,−~x) = γPψ(t, ~x), (5.39)

where γP is a matrix that induces the reflection on spinors.

The new field obeys the same old Dirac equation provided that the gamma
matrices are invariant

γ′µ := ΛµνγPγ
νγ−1

P
!

= γµ. (5.40)

We need to find a matrix γP that

• commutes with γ0 (because Λ0
0 = 1),

• anti-commutes with γk (to compensate Λkk = −1),
• squares to unity (because P 2 = 1).

This matrix is easily identified as

γP = γ0. (5.41)

Note that γP interchanges the two chiralities. Hence the Dirac spinor is

9A traceless 2× 2 matrix has 2 · 2− 1 = 3 degrees of freedom. If the latter are complex, there
are altogether 6 real d.o.f.. A pair of anti-symmetric vector indices provides the same number of
d.o.f., noting that all Mµν

L,R are linearly independent (over the real numbers).
10 The group SL(N) of matrices with unit determinant is generated by the algebra sl(N) of

traceless matrices.
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• reducible under proper orthochronous Lorentz rotations,
• but irreducible under orthochronous Lorentz rotations.

Time Reversal. Anti-linear time (motion) reversal also has a representation on
spinors

ψ′(−t, ~x) = γT̄ψ(t, ~x), (5.42)

The anti-linear nature of T̄ implies that a solutions of the Dirac equation should
be mapped to a solution of the complex conjugated Dirac equation. In the Weyl
representation this is achieved by the matrix

γT̄ = γ1γ3. (5.43)

The gamma matrices satisfy the following identity with the time reversal matrix

ΛµνγT̄(γν)∗γ−1
T̄

= −γµ. (5.44)

Charge Conjugation. The Dirac field is charged, it therefore makes sense to
define charge conjugation. We will use it later to investigate the statistics
associated to spinor fields.

Linear charge conjugation maps a field to its conjugate field11

ψ′(x) = γCψ
†T (5.45)

such that ψ′ solves the same wave equation as ψ. Let us substitute

(iγµ∂µ −m)ψ′ = (iγµ∂µ −m)γCψ
†T =

(
(−i(γµ)∗∂µ −m)γ∗Cψ

)†T
. (5.46)

This vanishes if
γC(γµ)∗γ−1

C = −γµ. (5.47)

In the Weyl representation only γ2 is imaginary, and the condition is solved by the
matrix

γC = −iγ2. (5.48)

CPT-Transformation In QFT a discrete transformation of fundamental
importance is the combination of charge conjugation, parity and time reversal,
called CPT. Effectively, it flips the sign of all coordinates12 and performs a
complex conjugation.

A spinor transforms according to

ψ′(x) = γT̄γPγCψ
†T(−x) (5.49)

11The composition of adjoint and transpose operations is almost the same as complex conjuga-
tion. There is however a slight difference which becomes relevant only later.

12This is an orientation-preserving transformation which belongs to Spin(3, 1), but not to
Spin+(3, 1).
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We find that the combination of matrices is just the additional gamma matrix γ5

γT̄γPγC = −iγ1γ3γ0γ2 = iγ0γ1γ2γ3 = γ5. (5.50)

This anti-commutes with all gamma matrices

γ5γµγ5 = −γµ. (5.51)

The sign is compensated by flipping the sign of all vectors.

The CPT-theorem states that all reasonable relativistic QFT’s must be invariant
under the CPT-transformation. They need not be invariant under any of the
individual transformations.

Hermitian Conjugation. The Dirac spinor ψ is complex. To construct real
quantities for use in the Lagrangian or the Hamiltonian one typically uses
hermitian conjugation. However, the various gamma matrices transform differently
under this operation.

The transformation can be uniformised by conjugation with some other matrix γ†

γ†(γ
µ)†γ−1

† = γµ. (5.52)

In most relevant representations, in particular in the chiral one, one finds

γ† = γ−1
† = γ0. (5.53)

Therefore, one should modify hermitian conjugation for a spinor ψ and likewise for
a spinor matrix X as

ψ̄ = ψ†γ−1
† , X̄ = γ†Xγ

−1
† . (5.54)

The gamma matrices are self-adjoint under modified hermitian conjugation,
γ̄µ = γµ.

5.4 Spin Statistics

So far we have only considered the Dirac equation. For quantisation, conserved
charges and later for adding interactions we should construct a Lagrangian.

Lagrangian. It is straight-forward to guess

L = ψ̄(iγµ∂µ −m)ψ. (5.55)

The variation w.r.t. ψ† obviously yields the Dirac equation. Variation w.r.t. ψ
gives the hermitian conjugate equation

− i∂µψ̄γµ −mψ̄ = (iγµ∂µψ −mψ)†γ0 = 0 (5.56)
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In fact, the Lagrangian is almost real

L† = ψ†(−i(γµ)†∂†µ −m)γ0ψ = ψ̄(−iγµ∂†µ −m)ψ

= −i∂µ(ψ̄γµψ) + L. (5.57)

There is merely an imaginary topological term left,13 the action is manifestly real.

Hamiltonian Formulation. To go to the Hamiltonian framework we compute
the conjugate momenta π = ∂L/∂ψ̇ = iψ† and π† = ∂L/∂ψ̇† = 0. It turns out that
the conjugate momenta are proportional to the fields:14

• Dirac equation is a first-order differential equation.
• There are no independent momenta.
• Phase space equals position space.

Keep in mind that ψ and ψ† are canonically conjugate fields.

Instead of computing the Hamiltonian, we can compute the energy-momentum
tensor of which it is a component

T µν = iψ̄γµ∂νψ − ηµνL. (5.58)

Unfortunately this tensor is not symmetric as it should for Lorentz invariance.
Gladly, the anti-symmetric part can be written as (making use of the e.o.m.)

T [µν] = i∂ρ(ψ̄γ
[ργµγν]ψ) = ∂ρK

ρµν . (5.59)

The contribution from K is a boundary term for the integral defining the total
momentum integral P µ. We should thus subtract ∂ρK

ρµν from T µν .

The Hamiltonian for the Dirac equation now reads

H = −
∫
d3xT 00 =

∫
d3x ψ̄

(
−i~γ·~∂ +m

)
ψ. (5.60)

Charge Conjugation. A conventional treatment and conventional quantisation
of the above framework of the Dirac equation leads to several undesirable features.

For example, the problem manifests for charge conjugation. For every solution ψ
of the Dirac equation, there is a charge conjugate solution ψC = γCψ

†T. Let us

13The topological term can be removed from the Lagrangian to obtain a manifestly real L′ =
L − i

2∂µ(ψ̄γµψ).
14Here, π† is not the complex conjugate of π because L is not real. For the real L′ we get instead

π = i
2ψ
† and π† = − i

2ψ.
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compute its energy

H[ψC] =

∫
d3xψT(γC)†γ0

(
−i~γ·~∂ +m

)
γCψ

†T

=

∫
d3xψT(γC)†γ0γC

(
+i(~γ)∗·~∂ +m

)
ψ†T

= −
∫
d3xψTγ0

(
+i(~γ)∗·~∂ +m

)
ψ†T

= −
∫
d3xψT

(
+i(~γ)T·~∂ +m

)
γ0ψ†T

∗
= −

∫
d3xψ†γ0

(
+i~γ·~∂ T +m

)
ψ

= −
∫
d3x ψ̄

(
−i~γ·~∂ +m

)
ψ = −H[ψ] (5.61)

The charge conjugate solution has opposite energy

H[ψC] = −H[ψ]. (5.62)

Compare to the scalar field and φC = φ∗. There we have

H[φC] = +H[φ]. (5.63)

This is consistent with positivity of the energy. Naively, the field ψ could not
possibly have positive definite energy.

Related issues arise for propagators and causality.

All above steps are elementary. Only one step (∗) can be changed: Transposition.
We have used

ψTXψ†T = ψaXa
bψ†b = ψ†bXa

bψa = ψ†XTψ. (5.64)

Instead of ψaψ†b = ψ†bψ
a could use a different rule 15

ψaψ†b = −ψ†bψ
a. (5.65)

This inserts a minus sign at ∗ and the energy of a solution and its charge
conjugate are the same

H[ψC] = +H[ψ]. (5.66)

This solves all the issues of the spinor field.

Spin-Statistics Theorem. The spin-statistics theorem states that consistent
quantisation of fields with half-integer spin requires the use of anti-commutation
relations

{ψ, ψ†} ∼ ~. (5.67)

Such fields are called fermionic, they obey the Fermi-Dirac statistics.
Multi-particle wave functions will be totally anti-symmetric.

15Eventually, quantisation will make ψ’s become operators which do not commute either.
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Conversely, fields with integer spin require commutation relations

[φ, φ†] ∼ ~. (5.68)

These fields are called bosonic, they obey the Bose-Einstein statistics.
Multi-particle wave functions will be totally symmetric.

5.5 Grassmann Numbers

Quantisation should be viewed as a deformation of classical physics. Therefore, the
anti-commutation relations of the quantum theory {ψ, ψ†} ∼ ~ should be reflected
by anti-commuting fields {ψ, ψ†} = 0 in the classical theory. More generally,

ψaψb = −ψbψa, ψaψ†b = −ψ†bψ
a, ψ†aψ

†
b = −ψ†bψ

†
a. (5.69)

Besides these additional signs, the fields ψ will commute with numbers and scalar
fields.

We therefore cannot use ordinary commuting numbers to represent the field ψ in
the classical Lagrangian, we need something else.

Description. The required extension of the concept of numbers is called
Grassmann numbers:

• Grassmann numbers form a non-commutative ring with Z2 grading.
• Grassmann numbers are Z2-graded, they can be even or odd: |a| = 0, 1.16

• Sums and products respect the even/odd grading

|a+ b| = |a| = |b|, |ab| = |a|+ |b|. (5.70)

• The product is commutative unless both factors are odd in which case it is
anti-commutative

ab = (−1)|a||b|ba. (5.71)

• Ordinary numbers are among the even Grassmann numbers.
• The field ψ takes values in odd Grassmann numbers.
• Real and complex Grassmann numbers can be defined. Grassmann numbers

then form an algebra over the respective field.

A basis an of odd Grassmann numbers can be constructed out of a Clifford algebra
{γj, γk} = 2δjk

an =
1√
2

(
γ2n + iγ2n+1

)
. (5.72)

In other words, Grassmann numbers can be represented in terms of (large)
matrices. One should view the basis an to be sufficiently large or infinite.17

16Linear combinations of even and odd numbers could be defined, but usually they do not appear.
17There is no distinguished element such as i which extends the real numbers to complex numbers.

We therefore do not have universal means to assign a value to a Grassmann variable. We will mainly
use Grassmann variables to describe classical (fermionic) fields without assigning values.
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Calculus. One can do calculus with Grassmann numbers much like ordinary
numbers, but note:

• odd numbers square to zero: (an)2 = 1
2
{an, an} = 0.

• the square root of zero is ill-defined.
• odd numbers have no inverse.
• some even numbers (e.g. products of two odd numbers) have no inverse.

A derivative for odd numbers can be defined as usual

∂

∂am
an = δnm. (5.73)

Note that derivatives are also odd objects

{∂/∂am, ∂/∂an} = 0. (5.74)

The above relation should be written as

{∂/∂am, an} = δnm. (5.75)

We can also define the derivatives as elements of the same Clifford algebra

∂

∂an
=

1√
2

(
γ2n − iγ2n−1

)
. (5.76)

This leads to the same anti-commutation relations as above.

Complex Conjugation. A complex Grassmann number a can be written as a
combination of the real Grassmann numbers ar, ai as

a = ar + iai. (5.77)

Spinor fields are typically complex and we often need to complex conjugate them.
Confusingly, there are two equivalent definitions of complex conjugation for
Grassmann numbers.

One is reminiscent of complex conjugation

a∗ = ar − iai. (5.78)

It obviously satisfies
(ab)∗ = a∗b∗. (5.79)

The other conjugation is reminiscent of hermitian adjoint. It satisfies

(ab)† = b†a†. (5.80)

For ordinary numbers it would be the same as complex conjugation, but odd
Grassmann numbers do not commute. The two definitions can be related as follows

a† =

{
a∗ if a is even,

−ia∗ if a is odd.
(5.81)
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QM and QFT frequently use the adjoint operation, hence it is convenient to also
use the adjoint for Grassmann numbers.

One should pay attention in defining real and odd Grassmann numbers. An odd
number which satisfies a† = a is not real. In particular, the even product of two
such numbers is imaginary

(ab)† = b†a† = ba = −ab. (5.82)

Instead real odd numbers are defined by

a† = −ia∗ = −ia. (5.83)

5.6 Quantisation

Poisson Brackets. We have also seen that ψ and ψ† are canonically conjugate
fields, there is no need to introduce additional conjugate momenta. The Poisson
bracket for the spinor field should read18

{F,G} = i

∫
d3x

(
δF

δψa(~x)

δG

δψ†a(~x)
+

δF

δψ†a(~x)

δG

δψa(~x)

)
. (5.84)

This expression can also be written as19

{ψa(~x), ψ†b(~y)} = {ψ†b(~y), ψa(~x)} = iδab δ
3(~x− ~y). (5.85)

Anti-Commutators. For quantisation, these Poisson brackets are replaced by
an anti-commutator20

{ψa(~x), ψ†b(~y)} = δab δ
3(~x− ~y). (5.86)

By Fourier transformation to momentum space

ψ(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xuα(~p)bα(~p) + eip·xvα(~p)a†α(~p)

)
(5.87)

we obtain anti-commutation relations for the Fourier modes

{uaγ(~p)bγ(~p), ūγ,b(~q)b†γ(~q)} = (p·γ +m)ab 2e(~p)(2π)3δ3(~p− ~q).
{v̄γ,b(~p)aγ(~p), vaγ(~q)a†γ(~q)} = (p·γ −m)ab 2e(~p)(2π)3δ3(~p− ~q). (5.88)

It is convenient to split these relations into contributions from quantum operators
and contributions from spinor solutions. We postulate simple anti-commutation
relations for the creation and annihilation operators

{aα(~p), a†β(~q)} = {bα(~p), b†β(~q)} = δαβ 2e(~p)(2π)3δ3(~p− ~q). (5.89)

18The correct normalisation can be derived from Ḟ = −{H,F}.
19Although the Poisson brackets are anti-symmetric in most cases, they are symmetric for two

Grassmann odd elements.
20The sign is determined by the relation [H,ψa(~x)] = −iψ̇a(~x).
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Together with the above anti-commutators, they imply the completeness relation
for the basis of spinor solutions

uα(~p)ūα(~p) = p·γ +m,

vα(~p)v̄α(~p) = p·γ −m. (5.90)

In the Weyl representation these relations are reproduced by the particular choice
for the spinors u, v.

uα(~p) =

(
(p·σ)1/2ξα
(p·σ̄)1/2ξα

)
, vα(~p) =

(
(p·σ)1/2ξα
−(p·σ̄)1/2ξα

)
, (5.91)

where ξα is an orthonormal basis of 2-spinors.

Dirac Sea. The Pauli exclusion principle for fermions states that each state can
be occupied only once. It follows from the (not explicitly written)
anti-commutators

{a†α(~p), a†β(~q)} = {b†α(~p), b†β(~q)} = 0 (5.92)

that
(a†α(~p))2 = (b†α(~p))2 = 0. (5.93)

Dirac used the exclusion principle to make useful proposals concerning
negative-energy states in relativistic quantum mechanics and the prediction of
anti-particles.

The Dirac equation has positive and negative solutions. Furthermore the solutions
carry an (electrical) charge. Dirac proposed that all negative-energy states are
already occupied in the vacuum and cannot be excited further. This picture is
called the Dirac sea, and it explained how to avoid negative-energy solutions.

Continuing this thought, there is now the option to remove an excitation from one
of the occupied states. This hole state would not only have positive energy, but
also carry charges exactly opposite to the ones of the regular positive-energy
solutions. In this way he predicted the existence of positrons as the anti-particles
of electrons. The prediction was soon thereafter confirmed in experiment.

Our view of QFT today is different, so let us compare:

• Positive-energy solutions of ψ are associated to a†.
• Negative-energy solutions of ψ are associated to b.
• Let us define c† = b, it is our choice.
• The vacuum is annihilated by c†. All c-states are occupied.
• A hole in the Dirac sea c = b† creates an anti-particle.

QFT for Dirac particles works as predicted, but:

• There is no need for a Dirac sea.
• Negative-energy solutions are defined as annihilation operators, not as creation

operators with occupied states.
• Dirac’s argument relies on the exclusion principle, it works for fermions only.

QFT can also deal with bosons.
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• The Dirac equation has real solutions (see later) just as well as the
Klein–Gordon equation has complex solutions.
The existence of anti-particles is unrelated to spin and the Dirac equation. It is
a consequence of CPT.

Correlators and Propagators. We now have all we need to compute
correlators of the free quantum fields. There are two non-vanishing correlators of
two fields

∆D
+
a
b(x− y) = 〈0|ψa(x)ψ̄b(y)|0〉,

∆D
−
a
b(x− y) = 〈0|ψ̄b(y)ψa(x)|0〉. (5.94)

They can be expressed in terms of the correlator of two scalars ∆+ with an
additional operator

∆D
+
a
b(x) =

∫
d3~p e−ip·x

(2π)3 2e(~p)
(p·γ +m)ab = (iγ·∂ +m)ab∆+(x),

∆D
−
a
b(−x) =

∫
d3~p e−ip·x

(2π)3 2e(~p)
(p·γ −m)ab = (iγ·∂ −m)ab∆+(x). (5.95)

When acting with the Dirac equation on the correlator, it combines with the
operator to give the Klein–Gordon equation acting on ∆+, e.g.(

i(∂/∂xµ)γµ −m
)a
b∆

D
+
b
c(x)

= (iγ·∂ −m)ab(iγ·∂ +m)bc∆+(x)

= δac
(
(∂/∂x)2 −m2

)
∆+(x) = 0. (5.96)

Likewise, the unequal time anti-commutator

{ψa(x), ψ̄b(y)} = ∆Da
b(y − x) (5.97)

can be written in terms of the one for the scalar field

∆D(x) = (iγ·∂ −m)∆(x). (5.98)

As such it satisfies the Dirac equation and vanishes for space-like separations21

{ψa(x), ψ̄b(y)} = 0 for (x− y)2 > 0. (5.99)

For the Dirac equation with a source, the same methods we introduced earlier for
the scalar field apply. The propagator is a spinor matrix and defined via the
equations

(−iγ·∂ +m)abG
Db

c(x) = δac δ
4(x),

GDa
b(x)(−iγ·∂† +m)bc = δac δ

4(x), (5.100)

21The fact that an anti-commutator vanishes is not in contradiction with causality. Typically
we can observe only fermion bilinears which are bosonic and do commute.
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supplemented by suitable boundary conditions. By the same reasons as above, we
can express the Dirac propagator through the scalar propagator

GDa
b(x) = (iγ·∂ +m)abG(x). (5.101)

Obviously, one has the same relations as before, e.g. for the retarded propagator

GD
R(x) = iθ(t)∆D(x). (5.102)

There are some other useful relationships between correlators and propagators in
momentum space which are worth emphasising because they hold generally.

First of all, by construction the propagator is the inverse of the kinetic term in the
action22

GD(p) = (−γ·p+m)−1 =
γ·p+m

p2 +m2
(5.103)

The corresponding correlators and unequal time commutators take the form

∆D
±(p) = ±2πδ(p2 +m2)θ(±p0)(p·γ +m),

∆D(p) = 2πδ(p2 +m2) sign(p0)(p·γ +m). (5.104)

These reflect precisely the residues times a delta function localised at the position
of the pole along with some restriction to positive or negative energies.

The construction of the propagator and its relationship to correlators and
commutators can be used as a shortcut in deriving the latter. Large parts of the
canonical quantisation procedure can thus be avoided in practice.

5.7 Complex Field

The Dirac spinor is complex and the Lagrangian has the obvious U(1) global
symmetry

ψ′(x) = eiαψ, ψ̄′(x) = e−iαψ̄. (5.105)

The symmetry has a corresponding conserved Noether current23

Jµ =
δψa

δα

δL
δ∂µψa

= −ψ̄γµψ. (5.106)

The time component of the current was used earlier to define a positive definite
probability density, −J0 = ψ†ψ. However, if one follows the spin-statistics theorem
and let ψ be Grassmann odd, the density is not positive. In particular, it changes
sign for the charge conjugate solution

JµC = −ψ̄Cγ
µψC = ψ̄γµψ = −Jµ. (5.107)

22The poles should be shifted away from the real axis to accommodate for the desired boundary
conditions.

23Note the order of terms.
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Nevertheless, the current is conserved and defines a conserved Noether charge

Q =

∫
d3~x J0 = −

∫
d3~xψ†ψ. (5.108)

It leads to the usual charge assignments for the complex field

[Q,ψ(x)] = ψ(x), [Q, ψ̄(x)] = −ψ̄(x). (5.109)

5.8 Real Field

The Dirac field has four independent particle modes, a†α(~p) and b†α(~p), for each
three-momentum. From the classification of Poincaré UIR’s we know that the
irreducible representation for spin j = 1

2
has only two spin orientations for each

three-momentum.

Reality Condition. This discrepancy is associated to the existence of charge
conjugate solutions. We can remove the additional solutions by imposing a reality
condition on ψ, namely24

ψC = ψ. (5.110)

A spinor which satisfies this condition is called a Majorana spinor. There exist
representations of the Clifford algebra where all γµ are purely imaginary. In this
basis the Dirac equation is real, and it makes sense to restrict ψ to real
(Grassmann odd) numbers.

For the momentum modes we can use the identity

uα(~p) = γCv
∗
α′(~p), (5.111)

to show that the identification ψC = ψ implies

aα(~p) = bα′(~p) (5.112)

The identification may involve some translation between the bases aα and bα′ . It
reduces the modes of the Dirac field by a factor of two.

2-Spinors. Let us consider a real spinor ψ = (ψL, ψR) in the Weyl
representation. The reality condition implies

ψL = −iσ2ψ†TR =
1√
2
χ. (5.113)

This allows to write the Lagrangian in terms of the 2-spinor field χ as25

L = χ†iσ̄·∂χ+ i
2
mχTσ2χ− i

2
mχ†σ2χ†T. (5.114)

The Lagrangian for the Dirac field can be written as two identical copies of this.26

24One could also use any other complex phase eiα between ψC and ψ.
25The two mass terms are anti-symmetric in χ, which requires the classical field χ to be an odd

Grassmann number.
26The U(1) global symmetry of the Dirac equation is recovered as a SO(2) rotation symmetry

of the two fields χ.

5.18



Parity. Note that parity interchanges ψL and ψR. The reality condition relates
the two, hence

χ′(t,−~x) = −iσ2χ†T(t, ~x). (5.115)

As this transformation also sends the field χ to its complex conjugate χ†T, it is
usually viewed as the combination CP of charge conjugation C and parity P

CPχ(t, ~x)(CP )−1 = −iσ2χ†T(t,−~x). (5.116)

In that sense there cannot be individual C and P transformations and only CP
can be a symmetry.

An alternative point of view is that C was used to define the reality condition.
Hence C is preserved by construction, and the parity operation P is well-defined
on its own.

Technically, both points of view have the same content: They merely use the same
words to refer to different operators. They are related by identifying C ′ = 1 and
P ′ = CP , where the primed operations refer to the latter approach.

5.9 Massless Real Field

So far we have assumed a non-zero mass m. Let us now consider the massless case
which has some special features. We will assume a real (Majorana) field.

First, let us compare to the UIR’s of the Poincaré group: There are two particles
a†α(~p) for each momentum. Conversely, a UIR with fixed helicity has merely one
state for each momentum. The two particles correspond to UIR’s with helicity
h = ±1

2
. In fact, helicity states must always come in pairs in QFT. One cannot

construct a real Lagrangian which describes just one helicity.

Interestingly, the splitting of representations leads to an enhancement of
symmetry. For m = 0, the Lagrangian in terms of 2-spinors reads

L = χ†iσ̄·∂χ. (5.117)

Quite obviously, this Lagrangian has a global U(1) symmetry

χ′ = eiαχ. (5.118)

It is called chiral symmetry. The associated Noether current reads

Jµ = −χ†σ̄µχ. (5.119)

At the level of 4-spinors chiral symmetry is represented by the transformation

ψ′ = exp(−iαγ5)ψ. (5.120)

The adjoint spinor transforms with the same factor

ψ̄′ = ψ̄ exp(−iαγ5). (5.121)
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This is transformed to the inverse factor by a single gamma matrix

exp(−iαγ5)γµ = γµ exp(iαγ5). (5.122)

The massless Lagrangian is therefore invariant under chiral transformations. Here
the conserved current is the so-called axial vector current

Jµ = −ψ̄γ5γµψ. (5.123)

5.10 Chiral Transformations and Masses

Let us consider the above chiral transformations in the presence of mass

L′ = ψ̄
(
iγ·∂ −m exp(2iαγ5)

)
ψ

= ψ̄
(
iγ·∂ −m cos(2α)−m sin(2α)iγ5

)
ψ. (5.124)

On the one hand, it shows that masses break chiral symmetry. On the other hand,
we have learned that there are two types of mass terms

ψ̄ψ and iψ̄γ5ψ. (5.125)

They are both equivalent under a chiral transformation. When they appear
simultaneously, the physical squared mass is the sum of the squares of the two
coefficients.

For a real field, the transformed Lagrangian in terms of 2-spinors reads

L′ = χ†iσ̄·∂χ+ i
2
me2iαχTσ2χ− i

2
me−2iαχ†σ2χ†T. (5.126)

We could thus also introduce a complex m such that the physically relevant
squared mass is just mm̄ = |m|2.
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6 Free Vector Field

Next we want to find a formulation for vector fields. This includes the important
case of the electromagnetic field with its photon excitations as massless relativistic
particles of helicity 1. This field will be the foundation for a QFT treatment of
electrodynamics called quantum electrodynamics (QED). Here we will encounter a
new type of symmetry which will turn out to be extremely powerful but at the
price of new complications.

6.1 Classical Electrodynamics

We start by recalling electrodynamics which is the first classical field theory most
of us have encountered in theoretical physics.

Maxwell Equations. The electromagnetic field consists of the electric field
~E(t, ~x) and the magnetic field ~B(t, ~x). These fields satisfy the four Maxwell
equations (with ε0 = µ0 = c = 1)

0 = div ~B := ~∂· ~B = ∂kBk,

0 = rot ~E + ~̇B := ~∂ × ~E + ~̇B = εijk∂jEk + Ḃi,

ρ = div ~E = ~∂· ~E = ∂kEk,

~ = rot ~B − ~̇E = ~∂ × ~B − ~̇E = εijk∂jBk − Ėi. (6.1)

The fields ρ and ~ are the electrical charge and current densities.

The solutions to the Maxwell equations without sources are waves propagating
with the speed of light. The Maxwell equations were the first relativistic wave
equations that were found. Eventually their consideration led to the discovery of
special relativity.

Relativistic Formulation. Lorentz invariance of the Maxwell equations is not
evident in their usual form. Let us transform them to a relativistic form.

The first step consists in converting Bi to an anti-symmetric tensor of rank 2

Bi = −1
2
εijkFjk, F =

 0 −Bz +By

+Bz 0 −Bx

−By +Bx 0

 . (6.2)

Then the Maxwell equations read

0 = −εijk∂kFij, ρ = ∂kEk,

0 = εijk(2∂jEk − Ḟjk), ~ = ∂jFji − Ėi. (6.3)

6.1



These equations are the 1 + 3 components of two 4-vectors which can be seen by
setting

Ek = F0k = −Fk0, Jµ = (ρ,~). (6.4)

Now the Maxwell equations simply read

εµνρσ∂νFρσ = 0, ∂νF
νµ = Jµ. (6.5)

Electromagnetic Potential. For QFT purposes we need to write a Lagrangian
from which the Maxwell equations follow. This is however not possible using Fµν
as the fundamental degrees of freedom. A Lagrangian can be constructed by the
help of the electromagnetic vector potential Aµ. This is not just a technical tool,
but it will be necessary to couple the field to charged matter. This fact can be
observed in the Aharonov–Bohm effect, where a quantum particle feels the
presence of a non-trivial electromagnetic potential A, although it is confined to a
region of spacetime where the field strength vanishes F = 0.

The first (homogeneous) equation is an integrability condition for the field Fµν . It
implies that it can be integrated consistently to an electromagnetic potential Aµ

Fµν = ∂µAν − ∂νAµ. (6.6)

With this parametrisation of F the homogeneous equation is automatically
satisfied.

The electromagnetic potential is not uniquely defined by the electromagnetic fields
F . For any solution A, we can add the derivative of a scalar field

A′µ(x) = Aµ(x) + ∂µα(x). (6.7)

The extra term cancels out when anti-symmetrising the two indices in Fµν and
hence

F ′µν(x) = Fµν(x). (6.8)

This freedom in defining Aµ is called a gauge symmetry or gauge redundancy. It is
called a local symmetry because the transformation can be chosen independently
for every point of spacetime. Gauge symmetry will turn out very important in
quantising the vector field.

Lagrangian. A Lagrangian for the electromagnetic fields can now be formulated
in terms of the potential Aµ

L = −1
4
F µν [A]Fµν [A] = 1

2
~E[A]2 − 1

2
~B[A]2. (6.9)

Here and in the following, Fµν [A] is not considered a fundamental field, but merely
represents the combination

Fµν [A] = ∂µAν − ∂νAµ. (6.10)
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The equation of motion yields the second (inhomogeneous) Maxwell equation (here
with a trivial source term)

∂νF
νµ = 0. (6.11)

The first (homogeneous) Maxwell equation is already implied by the definition of
F in terms of A.

Due to Poincaré symmetry we can also derive an energy momentum tensor Tµν . It
takes the form1

Tµν = −FµρFνρ + 1
4
ηµνF

ρσFρσ. (6.12)

6.2 Gauge Fixing

Hamiltonian Framework. Towards quantisation we should proceed to the
Hamiltonian framework. The canonical momentum Π conjugate to the field A
reads

Πµ =
∂L
∂Ȧµ

= F0µ. (6.13)

Here a complication arises because the component Π0 is strictly zero and the field
A0 has no conjugate momentum. The non-zero components are the electrical field
F0k = Ek. Moreover the equations of motion imply ∂kΠk = 0 which is an equation
without time derivative.

The missing of the momentum Π0 and the spatial differential equation for Πk are
two constraints which the momenta will have to satisfy, even in the initial
condition. These are so-called constraints. For the massless vector field they are
related to gauge redundancy of A. Although Aµ has four components, one of them
can be chosen arbitrarily using gauge symmetry. Effectively Aµ has only three
physically relevant components, which is matched by only three conjugate
momenta.

Coulomb Gauge. A simple ansatz to resolve the problem of Π0 = 0 is to
demand that

A0 = 0. (6.14)

This can always be achieved by a suitable gauge transformation.

This choice does not completely eliminate all gauge freedom for Ak, a
time-independent gauge redundancy α(~x) remains. It can be eliminated by the
demanding

∂kAk = 0 (6.15)

which is called the Coulomb gauge (fixing).

Now Πk = F0k = Ek = Ȧk and for the Hamiltonian we obtain

H =

∫
d3x 1

2
( ~E 2 + ~B 2), (6.16)

1The naive derivation from the Lagrangian yields Tµν = −Fµρ∂νAρ − 1
4L which is neither

symmetric nor gauge invariant. It is repaired by adding the term ∂ρ(FµρAν).
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which indeed represents the energy of the electromagnetic field.

With the Coulomb gauge, we can now quantise the electromagnetic field. The
gauge is however not always convenient, since it specialises the time direction and
therefore breaks relativistic invariance. For instance, it leads to instantaneous
contributions to field correlators, which may feel odd. In physical observables,
eventually such instantaneous or causality-violating contributions will always
cancel.

Lorenz Gauges. A more general class gauge fixings are the Lorenz gauges

∂µAµ = 0. (6.17)

Again, they do not completely fix the gauge freedom since any gauge
transformation with ∂2α = 0 will preserve the Lorenz gauge condition. For
example, one may furthermore demand A0 = 0 to recover the Coulomb gauge.

It is convenient to implement the Lorenz gauge by adding a gauge fixing term
Lgf = −1

2
ξ(∂·A)2 to the Lagrangian

L = LED + Lgf ' −1
2
∂µAν ∂µAν + 1

2
(1− ξ)∂µAµ∂νAν . (6.18)

The equations of motion now read

∂2Aµ − (1− ξ)∂µ∂νAν = 0 (6.19)

Let us show that the equations require ∂2Aµ = 0 and ∂ · A = 0. We solve the
equation in momentum space

p2Aµ − (1− ξ)pµ(p·A) = 0 (6.20)

We first multiply the equation by pµ to get

ξp2(p·A) = 0. (6.21)

Unless ξ = 0, this equation implies that p2 = 0 or p·A = 0. Using this result in the
original equation shows that both p2 = 0 and p·A = 0 must hold unless ξ = 1. 2

For ξ = 1, the equation only requires p2 = 0.

The canonical momenta now read

Πµ = Ȧµ + δ0
µ(1− ξ)(∂νAν), (6.22)

which can be solved for all Ȧµ unless ξ = 0. We can now define canonical Poisson
brackets

{Aµ(t, ~x), Πν(t, ~y)} = δνµδ
3(~x− ~y). (6.23)

2This statement might not be accurate in a distributional sense! For example, the function
Aµ = xµ satisfies the equation of motion, but yields ∂·A = −4 6= 0. In momentum space this
function is a distribution.
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There appears to be a catch: The gauge fixing condition ∂·A = 0 constrains the
conjugate momentum Π0

Π0 = ∂kAk − ξ(∂νAν). (6.24)

to be a function of the Ak alone. Substituting this into the Poisson brackets yields
the identity

{A0, Π0} = {A0, ∂kAk} − ξ{A0, ∂
νAν} = −ξ{A0, ∂

νAν}, (6.25)

where we used that the A’s and their spatial derivatives commute. Here the term
on the left hand side is non-trivial whereas the term on the right hand side should
be trivial due to ∂·A = 0.3

Feynman Gauge. To avoid these problems and also to simplify the subsequent
analysis, we shall set ξ = 1. This so-called Feynman gauge4 has a simple
Lagrangian

L = −1
2
∂µAν ∂µAν (6.26)

with simple equations of motion

∂2Aµ = 0. (6.27)

Effectively, it describes 4 massless scalar fields Aµ with the peculiarity that the
sign of the kinetic term for A0 is wrong. With the canonical momenta Πµ = Ȧµ
the Poisson brackets read

{Aµ(~x), Πν(~y)} = ηµνδ
3(~x− ~y). (6.28)

where again the relation for A0 has the opposite sign. Likewise all correlation
functions and propagators equal their scalar counterparts times ηµν .

As such, the model described by the above simple Lagrangian is not
electrodynamics. Only when taking into account the constraint ∂·A = 0 it becomes
electrodynamics. Moreover, the constraint will be crucial in making the QFT
model physically meaningful. Nevertheless we have to be careful in implementing
the constraint since it is inconsistent with the Poisson brackets.

Light Cone Gauge. The above Lorenz gauges do not eliminate all unphysical
degrees of freedom, which introduce some complications later. There are other
useful gauges which avoid these problems, but trade them in for others. A
prominent example is the light cone gauge which eliminates a light-like component
A− = A0 − A3 = 0 of the gauge potential Aµ. The equations of motion then allow
to solve for a non-collinear like-like component of A+ = A0 + A3. The remaining
two degrees of freedom of Aµ then represent the two helicity modes of the
electromagnetic field. Let us nevertheless continue in the Feynman gauge.

3However, note that ∂·A = 0 need not hold in a strict sense, i.e. the above Poisson brackets are
self-consistent and can be quantised.

4Actually, it is a gauge fixing term rather than a gauge.

6.5



6.3 Particle States

Next we quantise the model and discuss its particle states. The construction of
Fock space is the same as for a set of four massless scalar fields, but we need to
implement the gauge-fixing constraint.

Quantisation. We quantise the vector field Aµ(x) in Feynman gauge
analogously to four independent scalar fields where merely one of the kinetic term
has the opposite sign. This leads to the equal-time commutation relations

[Aµ(t, ~x), Ȧν(t, ~y)] = iηµνδ
3(~x− ~y). (6.29)

We then solve the equation of motion ∂2Aµ = 0 in momentum space

Aµ(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xaµ(~p) + eip·xa†µ(~p)

)
(6.30)

and translate the above field commutators to commutators for creation and
annihilation operators

[aµ(~p), a†ν(~q)] = ηµν 2e(~p) (2π)3 δ3(~p− ~q). (6.31)

Fock Space. We define the vacuum state |0〉 to be annihilated by all aµ(~p)

aµ(~p)|0〉 = 0. (6.32)

As before, multi-particle states are constructed by acting with the creation
operators a†µ(~p) on the vacuum |0〉.
There are two problems with this naive Fock space. The first is that there ought to
be only two states (with helicity h = ±1) for each momentum. Here we have
introduced four states. The other problem is that one of these states has a
negative norm: To see this we prepare a wave packet for a†0

|f〉 =

∫
d3~p

(2π)3 2e(~p)
f(~p)a†0(~p)|0〉. (6.33)

The norm of this state is negative definite

〈f |f〉 = −
∫

d3~p

(2π)3 2e(~p)
|f(~p)|2 < 0. (6.34)

A negative-norm state violates the probabilistic interpretation of QFT, hence it
must be avoided at all means.

Physical States. The above problems are eventually resolved by implementing
the gauge-fixing constraint ∂·A = 0 which we have not yet considered. This is not
straight-forward:
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• The commutation relations prevent us from implementing it at an operatorial
level.
• We cannot implement it directly on states: E.g. requiring the vacuum |0〉 to be

physical means setting p·a†(~p)|0〉 = 0 which is inconsistent with the
commutation relations.
• The weakest implementation is to demand that the expectation value of ∂·A

vanishes for all physical states. This is the Gupta–Bleuler formalism.

For two physical states |Ψ〉, |Φ〉 we thus demand

〈Φ|∂·A|Ψ〉 = 0. (6.35)

This is achieved by demanding

p·a(~p)|Ψ〉 = 0 (6.36)

for any physical state. An adjoint physical state then obeys 〈Φ|p·a†(~p) = 0.

• Both conditions together ensure that 〈Φ|∂·A|Ψ〉 = 0.
• Moreover, the vacuum is physical by construction.

We conclude that Fock space is too large. The space of physical states |Ψ〉 is a
subspace of Fock space such that for all ~p

p·a(~p)|Ψ〉 = 0. (6.37)

Nevertheless we cannot completely abandon the larger Fock space in favour of the
smaller space of physical states. For instance, the action of Aµ(x) cannot be
confined to the physical subspace since it does not commute with the operator
p·a(~p).

Evidently, the negative-norm state |f〉 discussed above is not physical since

p·a(~p)|f〉 = f(~p)e(~p)|0〉. (6.38)

It is an element of Fock space, but not of its physical subspace.

Basis of Polarisation Vectors. To investigate the space of physical states
further, we introduce a convenient basis for polarisation vectors ε

(α)
µ (~p) of the

vector field aµ(~p) and a†µ(~p) on the light cone p2 = 0.5

We denote the four polarisations α by G for gauge, L for longitudinal and 1, 2 for
the two transverse directions.

• We first define ε(G) as a light-like vector in the direction of p, e.g. ε(G) = p.
• We construct another light-like vector ε(L) which has unit scalar product with
ε(G), i.e. ε(L)·ε(G) = 1.
• We then construct two orthonormal space-like vectors ε(1,2) which are also

orthogonal to ε(G) and ε(L).

5The polarisation vectors are similar to the spinors u(~p) and v(~p) for the Dirac equation.
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(6.39)

For example, suppose the light-like momentum is given by

pµ = (e, 0, 0, e). (6.40)

Then we can define the following 4 vectors 6

ε(G)
µ (~p) = (e, 0, 0, e),

ε(L)
µ (~p) = (−1/2e, 0, 0, 1/2e),

ε(1)
µ (~p) = (0, 1, 0, 0),

ε(2)
µ (~p) = (0, 0, 1, 0). (6.41)

These four polarisations define a complete basis for vector space. We can thus
decompose the creation and annihilation operators as follows

a(†)
µ = ε(G)

µ a
(†)
(L) + ε(L)

µ a
(†)
(G) + ε(1)

µ a
(†)
(1) + ε(2)

µ a
(†)
(2). (6.42)

Likewise we can write the commutation relations7

[a(L)(~p), a
†
(G)(~q)] = [a(1)(~p), a

†
(1)(~q)] =

[a(G)(~p), a
†
(L)(~q)] = [a(2)(~p), a

†
(2)(~q)] = 2e(~p) (2π)3δ3(~p− ~q). (6.43)

By construction we know that

p·a(~p) = ε(G)·a(~p) = a(G)(~p). (6.44)

hence the physical state condition in this basis reads

a(G)(~p)|Ψ〉 = 0. (6.45)

The physical state condition together with the commutation relations implies that
a physical state cannot have any longitudinal excitations a†(L)(~p). It must be of the

form8

|Ψ〉 = a†(G) · · · a
†
(G)a

†
(1,2) · · · a

†
(1,2)|0〉. (6.46)

Since negative norm states can originate exclusively from the commutators
[a(L), a

†
(G)] and [a(G), a

†
(L)], and since the a†(L)’s are absent, the norm of any such

state is positive semi-definite
〈Ψ |Ψ〉 ≥ 0. (6.47)

The modes a†(1,2) have a positive norm while a†(G) is null.

6There is a lot of arbitrariness in defining the polarisation vectors for each momentum p, but
it does not matter.

7The crossing between L and G is due to the construction of the basis using two light-like
directions.

8Note that a(G) commutes with a†(G) and a†(1,2) but not with a†(L).
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Null States. Consider a physical state |Ψ〉 which contains an excitation of type
a†(G), i.e. a state which can be written as

|Ψ〉 = a†(G)(~p)|Ω〉 (6.48)

with some other physical state |Ω〉. This state has zero norm by the physical state
condition

〈Ψ |Ψ〉 = 〈Ω|a(G)(~p)a
†
(G)(~p)|Ω〉 = 〈Ω|a†(G)(~p)a(G)(~p)|Ω〉 = 0. (6.49)

Null states are not normalisable and therefore have to be interpreted
appropriately. Typically null states are irrelevant because QM is a probabilistic
framework. Something that takes place with probability zero does not happen.
Nevertheless, some consistency requirements have to be fulfilled:

By the same argument as above, we can show that a null state

|Ψ〉 = a†(G)(~p)|Ω〉 (6.50)

actually has vanishing scalar products with any physical state |Φ〉 due to the
physicality condition of the latter

〈Φ|Ψ〉 = 〈Φ|a†(G)(~p)|Ω〉 = 0. (6.51)

In particular, this implies that the sum |Ψ ′〉 of a physical state |Ψ〉 and some null
state

|Ψ ′〉 = |Ψ〉+ a†(G)(~p)|Φ〉 (6.52)

behaves just like the original physical state |Ψ〉 in scalar products

〈Φ|Ψ ′〉 = 〈Φ|Ψ〉+ 〈Φ|a†(G)(~p)|Ω〉 = 〈Φ|Ψ〉. (6.53)

We should thus impose an equivalence relation on the physical Fock space

|Ψ〉 ' |Ψ ′〉 = |Ψ〉+ a†G(~p)|Ω〉. (6.54)

Any two states which differ by a state which is in the image of some a†(G) are
physically equivalent. In other words, physical states of the gauge field are not
described by particular vectors but by equivalence classes of vectors.

We may use states which have no contribution of a(G) as reference states of the
equivalence classes9

|Ψ〉 = a†(1,2) · · · a
†
(1,2)|0〉. (6.55)

These representatives show that we have two states for each momentum ~p. It
matches nicely with the massless UIR’s of the Poincaré group with positive and
negative helicity h = ±1. The particle excitations of the electromagnetic field are
the photons.

9Although this appears to be a useful choice at first sight, it is not at all unique. By a change
of basis for the polarisation vectors at any given ~p we can add any amount of a†(G) to a†(1,2). The

new states are certainly in the same equivalence class, but they are different representatives.
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Gauge Transformations. However, inserting some gauge potentials Aµ(x) into
the scalar product may actually lead to some dependence on null states. Let us
therefore compute

〈Φ|Aµ(x)|Ψ ′〉 = 〈Φ|Aµ(x)|Ψ〉+ 〈Φ|Aµ(x)a†(G)(~p)|Ω〉

= 〈Φ|Aµ(x)|Ψ〉+ 〈Φ|[Aµ(x), a†(G)(~p)]|Ω〉 (6.56)

We write a†(G)(~p) = p·a†(~p) and the commutator evaluates to

[Aµ(x), a†(G)(~p)] = pµe
−ip·x = i∂µe

−ip·x (6.57)

The expectation value of Aµ(x) thus changes effectively by a derivative term

Aµ(x) 7→ Aµ(x) +
〈Φ|Ω〉
〈Φ|Ψ〉

i∂µe
−ip·x. (6.58)

This is just a gauge transformation of the potential Aµ(x). We observe that the
states |Ψ〉 and |Ψ ′〉 lead to two expectation values which differ by a gauge
transformation of the fields within the expectation value. Note that the gauge
transformation does not leave the Lorenz gauges

[∂·A(x), a†(G)(~p)] = i∂2e−ip·x = 0. (6.59)

Hence null states induce residual gauge transformation within the Lorenz gauges.

Now it appears that the choice of representative in an equivalence class has
undesirable impact on certain expectation values. Gladly, this does not apply to
gauge-invariant observables. For instance, the electromagnetic field strength is
unaffected

[Fµν(x), a†(G)(~p)] = ∂µ(pνe
−ip·x)− ∂ν(pµe−ip·x) = 0. (6.60)

Moreover, the coupling of the gauge potential to a conserved current Jµ

J [A] =

∫
d4x Jµ(x)Aµ(x) (6.61)

commutes with a†(G)

[J [A], a†(G)(~p)] = i

∫
d4x Jµ(x)∂µe

−ip·x

= −i
∫
d4x e−ip·x∂µJ

µ(x) = 0. (6.62)

The expectation value of any gauge-invariant operator composed from Fµν , J [A] or
similar combinations thus does not depend on the choice of representatives, and it
is consistent to define physical states as equivalence classes.
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6.4 Casimir Energy

At this point we can already compute a quantum effect of the electromagnetic field,
the Casimir effect. The Casimir effect is a tiny force between nearby conductors
which exists even in the absence of charges, currents or medium. In classical
electrodynamics no forces are expected. There are several alternative explanations
for the quantum origin of the force. One is the exchange of virtual photons
between the conductors. An equivalent explanation attributes the force to a change
of vacuum energy of the electromagnetic field induced by the presence of the
plates. The latter one has a quite efficient derivation, and we shall present it here.

Setup. We place two large planar metal plates at a small distance into the
vacuum (much smaller than their size, but much larger than atomic distances). In
our idealised setup, the plates extend infinitely along the x and y directions. They
are separated by the distance a in the z direction. We will not be interested in the
microscopic or quantum details of the metal objects. We simply assume that they
are classical conductors and that they shield the electromagnetic field efficiently.

(6.63)

At the surface of the plates, the electric fields must be orthogonal Ex = Ey = 0
while the magnetic field must be parallel Bz = 0. In order to match these
conditions simultaneously at both plates, the z-component of the wave vector
(momentum) must be quantised

pz ∈
π

a
Z. (6.64)

Careful analysis shows that for pz = 0 only one of the two polarisation vectors is
permissible. Conversely, for pz 6= 0 both polarisations are good. To achieve
cancellations in this case, each wave must be synchronised to its reflected wave
where pz → −pz. Hence we should only count the contributions with pz > 0.

Vacuum Energy. Just like the scalar field, the electromagnetic field carries some
vacuum energy. The discretisation modifies the vacuum energy E0, which results
in a force between the plates if the new vacuum energy depends on the distance a.

The sum and integral of all permissible modes between the plates yields the energy
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E per area A 10

E =

∫
Adpx dpy

(2π)2

(
1
2
e(px, py, 0) + 2

∞∑
n=1

1
2
e(px, py, πn/a)

)
(6.65)

For convenience we shall exploit the rotation symmetry in the x-y-plane to
simplify the expression to

E

A
=

∫ ∞
0

p dp

2π

(
1
2
p+

∞∑
n=1

√
p2 + π2n2/a2

)
(6.66)

As discussed earlier, this expression diverges due to UV contributions at large
momenta.

Regularisation. We also emphasised earlier that infinities are largely our own
fault. The idealised setup was somewhat too ideal.

For macroscopic electromagnetic waves, we certainly made the right assumption of
total reflection. But it is also clear that the conducting plates will behave
differently for hard gamma radiation. This is precisely where the problems arise,
so we seem to be on the right track. Electromagnetic waves with wave length much
smaller than atomic distances or energies much larger than atomic energy levels
will pass the conducting plates relatively unperturbed. These modes therefore
should be discarded from the above sum.11

Therefore, we must introduce a UV cutoff for the modes. Define a function f(e)
which is constantly 1 for sufficiently small energies, constantly 0 for sufficiently
large energy and which somehow interpolates between the 1 and 0 for intermediate
energy. The cutoff replaces each contribution 1

2
e by 1

2
f(e)e

EIR

A
=

∫ ∞
0

p dp

2π

(
1
2
pf(p) +

∞∑
n=1

√
p2 + π2n2/a2f(

√
. . .)

)
. (6.67)

Let us keep in mind the remaining contribution in the ultraviolet where we convert
the sum to an integral due to the absence of quantisation in the z-direction

EUV

A
=

∫ ∞
0

p dp

2π

∫ ∞
0

dn
√
p2 + π2n2/a2

(
1− f(

√
. . .)
)
. (6.68)

10A sum over the modes in some box of volume V in d dimensions turns into an integral over
momenta when the volume is very large. In a box, the positive and negative modes are coupled, so
the integral is over positive p only with integration measure V ddp/πd. In the absence of boundary
contributions, the integration domain extends to positive and negative p which is compensated by
the measure V ddp/(2π)d.

11The modes do contribute to the vacuum energy between the plates. Importantly, the distance
between the plates will hardly enter their contribution, and consequently they cannot contribute
to forces.
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Summation. This expression is now finite, but certainly depends on the cutoff
in f(e). Let us write it as a sum of integrals

EIR

A
= 1

2
F (0) +

∞∑
n=1

F (n), (6.69)

with

F (n) =

∫ ∞
0

p dp

2π

√
p2 + π2n2/a2 f

(√
p2 + π2n2/a2

)
(6.70)

It is convenient to use energy as integration variable

e =
√
p2 + π2n2/a2, p dp = e de, (6.71)

and write the integral as

F (n) =
1

2π

∫ ∞
πn/a

de e2f(e). (6.72)

The Euler–MacLaurin summation formula writes the above sum for EIR/A as an
integral plus correction terms

EIR

A
=

∫ ∞
0

dnF (n)−
∞∑
k=1

(−1)k
B2k

(2k)!
F (2k−1)(0), (6.73)

where we have used that the function F (n) is constantly zero at ∞ due to the
cutoff. Here Bn is the n-th Bernoulli number.

Let us analyse the two terms: The first term we can rewrite as

Eint

A
=

1

2π

∫ ∞
0

dn

∫ ∞
πn/a

de e2f(e) =
2a

4π2

∫ ∞
0

de′
∫ ∞
e′

de e2f(e). (6.74)

It depends on the cutoff, but it is manifestly linear in a. In fact, it combines nicely
with the contribution from UV modes above the cutoff that we dropped earlier

E0

A
=
EUV + Eint

A
=

2a

4π2

∫ ∞
0

de′
∫ ∞
e′

de e2. (6.75)

As such it represents the vacuum energy of the enclosed volume in the absence of
plates. The same vacuum energy density is present outside the plates.12 This term
therefore does not contribute to the force because any shift of the plate would
merely transfer some vacuum energy from the inside to the outside leaving the
overall energy invariant. The fact that E0 is formally infinite does not play a role.
We therefore consider only the change in energy ∆E = E − E0 arising from the
second term of the Euler–MacLaurin summation.

The second term can be evaluated near n = 0

F (n) = F (0)− 1

2π

∫ πn/a

0

de e2f(e) = F (0)− π2n3

6a3
, (6.76)

12The factor of 2/2π is interpreted as follows: 1/2π is the correct measure for integration over
pz. Moreover, in the factor of 2 compensates for the restricted integration region pz ≥ 0.
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where we used that f(e) = 1. Quite surprisingly, F (n) is a polynomial with two
terms. All cutoff dependence is in F (0) which does not appear in the summation
formula.13 The single correction term contributes the following vacuum energy
(B4 = −1/30)

∆E

A
= −B4

4!
F (3)(0) = − π2

720a3
. (6.77)

The presence of the conducting plates decreases the vacuum energy by some
amount proportional to 1/a3.

Casimir Force. The Casimir force can be expressed as the pressure

P =
F

A
=
∆E ′(a)

A
=

π2

240a4
. (6.78)

Some properties:

• Bringing the plates closer decreases the energy, hence the Casimir force is
attractive.
• It increases with the fourth power of the inverse distance as the plates come

closer.
• It is a quantum effect, and there are hidden factor of ~ and c. Due to the

fourth-power behaviour it can nevertheless be detected at reasonable
separations. It becomes relevant at micrometer distance.
• It does not depend on the coupling strength of the electromagnetic field or on

the elementary charge.

6.5 Massive Vector Field

So far we have discussed the massless vector field. Among the UIR’s of the
Poincaré group there is also the massive representation with spin 1. Massive vector
particles exist in nature as the W± and Z0 bosons transmitting the weak nuclear
interactions.14

Lagrangian. We can add a mass term to the vector Lagrangian to obtain the
corresponding quantum field

L = −1
2
∂µVν∂

µV ν + 1
2
∂µVν∂

νV µ − 1
2
m2V µVµ. (6.79)

The corresponding equation of motion reads

∂2Vµ − ∂µ∂νVν −m2Vµ = 0. (6.80)

13The reason is apparently that the cutoff is in a region of energies where the difference between
a sum and an integral does not matter.

14The implementation of interacting massive vector fields actually needs much more care. Inter-
acting vectors fields can acquire mass only through the Higgs mechanism.
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By taking the total derivative of this equation, we see that it implies the simpler
equation −m2∂µVµ = 0. Substituting this result in the original equation of motion
then yields a system of two equations

∂2Vµ −m2Vµ = 0, ∂µVµ = 0. (6.81)

The first equation is the Klein–Gordon equation for each component of Vµ, the
second equation removes one of the four potential orientations. The degrees of
freedom agree with the classification of UIR’s.

Correlators. We now want to quantise this system. In the canonical approach
we first derive the conjugate momenta

Πµ = V̇µ − ∂µV0. (6.82)

As before, there is no conjugate momentum for the field V0 hinting at the presence
of constraints. Constrained systems are somewhat tedious to handle in the
Hamiltonian framework and therefore in canonical quantisation. Instead, let us
take a shortcut. We consider the fields to be operators and cook up unequal-time
commutation relations

[Vµ(x), Vν(y)] = ∆V
µν(x− y). (6.83)

Our previous experience has shown that correlators can be composed from
derivatives acting on the correlator of the scalar field. This automatically
implements the Klein–Gordon equation. Here we propose15 16

∆V
µν(x) =

(
ηµν −m−2∂µ∂ν

)
∆(x). (6.84)

The combination of derivatives was constructed such that ∆V satisfies the
polarisation equations

∂µ∆V
µν(x) = ∂ν∆V

µν(x) = 0. (6.85)

Equal-Time Commutators. Next let us see what this proposal implies for the
equal-time commutators. The non-vanishing ones read as follows

[V0(~x), Vk(~y)] = im−2∂kδ
3(~x− ~y),

[V0(~x), V̇0(~y)] = −im−2∂k∂kδ
3(~x− ~y),

[Vk(~x), V̇l(~y)] = iδklδ
3(~x− ~y)− im−2∂k∂lδ

3(~x− ~y),

[V̇0(~x), V̇k(~y)] = i∂kδ
3(~x− ~y)− im−2∂k∂l∂lδ

3(~x− ~y). (6.86)

These relations appear somewhat unusual since they mix time and space
components of Vµ.

15The correlator ∆+ and the propagator G take an equivalent form in terms of their scalar field
counterparts.

16The factor of 1/m2 in not as innocent as it may appear. When adding interactions, this term
involving an inverse mass scale actually makes the theory behave badly for large momenta.
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Let us replace the time derivatives V̇k by the associated conjugate momenta Πk.
For the spatial components we recover the canonical commutator

[Vk(~x), Πl(~y)] = iδklδ
3(~x− ~y). (6.87)

The commutators involving V0 and V̇0 can be recovered using the equations of
motion. The latter actually give an explicit solution for the field V0 and its time
derivative V̇0

V0 = −m−2∂kΠk, V̇0 = ∂kVk. (6.88)

In other words, V0 is not an elementary field and its commutation relations follow
from the canonical one above

[V̇0(~x), Πk(~y)] = i∂kδ
3(~x− ~y),

[Vk(~x), V0(~y)] = im−2∂kδ
3(~x− ~y),

[V0(~x), V̇0(~y)] = im−2∂k∂kδ
3(~x− ~y). (6.89)

Hamiltonian Framework. We have obtained a reasonable QFT framework for
our massive scalar field. Now we can revisit the Hamiltonian framework. First we
perform a Legendre transformation of the Lagrangian for spatial components of
the fields Vk

17

H =

∫
d3~x

(
ΠkV̇k − L

)
=

∫
d3~x

(
1
2
ΠkΠk + 1

2
m−2∂kΠk∂lΠl

+ 1
2
∂kVl∂kVl − 1

2
∂lVk∂kVl + 1

2
m2VkVk

)
. (6.90)

Here, we have also substituted the solution for the field V0 and its time derivative.

We note that the Hamiltonian is slightly unusual in that it contains derivatives of
the momenta along with inverse powers of the mass. The inverse powers of the
mass in fact prevent us from taking the massless limit.18

Gladly, this Hamiltonian implies the desired equations of motion

V̇k = −{H,Vk} = Πk −m−2∂k∂lΠl,

Π̇k = −{H,Πk} = ∂l∂lVk − ∂k∂lVl −m2Vk. (6.91)

It is not at all obvious that these equations imply the Klein–Gordon equation.
However, their twisted form is required to be able to solve for the field V0 easily
and thereby obtain the correct energy.

17The Hamiltonian is manifestly positive since 1
2∂kVl∂kVl −

1
2∂lVk∂kVl = 1

4 (∂kVl − ∂lVk)2.
18We may impose a gauge by demanding ∂kΠk = −m−2V0 = 0. This eliminates the inverse

mass from the Hamiltonian and validates the massless limit. Using ∂kΠk = −m−2V0 the gauge
also implies V̇0 = ∂kVk = 0, i.e. the gauge is the Coulomb gauge.
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7 Interactions

We have learned a lot about the three basic constituents of QFT in four
dimensions:

• scalar fields (spin j = 0 or helicity h = 0),
• spinor fields (spin j = 1

2
or helicity h = ±1

2
),

• vector fields (helicity h = ±1 or spin j = 1).

So far we considered only free fields. The particle number was conserved by all
processes and most operators.

Now we would like to introduce interactions between such fields. Unfortunately,
interactions cannot be treated exactly.

We have to assume the strength of interactions to be sufficiently small. The
well-understood free fields will dominate, and we insert interactions as small
perturbations. This eventually leads us to Feynman diagrams to describe particle
interactions order by order.

7.1 Interacting Lagrangians

One of the main reasons to consider QFT is its ability to deal with processes that
do not conserve the number of particles.

Quantum fields are particle creation and annihilation operators: φ→ a, a†. So far,
we used them for two purposes:

• to build the multi-particle Fock space from a vacuum state, i.e. a† . . . a†|0〉;
• to write conserved charges as quadratic combinations of the fields which

conspired to yield one creation and one annihilation operator a†a and thus
conserve the particle number.

Combining more than two fields typically yields a quantum operator which
changes the particle number.

Time evolution of a quantum system is governed by its Hamiltonian, therefore it is
natural to include such higher-order terms in it and consequently in the
Lagrangian.

Scalar Interactions. For a real scalar field we could consider an interacting
Lagrangian of the form

L = −1
2
∂µφ∂µφ− 1

2
m2φ2 − 1

6
µφ3 − 1

24
λφ4. (7.1)
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This model called the φ4 theory.1 It is perhaps the conceptually simplest
interacting QFT model, but it leads to very non-trivial physics. The φ4 term is also
an interaction of the scalar Higgs field which is essential for the Higgs mechanism.

We might also add higher-order terms or terms involving derivatives such as

φ5, φ(∂φ)2, φ2(∂φ)2, (∂φ)4, . . . . (7.2)

Such terms are in principle allowable in QFT, but they have some undesirable
features to be discussed later. We will, however, never add non-local terms of the
type to the action∫

d4xφ(x)φ(x+ a),

∫
d4x d4y f(x, y)φ(x)φ(y). (7.3)

These terms represent some unphysical action at a distance, we consider only local
interactions which can be written using a local Lagrangian2

S =

∫
d4xL(x), L(x) = L[φ(x), ∂φ(x), . . .]. (7.4)

The equation of motion for the above Lagrangian reads

∂2φ−m2φ− 1
2
µφ2 − 1

6
λφ3 = 0. (7.5)

It is a non-linear differential equation. Our usual strategy to deal with the
differential equation of motion was to go to momentum space

0 = − p2φ(p)−m2φ(p)− 1
2
µ

∫
d4q

(2π)4
φ(q)φ(p− q)

− 1
6
λ

∫
d4q1 d

4q2

(2π)8
φ(q1)φ(q2)φ(p− q1 − q2). (7.6)

Unfortunately, we obtain an integral equation instead of an algebraic equation. We
cannot solve it in general, but for small µ� m and small λ� 1 we can try to find
useful approximations.

Quantum Electrodynamics. Electrons and positrons carry an electrical charge
∓q and their conserved current Jµ = −qψ̄γµψ couples to the Maxwell equations.
Putting together the Dirac and Maxwell Lagrangians we can simply add a source
term for the electromagnetic potential JµAµ

LQED = ψ̄(iγµ∂µ −m)ψ − 1
4
F µνFµν + q ψ̄γµψAµ. (7.7)

1One often drops the term φ3 and gains a discrete symmetry φ 7→ −φ. A term φ3 without a
term φ4 would lead to a potential unbounded from below.

2Non-local terms could be recovered as Taylor series involving derivatives of arbitrary order. It
is therefore desirable to restrict the number of derivatives in L.
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This yields the desired inhomogeneous Maxwell equations, but also a modification
of the Dirac equation

∂µF
µν = −qψ̄γνψ.

(∂µγµ −m)ψ = −qγµAµψ. (7.8)

The above model is called quantum electrodynamics (QED). It is a model that has
been tested at a remarkable accuracy within its domain of validity, i.e. at low
energies where the other elementary particles play no essential role. For instance,
the electron anomalous magnetic dipole moment, also known as g − 2, was
predicted to more than 10 digits, and many of the leading digits are due to plain
QED alone.

In the Standard Model, the above type of interaction between vectors and spinors
is arguably the most important one because it couples matter in the form of spinor
fields (leptons and quarks) to forces in the form of vector fields (photons, gluons
and others).

Gauge Invariance. A crucial property of the electromagnetic potential is its
gauge symmetry. In the quantisation procedure it eliminated an unphysical degree
of freedom of the electromagnetic potential. We therefore want to preserve this
symmetry in the presence of interactions.

The interaction term breaks the original gauge symmetry, but the latter can be
restored by extending the symmetry to the Dirac field

A′µ(x) = Aµ(x) + ∂µα,

ψ′(x) = exp
(
iqα(x)

)
ψ(x). (7.9)

Note that the latter transformation rule is just the global U(1) symmetry of the
Dirac field which is responsible for conservation of the current Jµ. This global
symmetry is enhanced to a local transformation parameter α(x). The derivative
terms of α(x) are now compensated by the inhomogeneous gauge transformation of
the potential Aµ.

There is a construction which makes the gauge invariance more manifest.
Introduce the gauge covariant derivative

Dµ = ∂µ − iqAµ. (7.10)

Under gauge transformations this operator transforms homogeneously

D′µ = ∂µ − iqA′µ = ∂µ − iqAµ − iq∂µα
= Dµ + [Dµ,−iqα]

= exp(+iqα)Dµ exp(−iqα). (7.11)

In the QED Lagrangian written with a covariant derivative

LQED = ψ̄(iγµDµ −m)ψ − 1
4
F µνFµν , (7.12)
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the factors of exp(±iqα) trivially cancel between ψ̄, Dµ and ψ. Moreover the
electromagnetic field strength can be written as

Fµν ∼ [Dµ, Dν ], (7.13)

which makes manifest its invariance under gauge transformations.

Consequently, we can also couple the complex scalar field to the electromagnetic
field via its kinetic term

LSQED = −(Dµφ)∗Dµφ−m2|φ|2 − 1
4
λ|φ|4 − 1

4
F µνFµν . (7.14)

This model is called scalar QED.

Further Interactions. Let us list some other simple interactions. We want to
consider only those interactions which respect Lorentz symmetry. Curiously all of
them appear in the Standard Model.

Two Dirac spinors can be multiplied to form a scalar combination. This can be
multiplied by a scalar field

ψ̄ψ φ. (7.15)

This term was originally proposed by Yukawa for the interaction between nucleons
of spin 1

2
and scalar pions. In the standard model such term couple the Higgs field

to the leptons and quarks.

A similar term coupling a scalar and two Dirac fermions but with different parity
properties is

ψ̄iγ5ψ φ. (7.16)

There is also an analog of the spinor-vector coupling with different parity
properties

ψ̄γ5γµψAµ. (7.17)

This axial vector coupling term is relevant to the weak nuclear interactions. Here,
gauge invariance needs to extend to local chiral transformations of the spinors.

The above interactions for Dirac 4-spinors can be written in terms of more
elementary chiral 2-spinor fields,

χTσ2χφ, χ†σ̄µχAµ. (7.18)

Note that the first interaction is complex, and therefore only some real projection
can appear in the Lagrangian. This leads to two couplings, one for the real part
and one for the imaginary part. The second term is perfectly real and requires a
single real coupling constant.

Power Counting. We have encountered several types of interaction terms.
These have a rather simple form with very few factors. Moreover, most of the
simple terms have been observed directly or indirectly in nature. However, there
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are many more local terms one could imagine, but which have not been observed.
What distinguishes the above interactions?

To answer this question, consider the mass dimension. The action S must be a
dimensionless quantity.3 The action is the integral of the Lagrangian S =

∫
d4xL

and length counts as inverse mass, dx ∼ m−1, therefore the Lagrangian must have
mass dimension 4,

L ∼ m4. (7.19)

The kinetic terms (∂φ)2, ψ̄∂ψ and F 2 where the derivative counts as a mass,
∂ ∼ m, determine the mass dimensions of the scalar, spinor and vector fields

φ ∼ Aµ ∼ m, ψ ∼ m3/2. (7.20)

The mass dimension of the remaining terms is now fixed, e.g. for the mass terms

φ2 ∼ m2, ψ̄ψ ∼ m3, (7.21)

and for the simple interaction terms

φ3 ∼ m3, φ4 ∼ ψ̄γµψAµ ∼ ψ̄ψφ ∼ m4. (7.22)

All of these terms have mass dimension at most 4. When they appear in the
Lagrangian L ∼ m4, their coupling constant must compensate for the missing mass
dimension. The scalar and fermion mass terms therefore read m2φ2, mψ̄ψ. Among
the interaction terms, only φ3 requires a dimensionful coupling µ ∼ m. All the
other terms have mass dimension 4 and their coupling constants are plain numbers.

We can take the bound of mass dimension 4 4 as an experimentally observed
principle. There are good reasons to consider only terms of this type:

• Such interactions are reasonably simple.
• There are only finitely many such term, hence finitely many parameters for the

model.
• All higher-dimensional terms require a coupling constant with negative mass

dimension.
• Coupling constants with negative mass dimension lead to undesirable effects in

the ultraviolet or short-distance regimes.
• Such theories are called non-renormalisable. Renormalisability will be

considered later in QFT II.
• In the infrared or long-distance regime,5 only the interactions of mass dimension

up to 4 are relevant. The higher-dimensional terms have small effects are are
mostly irrelevant.

3Quantities that appear in an exponent must be dimensionless numbers. The action carries the
same units as Planck constant ~ which in natural units is a number ~ = 1.

4More generally, the number of spacetime dimensions.
5The meaning of long-distance depends on the point of view. It can be astronomical units,

everyday length scales, atomic scales or even less when interested in fundamental description of
nature.
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• The mass term for a vector field appears as an inverse power in the massive
vector propagator. This also leads to a non-renormalisable model. To explain
the mass of the W and Z vector bosons we rely on the Higgs mechanism.6

Symmetries. Unfortunately, it is generally hard to extract information from
interacting QFT models. Usually we can only do certain approximations.
Symmetries are powerful concepts in QFT because they can apply to interacting
models as well:

• Free theories are somewhat trivial because there are infinitely many conservation
laws. For example, the particle number is conserved, but it is related only to a
non-local transformation.
• Only few of the conservation laws typically survive when interactions are added.

Those are related to global symmetries preserved by the interactions.
• The conservation laws allow to make certain statements on the result of QFT

observables even when computations are not feasible.
• Symmetries of the classical theory are not necessarily respected by the quantum

theory. Such symmetries are called anomalous.
• Anomalies of local symmetries are typically bad because they spoil gauge

redundancies which are required for consistency.

For example, consider φ4 theory with a complex field given by the Lagrangian

L = −∂µφ∗∂µφ−m2|φ|2 − 1
4
λ|φ|4. (7.23)

It is invariant under global multiplication by a complex phase φ→ eiαφ. This
leads to the same conserved current as for the complex scalar

Jµ = −i(∂µφ∗φ− φ∗∂µφ). (7.24)

The associated current Q = Na −Nb is exactly conserved even in the presence of
interactions. Conservation of the individual number operators Na and Nb,
however, is broken by interactions.

7.2 Interacting Field Operators

Consider an interacting field theory whose fields (and conjugate momenta) we will
collectively denote by φ(x). More concretely, we can consider φ4 theory.

We want to compute some correlation function, for example a correlator of two
fields at different times t1, t2

F (x2, x1) = 〈0|φ(t2, ~x2)φ(t1, ~x1)|0〉. (7.25)

6Also known as the Englert–Brout–Higgs–Guralnik–Hagen–Kibble–Anderson–and–perhaps–
also–’t–Hooft mechanism.
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Interacting Field. As before, we can quantise the field φ on a time slice at
some time t0. This step is equivalent to a free field φ because the Poisson brackets
are the same.

The full time dependence of φ is recovered by conjugating with the Hamiltonian

φ(t, ~x) = exp(iH(t− t0))φ(~x) exp(iH(t0 − t)). (7.26)

Supposing that the vacuum is time-invariant,7 we can write the correlator as

F (x2, x1) = 〈0|φ(~x2) exp(−iH(t2 − t1))φ(~x1)|0〉. (7.27)

Now everything is explicitly known except how to exponentiate H in practice. The
latter is a hard problem.

Interaction Picture. We can do slightly better whenever the interactions are
weak. In this case, the dominant contribution should come from the free
Hamiltonian H0. The quantisation of fields at a given time slice is the same. We
can thus identify the fields at time t0

φ0(~x) = φ(~x). (7.28)

Time evolution of the free field φ0 is governed by the free Hamiltonian H0

φ0(t, ~x) = exp(iH0(t− t0))φ(~x) exp(iH0(t0 − t)). (7.29)

We know almost everything about this field. For weak interactions and small times
t ' t0, we expect the free field φ0(t, ~x) to be a suitable approximation for the full
field φ(t, ~x).

Comparing φ to φ0 we can write

φ(t, ~x) = U(t, t0)−1φ0(t, ~x)U(t, t0) (7.30)

with the time evolution operator

U(t, t0) = exp
(
iH0[φ0](t− t0)

)
exp
(
iH[φ0(t0)](t0 − t)

)
. (7.31)

For small interactions and small times, this operator is approximately the identity.

This is called the interaction picture, it is a mixture between the Schrödinger and
the Heisenberg pictures

• In the Schrödinger picture, the field is defined on a constant time slice φ = φ(t0)
and the operator exp(i(t− t0)H) evolves states in time.
• In the Heisenberg picture, the field φ(t) carries the full time dependence, there is

no need for a time evolution operator.
• In the interaction picture, the field φ0(t) carries the time dependence of a free

particle and the operator U(t, t0) evolves states in time.

7A constant energy of the vacuum can always be eliminated by subtracting it from H.
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The correlator in question becomes

〈0|U(t2, t0)−1φ0(t2, ~x2)U(t2, t0)U(t1, t0)−1φ0(t1, ~x1)U(t1, t0)|0〉. (7.32)

Note that products of time evolution operators can be joined in the obvious
fashion, they form a group8

U(t2, t1)U(t1, t0)

= exp(iH0[φ0](t2 − t1)) exp(iH[φ0(t1)](t1 − t2))

· exp(iH0[φ0](t1 − t0)) exp(iH[φ0(t0)](t0 − t1))

= exp(iH0[φ0](t2 − t1)) exp(iH0[φ0](t1 − t0))

· exp(iH[φ0(t0)](t1 − t2)) exp(iH[φ0(t0)](t0 − t1))

= exp(iH0[φ0](t2 − t0)) exp(iH[φ0(t0)](t0 − t2))

= U(t2, t1). (7.33)

We write this as

F (x2, x1) = 〈0|U(t0, t2)φ0(x2)U(t2, t1)φ0(x1)U(t1, t0)|0〉. (7.34)

Interacting Ground State. All the operators are expressed using the free field
φ0, but the state |0〉 is a state of the interacting theory and we do not know how to
act on it.

Luckily we can express the interacting ground state |0〉 in terms of the vacuum |00〉
of the free theory with a trick: The free vacuum |00〉 should be some linear
combination of the interacting ground state |0〉 and excited eigenstates |n〉 with
definite energy En > E0

9

|00〉 = c0|0〉+
∑
n

cn|n〉. (7.35)

Letting this state evolve for some time T with the interacting Hamiltonian we
obtain

exp(−iHT )|00〉 = exp(−iE0T )c0|0〉+
∑
n

cn exp(−iEnT )|n〉. (7.36)

All eigenstates oscillate with their respective frequencies. Suppose we give the time
T some negative imaginary part with (En − E0)−1 � | ImT | � |T |. Then almost
all eigenstates will get exponentially suppressed compared to the interacting
ground state. The latter remains as the dominant contribution

exp(−iHT )|00〉 ≈ exp(−iE0T )c0|0〉. (7.37)

Primarily this identification is a formal trick. In terms of physics, we let a system
in some exited state |00〉 evolve for some long time and find it in its ground state

8It is crucial to note in terms of which fields the respective Hamiltonians are expressed: H0[φ0(t)]
is independent of time, while H[φ0(t)] depends on t due to the mismatch of fields.

9It is reasonable to assume c0 = 〈0|00〉 6= 0 when interactions are sufficiently small.
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|0〉. This is reasonable if we assume the system to be open or damped in some way.
All real world systems, at least those we can expect to observe, are finite and open;
the effect of iε is to implement this assumption into our calculations.

We can thus express the interacting vacuum at some time t0 as the evolution of the
free vacuum at time −T

|0〉 ' U(t0,−T )|00〉, (7.38)

where we did not pay attention to normalisation. Analogously,

〈0| ' 〈00|U(+T, t0). (7.39)

Our final result for the correlation function F (x2, x1):

lim
T→∞(1−iε)

〈00|U(T, t2)φ0(x2)U(t2, t1)φ0(x1)U(t1,−T )|00〉
〈00|U(T,−T )|00〉

. (7.40)

The denominator implements the desired normalisation 〈0|0〉 = 1.

Interacting Correlators. In conclusion, the recipe for determining some
correlation function in the interacting theory is the following

〈0|X|0〉 = lim
T→∞(1−iε)

〈00|U(T, t0)XU(t0,−T )|00〉
〈00|U(T,−T )|00〉

. (7.41)

where all the interacting quantum operators in X are replaced by free fields
evolved from time t0 to the desired time slice

φ(t, ~x)→ U(t0, t)φ0(t, ~x)U(t, t0). (7.42)

Effectively two consecutive time evolution operators can always be combined into
one

U(t2, t0)U(t0, t1) = U(t2, t1). (7.43)

7.3 Perturbation Theory

We still cannot evaluate the time evolution operator U(t, t0), but at least we know
that it is close to the identity when interactions are sufficiently small

U(t, t0) ≈ 1. (7.44)

This approximation is too crude, it is equivalent to computing the correlator in the
free theory, and we gain nothing.

Schrödinger Equation. To improve the approximation, consider the time
derivative of U(t, t0)

i∂tU(t, t0) = exp(iH0(t− t0))
(
H[φ0(t0)]−H0

)
· exp(−iH0(t− t0))U(t, t0).

=
(
H[φ0(t)]−H0

)
U(t, t0). (7.45)
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We see that the time evolution operator is determined by a differential equation
and a trivial initial value condition

i∂tU(t, t0) = Hint(t)U(t, t0), U(t0, t0) = 1. (7.46)

This is a Schrödinger equation, and its Hamiltonian is the so-called interaction
Hamiltonian

Hint(t) := H[φ0(t)]−H0[φ0]. (7.47)

This Hamiltonian is time-dependent, therefore the solution cannot be as simple as
exp(−i(t− t0)Hint).

10 For weak interactions, one can use the Dyson series to solve
the equation perturbatively.

Dyson Series. The interaction Hamiltonian is the quantity which we should
assume to be small. It appears in the Schrödinger equation, so at first order we
can use the above approximation for U

i∂tU(t, t0) = Hint(t)U(t, t0) ≈ Hint(t). (7.48)

Integrating with proper initial value this yields

U(t, t0) ≈ 1− i
∫ t

t0

dt1Hint(t1). (7.49)

This is certainly better than before, it involves interactions at first order.
Nevertheless we can do better.

To go further systematically, write the differential equation in integral form

U(t, t0) = 1− i
∫ t

t0

dt1Hint(t1)U(t1, t0). (7.50)

Substitute the above solution yields a better solution

U(t, t0) ≈ 1− i
∫ t

t0

dt1Hint(t1)

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2). (7.51)

Now use the new solution instead

U(t, t0) ≈ 1− i
∫ t

t0

dt1Hint(t1)

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2)

+ i

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3Hint(t1)Hint(t2)Hint(t3). (7.52)

And so on.

The picture should be clear, we could go to arbitrarily high orders. More
importantly, everything is expressed in terms of free fields φ0 and the interaction
Hamiltonian Hint[φ0].

10Hint is time-dependent because its time evolution is governed by H0 with which it does not
commute in general.
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Time-Ordered Exponential. The multiple integral with a nested sequence of
boundaries is hard to handle. We can improve the situation. Consider the
quadratic term:

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2). (7.53)

We can also write it as

−
∫ t

t0

dt1

∫ t2

t1

dt2Hint(t2)Hint(t1). (7.54)

The integration region assumes t1 ≥ t2 in the first integral and t2 ≥ t1 in the
second integral. Importantly, in both integrands the operator Hint(tk) with larger
tk is to the right of the operator Hint(tj) with smaller tj.

(7.55)

We introduce a time ordering symbol T which puts the affected operators in an
order with time decreasing from left to right, e.g.11

T
(
X(t1)Y (t2)

)
:=

{
X(t1)Y (t2) for t1 > t2,

Y (t2)X(t1) for t1 < t2,
(7.56)

and similarly for multiple operators. This allows to write the integrand of both
above integrals as T(Hint(t1)Hint(t2)). We can thus write the integral as the
average of the two equivalent representations where the integration regions
combine to a square

− 1

2

∫ t

t0

dt1

∫ t

t0

dt2 T
(
Hint(t1)Hint(t2)

)
. (7.57)

Even better, we can write this as the time-ordered square of a single integral

− 1

2
T

(∫ t

t0

dt′Hint(t
′)

)2

(7.58)

11For fermionic operators X,Y one would insert suitable signs for flipping the order.
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As all terms of the perturbative expansion of U(t, t0) are naturally in time ordering,
the above construction generalises straight-forwardly to the n-th order term

1

n!
T

(
−i
∫ t

t0

dt′Hint(t
′)

)n
. (7.59)

Here the integration region is a hypercube in n dimensions. It contains n!
simplices,12 which form the integration regions for the terms in the Dyson series.

Summing up all terms yields the time-ordered exponential

U(t2, t1) = T exp (iSint(t1, t2)) . (7.60)

where we introduced the interaction action Sint between times t1 and t2

Sint(t1, t2) := −
∫ t2

t1

dt′Hint(t
′). (7.61)

The time-ordered exponential represents both the formal solution to the above
Schrödinger equation for U(t2, t1) as well as a concrete perturbative prescription to
evaluate it.

12A hypercube is the generalisation of a cube to n dimensions, a simplex is the generalisation of
a triangle.
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8 Correlation Functions

We have seen how to formally write the time evolution operator

U(t1, t0) = T exp (iSint(t0, t1)) (8.1)

in an interacting QFT model based on the interaction picture and time-ordered
products.

A particularly convenient correlator is one where the operators are already in
proper time order

〈X[φ]〉 := 〈0|T
(
X[φ]

)
|0〉. (8.2)

Such time-ordered correlation functions have multiple applications in QFT, for
example, it can be used for particle scattering processed. In this chapter we will
develop methods to compute them in more practical terms. The outcome will be a
set graphical rules, the Feynman rules.

For simplicity we will drop all free field indices φ0 → φ from now on and instead
mark interacting correlators by an index “int”.

8.1 Interacting Time-Ordered Correlators

Consider the correlator of two time-ordered fields with t1 > t2

F = 〈φ(t1, ~x1)φ(t2, ~x2)〉int = 〈0int|φint(t1, ~x1)φint(t2, ~x2)|0int〉. (8.3)

In the expression in terms of free fields

X = U(T, t2)φ(x2)U(t2, t1)φ(x1)U(t1,−T ), (8.4)

we notice that all operators are in proper time order and we can extend the time
ordering over all the operators

X = (T exp (iSint(t2, T )))φ(x2) (T exp (iSint(t1, t2)))

· φ(x1) (T exp (iSint(−T, t1)))

= T
(
exp (iSint(t2, T ))φ(x2) exp (iSint(t1, t2))

· φ(x1) exp (iSint(−T, t1))
)
. (8.5)

Inside the time-ordering symbol the order of operators does not matter. The
exponents can now be combined nicely:

X = T
(
φ(x1)φ(x2) exp (iSint(−T, T ))

)
. (8.6)

We thus find the correlation function 〈φ(x1)φ(x2)〉int

F = lim
T→∞(1−iε)

〈0|T
(
φ(x1)φ(x2) exp(iSint(−T, T ))

)
|0〉

〈0|T
(
exp(iSint(−T, T ))

)
|0〉

. (8.7)
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This formula generalises to vacuum expectation values of arbitrary time-ordered
combinations X[φ] of quantum operators

〈T(X[φ])〉int = lim
T→∞(1−iε)

〈0|T
(
X[φ] exp(iSint(−T, T ))

)
|0〉

〈0|T
(
exp(iSint(−T, T ))

)
|0〉

'
〈0|T

(
X[φ] exp(iSint)

)
|0〉

〈0|T
(
exp(iSint)

)
|0〉

. (8.8)

Here the complete interaction action Sint implies a small imaginary part for the
time coordinate in the distant past and future. We can thus express time-ordered
correlators in the interacting theory in terms of similar quantities in the free theory.

This expression has several benefits and applications:

• Typically there are no ordering issues within X because time ordering puts all
constituent operators into some well-defined order. This is useful when interested
in the quantum expectation value of some product of classical operators.
• It directly uses the interaction terms Sint in the action.
• Time-ordered products and expectation values can be evaluated conveniently.
• This expression appears in many useful observables, for example in particle

scattering amplitudes.

8.2 Time-Ordered Products

We now look for a method to evaluate a time-ordered correlator of a combination
of free field operators X[φ]

〈X[φ]〉 := 〈0|T
(
X[φ]

)
|0〉. (8.9)

Feynman Propagator. We start with two fields

GF(x1, x2) = i〈0|T
(
φ(x1)φ(x2)

)
|0〉. (8.10)

By construction and earlier results it reads

GF(x1, x2) =

{
i〈0|φ(x1)φ(x2)|0〉 for t1 > t2,

i〈0|φ(x2)φ(x1)|0〉 for t2 > t1

= iθ(t1 − t2)∆+(x1 − x2) + iθ(t2 − t1)∆+(x2 − x1). (8.11)

Comparing this to the retarded propagator GR(x)

GF(x) = iθ(t)∆+(x) + iθ(−t)∆+(−x),

GR(x) = iθ(t)∆+(x)− iθ(t)∆+(−x), (8.12)

we can write
GR(x) = GF(x)− i∆+(−x). (8.13)

8.2



As such it obeys the equation of a propagator,

− ∂2GF(x) +m2GF(x) = δd+1(x), (8.14)

but with different boundary conditions than of the retarded propagator. It is
called the Feynman propagator.

The momentum space representation of the Feynman propagator for the scalar
field reads

GF(p) =
1

p2 +m2 − iε
. (8.15)

Here the two poles at e = ±e(~p) are shifted up and down into the complex plane
by a tiny amount

GF(p) =
1

2e(~p)

(
1

e− (−e(~p) + iε)
− 1

e− (+e(~p)− iε)

)
. (8.16)

(8.17)

Concerning the relation to the position space representation:

• The positive energy pole e = e(~p)− iε is below the real axis and thus relevant to
positive times.
• The negative energy pole e = −e(~p) + iε is above the real axis and thus relevant

to negative times.

Alternatively, to obtain the correct contour around the two poles, we could
integrate on a slightly tilted energy axis in the complex plane

e ∼ (1 + iε). (8.18)

Note that this corresponds to assuming times to be slightly imaginary, but in the
opposite direction such that et is real

t ∼ (1− iε). (8.19)

The iε prescription of the Feynman propagators is thus directly related and
equivalent to the iε prescription for converting the free vacuum to the interacting
one.

(8.20)
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Wick’s Theorem. To evaluate more complex time-ordered vacuum expectation
values one typically employs Wick’s theorem. It relates a time-ordered product of
operators T(X[φ]) to a normal-ordered product of operators N(X[φ]). The
normal-ordered product is useful when evaluating vacuum expectation values
because the VEV picks out field-independent contributions only.

Let us recall the definition of normal ordering: Split up the free fields φ into pure
creation operators φ+ and pure annihilation operators φ−

φ = φ+ + φ−, φ+ ∼ a†, φ− ∼ a. (8.21)

Normal ordering of a product is defined such that all factors of φ+ are to the left of
all factors φ−. For example,

N
(
φ(x1)φ(x2)

)
= φ+(x1)φ+(x2) + φ−(x1)φ−(x2)

+ φ+(x1)φ−(x2) + φ+(x2)φ−(x1), (8.22)

where the latter two terms are in normal order and the ordering of the former two
terms is irrelevant.

In comparison, time-ordering of the same product is defined as

T
(
φ(x1)φ(x2)

)
= φ+(x1)φ+(x2) + φ−(x1)φ−(x2)

+ θ(t2 − t1)
(
φ+(x2)φ−(x1) + φ−(x2)φ+(x1)

)
+ θ(t1 − t2)

(
φ+(x1)φ−(x2) + φ−(x1)φ+(x2)

)
. (8.23)

The difference between the two expressions reads

(T− N)
(
φ(x1)φ(x2)

)
= θ(t2 − t1)[φ−(x2), φ+(x1)]

+ θ(t1 − t2)[φ−(x1), φ+(x2)]

= θ(t2 − t1)∆+(x2 − x1)

+ θ(t1 − t2)∆+(x1 − x2)

= − iGF (x1 − x2). (8.24)

Wick’s theorem is a generalisation of this result to an arbitrary number of fields: It
states that the time-ordered product of a set of fields equals the partially
contracted normal-ordered products summed over multiple contractions between
pairs of fields. A Wick contraction between two, not necessarily adjacent, fields
φ(xk) and φ(xl) replaces the relevant two field operators by their Feynman
propagator −iGF(xk, xl), in short:

[. . . φk−1φkφk+1 . . . φl−1φlφl+1 . . .]

:=− iGF(x1 − x2) [. . . φk−1 φk+1 . . . φl−1 φl+1 . . .]. (8.25)
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For example:

T
(
φ1φ2

)
= N

(
φ1φ2

)
+ φ1φ2,

T
(
φ1φ2φ3

)
= N

(
φ1φ2φ3

)
+ φ1φ2φ3 + φ1φ2φ3 + φ1φ2φ3,

T
(
φ1φ2φ3φ4

)
= N

[
φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4

+ φ1φ2φ3φ4 + φ1φ2φ3φ4

+ φ1φ2φ3φ4 + φ1φ2φ3φ4

]
+ φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4, (8.26)

To prove the statement by induction is straight-forward:

• Assume the statement holds for n− 1 fields.
• Arrange n fields in proper time order φn . . . φ1 with tn > . . . > t1.
• Consider T[φn . . . φ1] = (φ+

n + φ−n )T[φn−1 . . . φ1] and replace T[φn−1 . . . φ1] by
contracted normal-ordered products.
• φ+

n is already in normal order, it can be pulled into N[. . .].
• Commute φ−n past all the remaining fields in the normal ordering.
• For every uncontracted field φk in N[. . .], pick up a term
∆+(xn − xk) = −iGF(xn − xk) because tn > tk.
• Convince yourself that all contractions of n fields are realised with unit weight.
• Convince yourself that for different original time-orderings of φn . . . φ1, the step

functions in GF do their proper job.

Time-Ordered Correlators. To compute time-ordered correlators we can use
the result of Wick’s theorem. All the normal-ordered terms with remaining fields
drop out of vacuum expectation values. The only terms to survive are those where
all the fields are complete contracted in pairs

〈φ1 . . . φn〉 :=
∑

complete

contractions

φ1φ2 . . . . . . . . . . . . φn−1φn. (8.27)

In particular, it implies that correlators of an odd number of fields must be zero.

This formula applies directly to a single species of real scalar fields, but for all the
other fields and mixed products there are a straight-forward equivalents:

• For fields with spin, use the appropriate propagator, e.g. (GD)ab for contracting
the Dirac fields ψa and ψ̄b.
• For any crossing of lines attached to fermionic fields, multiply by a factor of

(−1).
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8.3 Some Examples

We have learned how to reduce time-ordered correlators in a weakly interacting
QFT to free time-ordered correlators

〈X[φ]〉int =
〈X[φ] exp(iSint[φ])〉
〈exp(iSint[φ])〉

. (8.28)

We have also learned how to evaluate the latter

〈φ1 . . . φn〉 :=
∑

complete

contractions

φ1φ2 . . . . . . . . . . . . φn−1φn. (8.29)

We will now apply these formulas to some basic types of time-ordered correlators
in order to develop an understanding for them.

Setup. We will consider φ4 theory, i.e. a single real scalar field with a φ4

interaction
L = −1

2
∂µφ∂µφ− 1

2
m2φ2 − 1

24
λφ4. (8.30)

We define the interaction picture using the quadratic terms in the action

L0 = −1
2
∂µφ∂µφ− 1

2
m2φ2. (8.31)

What remains is the interaction term

Lint = − 1
24
λφ4, (8.32)

whose coefficient, the coupling constant λ, is assumed to be small. The interaction
part of the action is thus

Sint(t1, t2) :=

∫ t2

t1

dt

∫
d3~xLint(x), Sint := Sint(−∞,+∞). (8.33)

We would like to evaluate the correlators of two and four fields

T12 = 〈φ1φ2〉int, F1234 = 〈φ1φ2φ3φ4〉int, (8.34)

where φk denotes the field φ(xk) evaluated at position xk. These are functions of
the coupling constant λ which we formally expand for small λ as

T (λ) =
∞∑
n=0

T (n), F (λ) =
∞∑
n=0

F (n), T (n) ∼ F (n) ∼ λn. (8.35)
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Leading Order. First, we shall evaluate T and F at lowest order in the coupling
strength. At leading order we simply set λ = 0 and obtain the correlator in the
free theory

T (0) = 〈φ1φ2〉, F (0) = 〈φ1φ2φ3φ4〉. (8.36)

Using Wick’s theorem this evaluates to

T (0) = φ1φ2,

F (0) = φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4. (8.37)

More formally, these equal

T (0) = (−i)G12,

F (0) = (−i)2G12G34 + (−i)2G13G24 + (−i)2G14G23, (8.38)

where Gkl denotes GF(xk − xl). In a graphical notation we could write this as

T (0) = ,

F (0) = + + . (8.39)

Each vertex represents a spacetime point xk and each line connecting two vertices
k and l represents a propagator −iGF(xk − xl).

Two-Point Function at First Order. The contributions to the interacting
two-point function at the next perturbative order read

T (1) = 〈φ1φ2iSint[φ]〉 − 〈φ1φ2〉〈iSint[φ]〉

= − iλ

24

∫
d4y 〈φ1φ2φyφyφyφy〉

+
iλ

24

∫
d4y 〈φ1φ2〉〈φyφyφyφy〉. (8.40)

Using Wick’s theorem the two terms expand to 15 and 3 contributions. Consider
the first term only: The 15 contributions can be grouped into two types. The first
type receives 12 identical contributions from contracting the 4 identical φy’s in
superficially different ways. The remaining 3 terms in the second group are
identical for the same reason. We summarise the groups as follows

T
(1)
1a = − i

2
λ

∫
d4y φ1φ2φyφyφyφy = − i

2
λ

∫
d4y ,

T
(1)
1b = − i

8
λ

∫
d4y φ1φ2φyφyφyφy = − i

8
λ

∫
d4y . (8.41)
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The term originating from the denominator of the interacting correlator evaluates
to

T
(1)
2 = −1

8
(−iλ)

∫
d4y φ1φ2φyφyφyφy = −T (1)

1b . (8.42)

It precisely cancels the second contribution to the first term. Altogether we find
the following expression for the first-order correction to the two-point function

T (1) = T
(1)
1a = 1

2
(−i)4λ

∫
d4y G1yG2yGyy

= − i
2
λ

∫
d4y . (8.43)

Tadpoles. We were careful enough not to write this expression too explicitly

T (1) = 1
2
λGF(0)

∫
d4y GF(x1 − y)GF(x2 − y). (8.44)

We notice that one of the propagators decouples from the function. Moreover its
argument is precisely zero because the propagator connects a point to itself.

• The result is in general divergent, it is very similar to the vacuum energy we
encountered much earlier in QFT.
• In our derivation of time ordering we were sloppy in that we did not discuss the

case of equal times. In a local Lagrangian, however, all terms are defined at
equal time, moreover at equal spatial position. It would make sense to employ
normal ordering in this case, which eliminates the term at the start.
• Whatever the numerical value of GF(0), even if infinite, it does not yield any

interesting functional dependence to T (1). In fact it could be eliminated by
adding a term − i

4
λGF(0)φ2 to the interaction Lagrangian. This has the same

effect as normal ordering the Lagrangian.

This term is called a tadpole term because the corresponding diagram looks like a
tadpole sitting on the propagator line

(8.45)

More generally, tadpoles are internal parts of a diagram which are attached to the
rest of the diagram only via a single vertex. In most cases, they can be
compensated by adding suitable local terms to the interaction Lagrangian. Even
though this correction term is somewhat dangerous and somewhat trivial, let us
pretend it is a regular contribution and carry it along.
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First Order Four-Point Function. The first-order contributions to the
interacting four-point function take a similar form

F (1) = 〈φ1φ2φ3φ4iSint[φ]〉 − 〈φ1φ2φ3φ4〉〈iSint[φ]〉

= − iλ

24

∫
d4y 〈φ1φ2φ3φ4φyφyφyφy〉

+
iλ

24

∫
d4y 〈φ1φ2φ3φ4〉〈φyφyφyφy〉. (8.46)

These expressions are not as innocent as they may look: Using Wick’s theorem the
two terms expand to 7 · 5 · 3 · 1 = 105 and 3 · 3 = 9 terms. Gladly, most of these
terms are identical and can be summarised, we group them into 24, 6 · 12 and 3 · 3
terms from the first contribution and 3 · 3 terms from the second one

F
(1)
1a = (−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy,

F
(1)
1b = 1

2
(−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy + 5 perm.,

F
(1)
1c = 1

8
(−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy + 2 perm.,

F
(1)
2 = −1

8
(−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy + 2 perm.. (8.47)

The graphical representation of these terms is

F
(1)
1a ' ,

F
(1)
1b ' + +

+ + + ,

F
(1)
1c ' + + . (8.48)

Let us now discuss the roles of the three terms.
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Vacuum Bubbles. In the above result we notice that again the contribution
F

(1)
2 from the denominator of the interacting correlator cancels the term F

(1)
1c from

the numerator. This effect is general:

Some graphs have components which are coupled neither to the rest of the graph
nor to the external points. Such parts of the graph are called vacuum bubbles.

• Vacuum bubbles represent some virtual particles which pop out of the quantum
mechanical vacuum and annihilate among themselves. They do not interact with
any of the physically observed particles, hence one should be able to ignore such
contributions.
• Vacuum bubbles are usually infinite. Here we obtain as coefficient GF(0)2

∫
d4y.

This contains two divergent factors of GF(0) and an infinite spacetime volume∫
d4y.

• Formally, we could remove such terms by adding a suitable field-independent
term to the Lagrangian. Alternatively we could normal order it.
• In any case, vacuum bubbles are generally removed by the denominator of the

interacting correlation function. This cancellation ensures that the interacting
vacuum is properly normalised, 〈0|0〉int = 1. Any diagram containing at least
one vacuum bubble can be discarded right away.

Disconnected Graphs. The contribution from F
(1)
1b is reminiscent of the

correction T (1) to the two-point function. In fact it can be written as a sum of
products of two-point functions

F
(1)
1b = T

(0)
12 T

(1)
34 + T

(0)
13 T

(1)
24 + T

(0)
14 T

(1)
23

+ T
(1)
12 T

(0)
34 + T

(1)
13 T

(0)
24 + T

(1)
14 T

(0)
23 . (8.49)

This combination is precisely the first-order contribution to a product of two T (λ)’s

= + λ + . . . . (8.50)

This is also a general feature of correlation functions:

• Correlation functions contain disconnected products of lower-point functions.
The corresponding graphs contain disconnected components (each of which is
connected to at least one external field).
• Such contributions are typically put aside because their form is predictable.1

Nevertheless, they are essential and non-negligible contributions.
• Such disconnected contributions represent processes that take place

simultaneously without interfering with each other.

1When computing an n-point function one will typically already have computed all the k-point
functions with k < n anyway.
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Quite generally one can split the contributions into connected and disconnected
terms. Here we know, to all orders in λ

F (λ) = T12(λ)T34(λ) + T13(λ)T24(λ) + T14(λ)T23(λ)

+ Fconn(λ)

= + +

+ . (8.51)

where Fconn(λ) summarises all connected contributions. In our case

F (1)
conn = F

(1)
1a = −iλ

∫
d4y G1yG2yG3yG4y

= λ + . . . . (8.52)

Symmetry Factors. In our computation, we have encountered many equivalent
contributions which summed up into a single term. We observe that these sums
have conspired to cancel most of the prefactors of 1/24. The purpose of having a
prefactor of 1/24 for φ4 in the action is precisely to be cancelled against
multiplicities in correlators, where λ typically appears without or with small
denominators.

We can avoid constructing a large number of copies of the same term by
considering the symmetry of terms or the corresponding graphs. The symmetry
factor is the inverse size of the discrete group that permutes the elements of a term
or a graph while leaving its structure invariant.

To make use of symmetry factors for the calculation of correlation functions, one
should set up the Lagrangian such that every product of terms comes with the
appropriate symmetry factor. For example, the term φ4 allows arbitrary
permutations of the 4 φ’s. There are 4! = 24 such permutations, hence the
appropriate symmetry factor is 1/24.2

The crucial insight is the following: When the symmetry factors for the
Lagrangian are set up properly, the summed contributions to correlation function
also have their appropriate symmetry factors.

2After all, we are free to call the term that multiplies φ4 either λ/24 or λ′. It is not even difficult
to translate between them.
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To determine the symmetry factors correctly sometimes is difficult, as one has to
identify all permissible permutations. This can be difficult, for example, when the
graphical representation has a difficult topology or when it hides some relevant
information.

Let us consider the symmetry factors of the terms we have computed so far. The
contributions T (0), F (0) and F

(1)
conn have trivial symmetry factors.

(8.53)

Permutations of any of the elements would change the labelling of the external
fields. The symmetry factor for the tadpole diagram is 1/2.

(8.54)

The relevant Z2 symmetry flips the direction of the tadpole line.3 Finally, the
vacuum bubble diagram has a symmetry factor of 1/8.

(8.55)

There are two factors of 1/2 for flipping the direction of the tadpole lines. Then
there is another factor of 1/2 for permuting the two tadpole lines.

8.4 Feynman Rules

We have seen how to evaluate some perturbative contributions to interacting
correlators. Following the formal prescription leads to a lot of combinatorial
overhead as the results tend to be reasonably simple compared to the necessary
intermediate steps. Feynman turned the logic around and proposed a simple
graphical construction of correlators:

The interacting correlator of several fields can be expressed as a sum of so-called
Feynman graphs. Each Feynman graph represents a certain mathematical
expression which can be evaluated from the graph by the Feynman rules. Moreover
a Feynman graph display nicely the physical process that leads to the
corresponding term of the correlator.

3In fact, the symmetry acts on the connections of lines to vertices. Here, exchanging the two
endpoints of the tadpole line is the only symmetry.
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For every weakly coupled QFT there is a set of Feynman rules to compute its
correlators.4 Here we list the Feynman rules for the scalar φ4 model.

Feynman Rules in Position Space. A permissible graph for a correlator

F (x1, . . . , xn) = 〈φ(x1) . . . φ(xn)〉int (8.56)

• has undirected and unlabelled edges,

(8.57)

• has n 1-valent (external) vertices labelled by xj,

(8.58)

• has an arbitrary number k of 4-valent (internal) vertices labelled by yj,

(8.59)

• can have lines connecting a vertex to itself (tadpole),

(8.60)

• can have several connection components,

(8.61)

• must not have components disconnected from all of the external vertices xj
(vacuum bubble),

(8.62)

4Similar graphs and rules can actually be set up and applied to a wide range of algebraic
problems not at all limited to relativistic QFT’s.
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For each topologically distinct graph we can compute a contribution according to
the following rules:

• For each edge connecting two vertices zi and zj write a factor of −iGF(zi − zj).

→ −iGF(zi − zj) (8.63)

• For each 4-valent vertex yj, write a factor of −iλ and integrate over
∫
d4yj.

→ −iλ
∫
d4yj (8.64)

• Multiply by the appropriate symmetry factor, i.e. divide by the number of
discrete symmetries of the graph.

Feynman Rules in Momentum Space. One of the problems we have not yet
mentioned is that the Feynman propagator GF is a complicated function in
spacetime. Moreover, we need to compute multiple convolution integrals of these
functions over spacetime, e.g. the integral defining F

(1)
conn. This soon enough exceeds

our capabilities.

These computations can be simplified to some extent by going to momentum
space. Such a momentum space representation will be particularly useful later
when we compute the interaction between particles with definite momenta in
particle scattering experiments.

The momentum space version is defined as follows5

F (p1, . . . , pn) =

∫
d4x1 . . . d

4xn e
ix1·p1+...+ixn·pn〈φ1 . . . φn〉. (8.65)

A Feynman graph in momentum space

• has edges labelled by a directed flow of 4-momentum `j from one end to the
other,

(8.66)

• has n 1-valent (external) vertices with an inflow of 4-momentum pj,

(8.67)

5Note that we are evaluating a time-ordered correlator. This is well-defined in position space
and we have to perform the Fourier integrals after computing the correlator. It implies that
the momenta pj can and should be taken off-shell p2j + m2 6= 0. It is different from computing a

correlator such as 〈0|a(~p1) . . . a†(~pn)|0〉 where all the momenta are defined only on shell p2j+m2 = 0.
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• has an arbitrary number k of 4-valent (internal) vertices which conserve the flow
of momentum

(8.68)

• shares the remaining attributes with the position space version.

The Feynman rules for evaluating a graph read

• Work out the flow of momentum from the external vertices across the internal
vertices. Label all edges with the appropriate momenta `j.

(8.69)

• There is a momentum-conservation condition pj1 + . . .+ pjm for each connected
component of the graph. Write a factor of (2π)4δ4(pj1 + . . .+ pjm) including all
contributing external momenta pj.

→ (2π)4δ4(pj1 + . . .+ pjm) (8.70)

• For each internal loop of the graph, there is one undetermined 4-momentum `j.
Integrate the final expression over all such momenta

∫
d4`j/(2π)4.

→
∫

d4`j
(2π)4

(8.71)

• For each edge write a factor of −i/(`2
j +m2 − iε).

→ −i
`2
j +m2 − iε

(8.72)

• For each 4-valent vertex, write a factor of −iλ.

→ −iλ (8.73)
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• Multiply by the appropriate symmetry factor, i.e. divide by the number of
discrete symmetries of the graph.

General Models. We observe that the Feynman graphs and rules for a QFT
model reflect quite directly the content of its action:

• In particular, the free part of the action S0 determines the types and features of
the fields and particles. These are reflected by the Feynman propagator GF

which is associated to the edges.
• The interaction part of the action Sint contains all the information about the set

of interaction vertices.

Examples. Let us apply the Feynman rules to compute the mathematical
expressions for a few Feynman graphs.

Consider first the graph for the leading connected contribution F
(1)
conn to the

four-point function.

(8.74)

Applying the rules for position space, we obtain right away

F (1)
conn = −iλ

∫
d4y

4∏
j=1

GF(xj − y) . (8.75)

In momentum space, the corresponding result is

F (1)
conn = −iλ(2π)4δ4(p1 + p2 + p3 + p4)

4∏
j=1

1

p2
j +m2 − iε

. (8.76)

This expression is merely a rational function and does not contain any integrals. It
is therefore conceivably simpler than its position space analog. Unfortunately, it is
generally not easy to perform the Fourier transformation to position space.6

Next, consider a slightly more complicated example involving an internal loop.

(8.77)

6A notable exception is the massless case where the correlation functions in position space has
a reasonably simple form.
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Evaluation of the Feynman graph in position space is straight-forward

F =
1

2
(−iλ)2(−i)6

∫
d4y1 d

4y2GF(y1 − y2)2

·GF(x1 − y1)GF(x2 − y1)GF(x3 − y2)GF(x4 − y2). (8.78)

The symmetry factor is 1/2 because the two lines of the internal loop can be
interchanged.

For momentum space, we first have to label the remaining lines along the internal
loop: The total flow of momentum into the left vertex from the external lines is
p1 + p2, whereas the momenta on both internal lines are yet undetermined. The
sum of internal momenta flowing into the vertex must therefore equal −p1 − p2 by
momentum conservation.7 One internal momentum remains undetermined, let us
call it ` and eventually integrate over it. The other one must equal `′ = p1 + p2− `.

F =
1

2
(−iλ)2(−i)6(2π)4δ4(p1 + p2 + p3 + p4)

4∏
j=1

1

pj +m2 − iε∫
d4`

(2π)4

1

`2 +m2 − iε
1

(p1 + p2 − `)2 +m2 − iε
. (8.79)

Now we are left with a multiple integral over a rational function. There exist
techniques to deal with this sort of problem, we will briefly discuss some of the
basic ones at the end of this course. Some integrals like this one can be performed,
but most of them remain difficult and it is an art to evaluate them. Unfortunately,
numerical methods generally are not applicable either. This is a generic difficulty
of QFT with no hope for a universal solution. The Feynman rules are a somewhat
formal method and it is hard to extract concrete numbers or functions from them.

8.5 Feynman Rules for QED

Finally, we would like to list the Feynman rules for the simplest physically relevant
QFT model, namely quantum electrodynamics (QED). We shall use the
Lagrangian in Feynman gauge

L0 = ψ̄(iγµ∂µ −m)ψ − 1
2
∂µAν∂µAν , Lint = q ψ̄γµψAµ. (8.80)

A non-trivial interacting correlation function in this model must contain as many
fermionic fields ψ as conjugates ψ̄ due to global U(1) symmetry. Consider such a
correlation function

〈Aµ1(k1) . . . Aµm(km) ψ̄a1(p1)ψb1(q1) . . . ψ̄an(pn)ψbn(qn)〉. (8.81)

Admissible Feynman graphs have the following properties in addition or instead of
to the ones of the φ4 model:

7By considering the right vertex, it must also equal p3 + p4. This requirement is consistent by
means of overall momentum conservation p1 + p2 + p3 + p4 = 0.
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• There are two types of edges: undirected wavy lines (photons) or directed
straight lines (electrons and/or positrons).

(8.82)

• The edges are labelled by a directed flow of 4-momentum `j.
• The ends of wavy lines are labelled by indices ρj and σj; the ends of straight lines

are labelled by indices cj and dj in the direction of the arrow of the straight line.
• There is a 1-valent (external) vertex for each field in the correlator. The

momentum inflow and the label at the end of the edge are determined by the
corresponding field.

(8.83)

• There is one type of (internal) vertex: It is 3-valent and connects an ingoing and
an outgoing straight line (fermion) with a wavy (photon) line.

(8.84)

The QED-specific Feynman rules read as follows:

• The graph can have only fermion loops, which contribute an extra factor of (−1)
due to their statistics.

→ (−1)

∫
d4`j

(2π)4
(8.85)

• For each wavy edge write a factor of −iηνiνj/(`2
j − iε).

→
−iηνiνj
`2
j − iε

(8.86)

for each straight edge write a factor of −i(`j·γ +m)cj dj/(`
2
j +m2 − iε).

→
−i(`j·γ +m)cidj
`2
j +m2 − iε

(8.87)
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• For each 3-valent vertex, write a factor of −iq(γνj)cidi .

→ −iq(γνj)cidi (8.88)

QED and Gauge Invariance. Note that QED is a gauge theory which requires
some gauge fixing. Feynman gauge is very convenient, but any other consistent
gauge is acceptable, too. Different gauges imply different propagators which lead
to non-unique results for correlation functions. Unique results are only to be
expected when the field data within the correlation function is gauge invariant.

More precisely, the correlator should contain the gauge potential Aµ(x) only in the
combination Fµν(x) or as the coupling

∫
d4x JµAµ to some conserved current

Jµ(x). Moreover, charged spinor fields should be combined into uncharged
products, e.g. ψ̄(x) . . . ψ(x) potentially dressed with covariant derivatives.
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9 Particle Scattering

A goal of this course is to understand how to compute scattering processes in
particle physics.

9.1 Scattering Basics

Setup. The usual setup for scattering experiments at particle colliders is the
following:

(9.1)

• Two bunches of particles are accelerated to high or relativistic velocities and
made to collide.
• Whenever two particles from the bunches come very close, they produce some

complicated interacting quantum state.
• After a while this state evolves into several particles moving away in various

directions.
• The outgoing particles of each scattering event are measured and recorded.

Some additional comments:

• Quantum mechanics is probabilistic, so a large number of particle collisions must
be measured.
• To measure collisions of three or more particles would be technically challenging

because they would all have to be focused within a tiny region of space
simultaneously. The likelihood for two particles to scatter is much higher.
• By Lorentz symmetry, the directions of the two ingoing momenta ~p1,2 can be

adjusted arbitrarily. In some reference frame, the momenta will be parallel and
along the z-axis. The relevant quantity is the centre of mass energy squared
s = −(p1 + p2)2. The highest energies

√
s are obtained where the collisions are

head-on with equal but opposite momenta. For practical purposes, the particles
can have momenta of different magnitude or one of the two bunches could be a
fixed target at rest.
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• The particle momenta in the beam are not perfectly aligned. By the uncertainty
principle this is actually impossible if the beam is also focused on a finite area.
• The particle detectors are not perfect: They have a certain spatial and temporal

resolution. They measure the energy and momenta at a certain resolution. They
may not be able to detect and distinguish all kinds of particles; they may miss
some particles; they may misidentify some. Scattered particles along the beam
direction are hardest to detect.

Cross Sections. How to quantify scattering? Consider a simple classical
scattering experiment:

(9.2)

• Take two hard balls of radii r1, r2.
• Throw them towards each other along the z axis in opposing directions.
• Depending on the transverse offset d, the balls will either hit (d < r1 + r2) or

miss (d > r1 + r2).1

• When the balls hit, they bounce off in different directions.

Quantum mechanics is probabilistic, there cannot be such deterministic output.
One has to repeat the experiment many times or perform an experiment with
many identical particles and count:

• Accelerate two bunches of n1 and n2 particles.
• Focus each bunch on a cross-sectional area of A.
• Repeat the experiment nex times.
• Count the number of individual scattering events N .

The expectation value for N is

N =
nexn1n2σ

A
, (9.3)

where the characteristic quantity is the scattering cross section σ. For two classical
hard balls one obtains σ = π(r1 + r2)2: Given the transverse position of the first
ball, the second ball must be within an area of σ to make the two collide.

In collider experiments one measures scattering cross sections

1More accurately, at a near miss, the flow of air will also deform the balls’ trajectories slightly.
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• Total or inclusive cross sections σ simply count the number of overall collision
events.
• Differential cross sections dσ measure the number of events where the outgoing

particles have predetermined momenta.2 The definition of dσ depends on the
number of outgoing particles. The so-called phase space is furthermore
constrained by Poincaré symmetry.
• One may even resolve the polarisation of the outgoing particles and measure

polarised cross sections.

9.2 Cross Sections and Matrix Elements

The computation of the scattering cross section is not straight-forward. Naively,
we prepare initial and final states with definite momenta p1, p2 and q1, . . . , qn at
some times tin and tout in the distant past and distant future

〈f| ∼ 〈q1, . . . , qn|, |i〉 ∼ |p1, p2〉. (9.4)

The probability is given by the square of the correlator 〈f| exp(−iH(tout − tin))|i〉
σ ∼ |〈f| exp(−iH(tout − tin))|i〉|2 (9.5)

For initial and final states with definite momenta, the correlator contains a delta
function δ4(Pin − Pout) to conserve momentum. It cannot be squared because this
would result in a factor of δ4(0) =∞. We know that such factors represent some
volume of spacetime relevant to the problem. A proper treatment requires the use
of wave packets. They actually account for the finite extent of the ingoing
bunches, namely the cross-sectional area A, and for the finite resolution of the
detector. The factor δ4(0) represents this area A among others.

A somewhat tedious calculation in terms of wave packets yields a meaningful
result for the differential cross section of 2→ n scattering. At the end of the day,
the wave packets can be focused to definite momenta3

dσ =
(2π)4δ4(Pin − Pout)

4|e(~p1)~p2 − e(~p2)~p1|

n∏
k=1

d3~qk
(2π)3 2e(~qk)

|M |2. (9.6)

Here M is the appropriate element of the scattering matrix with the
momentum-conserving delta function stripped off

lim
tin,out→∓∞

〈f| exp(−iH(tout − tin))|i〉 = (2π)4δ4(Pin − Pout)iM. (9.7)

The normalisation is such that in the free theory the correlator for n = 2 two final
state particles equals4

2e(~p1) 2e(~p2) (2π)6δ3(~p1 − ~q1)δ3(~p2 − ~q2). (9.8)

2The direction of the scattered classical balls is determined by the impact parameter d, and
hence certain regions of the scattering cross section correspond to specific angles. In quantum
mechanics this is mostly a matter of probability.

3This quantity is not invariant under Lorentz transformations due to the denominator |e(~p1)~p2−
e(~p2)~p1|. Nevertheless it transforms like an area as it should.

4This contribution representing no scattering is actually removed from M for 2 → 2 particle
scattering.
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The formula simplifies for 2→ 2 scattering in the centre of mass frame

dσ

dΩ
=

1

4|e(~p1)~p2 − e(~p2)~p1|
|~q1|

16π2
√
s
|M |2. (9.9)

Here dΩ represents the spherical angle element of the direction of outgoing particle
1, and s = −P 2

in = −(p1 + p2)2 is the centre of mass energy squared. It becomes
even simpler in case all four particles are identical

dσ

dΩ
=
|M |2

64π2s
. (9.10)

9.3 Electron Scattering

We can now compute some realistic scattering event in Quantum Electrodynamics.
We shall consider scattering of two electrons into two electrons (Møller scattering).5

(9.11)

Here, we will not distinguish the two polarisation modes of the electron spin. One
might as well consider the polarised cross section, but the experimental setup as
well as the theoretical calculation is more challenging.

Initial and Final States. To prepare the initial and final states we use the
interaction picture. The free reference field provides the creation and annihilation
operators for the in- and outgoing particles which do not interact when sufficiently
far away. Moreover the initial and final states will be practically independent of tin
and tout as long as the latter are sufficiently large.

The initial state is composed from two ingoing electrons

|i〉 = a†α(~p1)a†β(~p2)|0〉. (9.12)

The electrons have definite momenta p1, p2. Let us assume they are in their centre
of mass frame with momenta aligned along the z axis

p1,2 = (e, 0, 0,±p) (9.13)

5Depending on conventions, our calculation may also represent positron-positron scattering.
Obviously, the cross section is exactly the same by charge conjugation symmetry.

9.4



where e2 = p2 +m2. The polarisations α, β are required to set up the state
properly. We will not care about them, so we should eventually average over all
ingoing polarisation configurations.

We want to probe the final state for two outgoing electrons

〈f| = 〈0|aδ(~q2)aγ(~q1). (9.14)

In the centre of mass frame they will escape in two opposite directions with the
same magnitude p of momentum. Due to rotational symmetry around the z axis,6

we only need to probe for particles in the x-z plane

q1,2 = (e,±p sin θ, 0,±p cos θ). (9.15)

Again we shall not care about the polarisations. We therefore have to sum over all
outgoing polarisation configurations.

For a fixed particle momentum p or energy e, we will be interested in the angular
distribution of outgoing particles. Due to rotational symmetry the differential
cross section dσ/dΩ must be an even function of the scattering angle θ alone. This
function also has the symmetry θ → π − θ because the outgoing particles are
indistinguishable

dσ

dΩ
=
dσ

dΩ
(θ) =

dσ

dΩ
(−θ) =

dσ

dΩ
(π − θ). (9.16)

Time Evolution. We now insert the time evolution operator Uint of the
interaction picture between the initial and final states to determine the probability
amplitude7

F = 〈f|Uint(tout, tin)|i〉 = (2π)4δ4(Pin − Pout)iM. (9.17)

The matrix element is a function of the momenta and the polarisations
Mαβγδ(p1, p2, q1, q2).8

The expansion of the amplitude at leading order reads simply

F (0) = 〈f|i〉
= 2e(~p1) 2e(~p2) (2π)6δ3(~p1 − ~q1)δ3(~p2 − ~q2)

− 2e(~p1) 2e(~p2) (2π)6δ3(~p1 − ~q2)δ3(~p2 − ~q1). (9.18)

The contribution from the free theory represents the situation when the two
particles pass by each other without scattering at all. Note that there are two
terms corresponding to the fact that the particles are indistinguishable.

At first perturbative order the matrix element vanishes

F (1) = i〈f|Sint|i〉 = i

∫
d4x 〈f|Lint(x)|i〉

= iq

∫
d4x 〈f|Aµ(x)ψ̄(x)γµψ(x)|i〉 = 0 (9.19)

6We will not measure polarisations which would otherwise break the symmetry.
7The conventional factor of i typically makes the leading contributions to M (mostly) real.
8We can write it as a function of all the external momenta noting that we shall only evaluate

it for p1 + p2 = q1 + q2.
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because there is a single electromagnetic field which cannot contract to anything
else and thus directly annihilates either of the vacua.

Second Order. For the next order we insert two interaction Lagrangians

F (2) = 1
2
i2
∫
d4x d4y 〈f|T

(
Lint(x)Lint(y)

)
|i〉. (9.20)

Each of the interaction Lagrangians contains an electromagnetic field. As they
would otherwise annihilate the vacua, they have to be contracted via Wick’s
theorem (for the field A) by a Feynman propagator

1
2
i2q2

∫
d4x d4y 〈f|T

(
Aµ(x)ψ̄(x)γµψ(x)Aν(y)ψ̄(y)γνψ(y)

)
|i〉

= 1
2
iq2

∫
d4x d4y GF

µν(x− y)〈f|T
(
ψ̄(x)γµψ(x) ψ̄(y)γνψ(y)

)
|i〉. (9.21)

Next, Wick’s theorem should be applied to the time-ordered spinor fields yielding
several contributions:

• There are two vacuum bubble contributions.

(9.22)

These vacuum processes take place everywhere and all the time, and they do not
interact with the scattering process. As discussed earlier, they must be
discarded.
• There are two correction terms with two remaining external fields.

(9.23)

They contribute to two point functions of spinor fields, but cannot be non-trivial
functions of all the four scattering particle momenta. Here they contribute only
to forward scattering, and we can safely ignore their contribution. We will
discuss their relevance later.
• Finally, there is one connected diagram.

(9.24)

This is the leading non-trivial contribution to the scattering process.
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Connected Contribution. In our case, the connected diagram is obtained by
replacing time ordering by normal ordering

1
2
iq2

∫
d4x d4y GF

µν(x− y)〈f|N
(
ψ̄(x)γµψ(x) ψ̄(y)γνψ(y)

)
|i〉. (9.25)

Now we need to contract the fields with the external particles. This is achieved by
the following two anti-commutators which follow from the mode expansion of the
free Dirac field

{ψ̄(x), a†α(~p)} = e−ip·xv̄α(~p),

{aα(~q), ψ(x)} = eiq·xvα(~q). (9.26)

Putting everything together we obtain the matrix element

F (2)
conn = iq2

∫
d4x d4y GF

µν(x− y)eiq1·x+iq2·y−ip1·x−ip2·y

· v̄α(~p1)γµvγ(~q1) v̄β(~p2)γνvδ(~q2)− . . .

= − (9.27)

The omitted term takes the same form, but with the two outgoing particles
exchanged (q1 ↔ q2, γ ↔ δ). The reason for the doubling of terms is that two
identical types of particles are scattered. The two-particle wave function is
anti-symmetric because the particles are fermionic.

The two remaining integrals are Fourier transforms. One of them transforms the
Feynman propagator to momentum space. The other one generates the momentum
conserving delta function. Altogether the integrals yields

(2π)4δ4(Pout − Pin)GF
µν(q1 − p1). (9.28)

We now separate off the momentum conserving delta function and write the
matrix element M 9

Mαβγδ =
q2ηµν

(p1 − q1)2
v̄α(~p1)γµvγ(~q1) v̄β(~p2)γνvδ(~q2)− . . . . (9.29)

We could try to evaluate the various spinor products. It turns out to be much
simpler to square the matrix element first

|M |2 =
1

4

∑
α,β,γ,δ

MαβγδM
∗
αβγδ. (9.30)

The factor of 1/22 originates from averaging over the polarisations of the ingoing
particles.

9The iε prescription for the Feynman propagator will not be relevant here.
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Sum over Polarisations. A pleasant feature of the polarisation sums is that
they can be performed by the completeness relations for spinor solutions∑

α

vα(~p)v̄α(~p) = p·γ −m. (9.31)

We obtain the following three terms

|M |2 =
q4Ttt

4(p1 − q1)4
+

q4Tuu
4(p1 − q2)4

− q4Ttu
2(p1 − q1)2(p1 − q2)2

, (9.32)

corresponding to the diagrams

(9.33)
The spinor products have turned into the traces

Ttt = tr[(p1·γ −m)γµ(q1·γ −m)γν ]

· tr[(p2·γ −m)γµ(q2·γ −m)γν ],

Tuu = tr[(p1·γ −m)γµ(q2·γ −m)γν ]

· tr[(p2·γ −m)γµ(q1·γ −m)γν ],

Ttu = tr[(p1·γ −m)γµ(q1·γ −m)γν(p2·γ −m)γµ(q2·γ −m)γν ]. (9.34)

The double-trace terms are most conveniently evaluated using the spinor trace
formulas10

tr(1) = 4,

tr(γµ) = 0,

tr(γµγν) = −4ηµν ,

tr(γµγνγρ) = 0,

tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ). (9.35)

This brings Ttt into the following form

Ttt = 16(p1µq1ν + q1µp1ν − (p1·q1 +m2)ηµν)

· (pµ2qν2 + qµ2 p
ν
2 − (p2·q2 +m2)ηµν)

= 32(p1·p2)(q1·q2) + 32(p1·q2)(q1·p2)

+ 32m2(p1·q1 + p2·q2) + 64m4. (9.36)

10The latter of these formulas follow from anti-commuting one gamma matrix past all the others.
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The other double-trace term takes a similar form with q1 and q2 interchanged. The
crossed single-trace term can be simplified by means of the enveloping identities

γµγ
µ = −4,

γµγ
νγµ = 2γν ,

γµγ
νγργµ = 4ηνρ,

γµγ
νγργσγµ = 2γσγργν . (9.37)

After some algebra we obtain

Ttu = − 32(q1·q2)(p1·p2)− 32m4

− 16m2(p1·p2 + p1·q1 + p1·q2 + p2·q1 + p2·q2 + q1·q2). (9.38)

Mandelstam Invariants. In order to simplify the expressions we introduce the
Mandelstam invariants

s = −(p1 + p2)2 = −(q1 + q2)2,

t = −(p1 − q1)2 = −(p2 − q2)2,

u = −(p1 − q2)2 = −(p2 − q1)2. (9.39)

Inverting the relations we can write all scalar products of momenta using the s, t, u

p1·p2 = q1·q2 = m2 − 1
2
s,

p1·q1 = p2·q2 = 1
2
t−m2,

p1·q2 = p2·q1 = 1
2
u−m2. (9.40)

Note furthermore that momentum conservation implies the relation11

s+ t+ u = 4m2. (9.41)

Using Mandelstam invariants, the traces can be expressed very compactly as12

Ttt = 8(t2 − 2su+ 8m4),

Tuu = 8(u2 − 2st+ 8m4),

Ttu = −8(s2 − 8m2s+ 12m4). (9.42)

The squared matrix element now reads13

|M |2 = q4

(
u− s
t

+
t− s
u

)2

+
16q4m2(5m2 − 2s)

tu
. (9.43)

This expression is symmetric under exchange of t and u as it should because the
outgoing particles are of the same kind.

11This constraint implies that functions of s, t, u can be written in several alternative ways much
alike functions of p1, p2, q1, q2 which are constrained by p1 + p2 − q1 − q2 = 0.

12It is not straight-forward to derive these particular expressions, but it is easy to confirm that
they match with some other expression upon substituting, e.g. s = 4m2 − t− u.

13We can identify the first term as the corresponding result in scalar QED.
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Angular Distribution. In order to understand the angular distribution of
scattered particles we express the invariants in terms of the scattering angle θ

s = 4p2 + 4m2, t = −2p2(1− cos θ), u = −2p2(1 + cos θ). (9.44)

and insert everything into the differential cross section

dσ

dΩ
=

q4

64π2e2

(
(4p2 + 2m2)2

p4 sin4 θ
− 8p4 + 12m2p2 + 3m4

p4 sin2 θ
+ 1

)
. (9.45)

This expression is the leading non-trivial contribution to the angular distribution
of scattered electrons.

We can however notice a problem by inspecting the expression. It diverges when

• the electron momenta p are small or
• the scattering angle θ is close to 0 or π.

In those regimes the formula cannot be trusted. The deeper reason for the
divergences is that the photons which transmit the electromagnetic force are
massless. Massless particles cause some conceptual problems in scattering
processes.

The divergences are also relevant to the total cross section14

σ =

∫ 1

0

2πd cos θ
dσ

dΩ
. (9.46)

This integral diverges at cos θ = 1.

In order to properly address the above problematic regimes, one would have to
take higher perturbative corrections and competing processes into account.
However, only the full non-perturbative expression can provide exact results in
those regimes.

Nevertheless one should not expect a meaningful result for the total cross section
because the electromagnetic force is long-ranged: The photon propagator is not
exponentially suppressed at long distances. Effectively all particles scatter at least
by tiny amount and therefore the overall probability for scattering is 1. The
scattering cross section σ is the complete area A of the bunches which is infinite
due to our assumption of exactly defined momenta.

14The outgoing particles are indistinguishable, hence the integration extends only over one half of
the spherical angles. This is sufficient since at leading order 〈f|i〉 has two terms one of which covers
the opposite angles π − θ. Alternative the integral over all spherical angles must be multiplied by
a factor of 1

2 .
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Crossing Symmetry. A closely related process is the scattering of electrons and
positrons (Bhabha scattering).

(9.47)

It can be computed in much the same way.

The relevant connected diagrams for electron-positron scattering are

. (9.48)

The cross section turns out to be exactly the same as for electron scattering but
with s and u interchanged

s↔ u. (9.49)

The resulting leading contribution to the squared matrix element is15

|M |2 = q4

(
s− u
t

+
t− u
s

)2

+
16q4m2(5m2 − 2u)

st
. (9.50)

Indeed the computation is exactly the same when replacing

p2 ↔ −q2,
∑
α

vα(~p2)v̄α(~p2)↔ −
∑
α

uα(~q2)ūα(~q2). (9.51)

This relationship is called crossing symmetry. In terms of Feynman diagrams, the
positron line is equivalent to the electron line in reverse direction

←→ . (9.52)

15Apart from effects due to identical particles, the electron-positron scattering cross section
does not differ substantially from the case of electron-electron scattering. The difference between
attraction and repulsion manifests in the phase of matrix elements rather than in their absolute
value.
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9.4 Pair Production

The above electron-positron scattering involves a process where the two particles
combine into a photon and subsequently split up into a pair. This process is mixed
with photon exchange in the t channel.

A class of similar processes is pair production where the oppositely charged
particles annihilate and create a pair of charged particles of a different kind.

(9.53)

Let us compute scattering cross sections for such processes.

We assume that the outgoing particles have a mass mf and charge ±qf which is
different from the ingoing ones labelled by mi and ±qi.

Spinor Processes. First we consider the case where all external particles are
spinors

(9.54)

There is now only one spinor trace to be evaluated

T = tr[(p1·γ −mi)γµ(p2·γ +mi)γν ]

· tr[(q1·γ +mf)γ
µ(q2·γ −mf)γ

ν ],

= 16(−p1µp2ν − p2µp1ν − (−p1·p2 +m2
i )ηµν)

· (−qµ1 qν2 − q
µ
2 q

ν
1 − (−q1·q2 +m2

f )ηµν)

= 4(t− u)2 + 4s2 + 16(m2
i +m2

f )s. (9.55)

The Mandelstam invariants are defined as above, but due to the different masses
their relationships have to be adjusted

p1·p2 = m2
i − 1

2
s,

q1·q2 = m2
f − 1

2
s,

p1·q1 = p2·q2 = 1
2
t− 1

2
m2

i − 1
2
m2

f ,

p1·q2 = p2·q1 = 1
2
u− 1

2
m2

i − 1
2
m2

f ,

s+ t+ u = 2m2
i + 2m2

f . (9.56)
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Next we express the invariants as functions of the scattering angle

s = 4e2, t = −2pipf(1− cos θ), u = −2pipf(1 + cos θ). (9.57)

The unpolarised matrix element squared now reads

|M |2 =
q2

i q
2
f T

4s

= q2
i q

2
f

(
e2 −m2

i

e2

e2 −m2
f

e2
cos2 θ +

m2
i +m2

f

e2
+ 1

)
. (9.58)

The formula for the differential cross section for our configuration of masses and
momenta in the centre of mass frame reads

dσ

dΩ
=

√
e2 −m2

f

e2 −m2
i

|M |2

256π2e2
. (9.59)

Total Cross Section. This expression is free from singularities and can be
integrated to a total cross section

σ = 4π

∫ 1

−1

d cos θ

2

dσ

dΩ
=

1

64πe2

√
e2 −m2

f

e2 −m2
i

∫ 1

−1

d cos θ

2
|M |2 . (9.60)

Upon integration we obtain the final result

σ =
q2

i q
2
f

48πe2

√
e2 −m2

f

e2 −m2
i

e2 + 1
2
m2

i

e2

e2 + 1
2
m2

f

e2
. (9.61)

We can plot the energy-dependence of this function.

(9.62)

Quite clearly the total energy 2e of the scattered particles must be at least as large
as the sum of masses 2mf of produced particles. There is a sharp increase above
production threshold, a maximum slightly above threshold (for mi < mf), and a
slow 1/e2 descent.
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Processes Involving Scalars. It is interesting to compare this process to the
corresponding one of charged scalars. The matrix element reads

|M |2 = q2
i q

2
f

(t− u)2

s2
= q2

i q
2
f

e2 −m2
i

e2

e2 −m2
f

e2
cos2 θ , (9.63)

and after integration we obtain the total cross section

σ =
q2

i q
2
f

192πe2

√
e2 −m2

f

e2 −m2
i

e2 −m2
i

e2

e2 −m2
f

e2
. (9.64)

Let us finally consider a mixed process of spinors scattering into scalars for which
the matrix element reads

|M |2 = q2
i q

2
f

−(t− u)2 + s2 − 4m2
f s

s2

= q2
i q

2
f

e2 − (e2 −m2
i ) cos2 θ

e2

e2 −m2
f

e2
. (9.65)

For the total cross section we obtain

σ =
q2

i q
2
f

192πe2

√
e2 −m2

f

e2 −m2
i

e2 + 1
2
m2

i

e2

e2 −m2
f

e2
. (9.66)

The opposite process of scalars scattering into spinors merely has a different
overall factor

σ =
q2

i q
2
f

48πe2

√
e2 −m2

f

e2 −m2
i

e2 −m2
i

e2

e2 + 1
2
m2

f

e2
. (9.67)

We observe that, although the matrix elements differ substantially, the final cross
sections take a very predictable form: There are particular factors for scalars and
spinors in the initial and final states, namely

• e2 −m2 for ingoing scalars,
• e2 + 1

2
m2

i for ingoing spinors,
• e2 −m2

f for outgoing scalars,
• 4(e2 + 1

2
m2

f ) for outgoing spinors.

The square root on the other hand is a kinematical factor corresponding to the
number/volume of initial and final states (phase space).

The factors actually follow from the total spin of the pairs of particles. Assume
that a spin-0 state couples to the photon by a factor e2 −m2 whereas a spin-1
state couples via e2 +m2.16 Then for scalar we immediately obtain e2 −m2

whereas the four polarisations of two spinors make up one spin-0 and three spin-1
states yielding a factor of (e2 −m2) + 3(e2 +m2) = 4(e2 + 1

2
m2). For ingoing

spinors the factor of 4 is compensated by taking the average rather than that sum.

16It is reasonable that close to threshold e2 = m2 the spin-1 coupling dominates because the
photon is a vector particle. Above threshold the outgoing particles can also have orbital angular
momentum whose spin-1 component would also couple to the photon. Therefore the increase at
threshold is much softer for scalars than for spinors.
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9.5 Loop Contributions

We have obtained the leading-order contributions to some particle scattering
processes. Let us finally peek at contributions at higher orders in the perturbation
series.

For the electron scattering process at the next order q4 there are several types of
diagrams contributing.

(9.68)

Here we listed only the connected diagrams up to obvious symmetric copies.

It is easy to see that these diagrams lead to two types of problems

• The diagram with a bubble on the external leg is ill-defined.

(9.69)

Due to momentum conservation the momentum on both sides of the bubble is
the same. All external momenta originate from particle creation and
annihilation operators a†(~p) and a(~p). These momenta are exactly on the mass
shell p2 = −m2. Conversely, the internal line represents a Feynman propagator
1/(p2 +m2 − iε) which is to be evaluated right on the pole

1

p2 +m2 − iε
at p2 = −m2. (9.70)

This diagram therefore makes no sense as a contribution to the scattering
process.
• Most of the integrals are actually divergent in the UV, i.e. where the loop

momentum ` is very large. For example, the bubble on the photon line yields

∼
∫
d4`

`2 + . . .

`4 + . . .
∼
∫
d4`

`2
→∞. (9.71)

We have to understand how to deal with these two problems. This is going to be
the subject of the final two chapters.
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10 Scattering Matrix

When we computed some simple scattering processes we did not really know what
we were doing. At leading order this did not matter, but at higher orders
complications arise. Let us therefore discuss the asymptotic particle states and
their scattering matrix in more detail.

10.1 Asymptotic States

First we need to understand asymptotic particle states in the interacting theory

|p1, p2, . . .〉. (10.1)

In particular, we need to understand how to include them in calculations by
expressing them in terms of the interacting field φ(x).

Asymptotic particles behave like free particles at least in the absence of other
nearby asymptotic particles. For free fields we have seen how to encode the
particle modes into two-point correlators, commutators and propagators. Let us
therefore investigate these characteristic functions in the interacting model.

Two-Point Correlator. Consider first the correlator of two interacting fields

∆+(x− y) := 〈0|φ(x)φ(y)|0〉. (10.2)

Due to Poincaré symmetry, it must take the form

∆+(x) =

∫
d4p

(2π)4
e−ip·x θ(p0)ρ(−p2). (10.3)

The factor θ(p0) ensures that all excitations of the ground state |0〉 have positive
energy. The function ρ(s) parametrises our ignorance. We do not want tachyonic
excitations, hence the function should be supported on positive values of s = m2.
We now insert a delta function to express the correlator in terms of the free
two-point correlator ∆+(s;x, y) with mass

√
s (Källén, Lehmann)

∆+(x) =

∫ ∞
0

ds

2π
ρ(s)

∫
d4p

(2π)4
e−ip·x θ(p0)2πδ(p2 + s)

=

∫ ∞
0

ds

2π
ρ(s)∆+(s;x). (10.4)

This identifies ρ(s) as the spectral function for the field φ(x): It tells us by what
amount particle modes of mass

√
s will be excited by the field φ(x).1

1The spectral function describes the spectrum of quantum states only to some extent. However,
not all states may be excited by the action of a single φ(x). In particular, in a model with several
fields, each field can excite only a subset of particles or states (e.g. the appropriate charges have
to match).
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Spectral Function. For a free field of mass m0 we clearly have

ρ0(s) = 2πδ(s−m2
0). (10.5)

For weakly interacting fields, we should obtain a similar expression. In typical
situations we expect the spectral function to have the following shape

(10.6)

The sharp isolated peak represents a single particle excitation with mass m. Now
the field φ(x) may also excite multi-particle modes (with the same quantum
numbers). Multi-particle modes in the free theory would have energy e ≥ 2m. In
the spectral function they form a continuum since the momenta of the individual
particles can sum up to arbitrary energies in the frame at rest. In the presence of
interactions, bound states may form whose rest energies are somewhat below
e = 2m. Whenever these bound states are stable they will also be represented by
sharp peaks.

We observe that our spectral function has at least two mass gaps: One separates
the vacuum from the lowest excitation; the other separates this latter from bound
states and the multi-particle continuum. The isolated modes are called asymptotic
particles. This is the type of particle which we would like to collide. The
assumption of a mass gap is crucial in this definition.

For weak interactions, we expect that the free particle mode approximates the
asymptotic particle well.2 The interactions may shift the mass m0 → m slightly;
they may also change the strength with which this mode is excited by the field
φ(x). Therefore the weakly interacting spectral function takes the form

ρ(s) = 2πZδ(s−m2) + bound states + continuum. (10.7)

The factor Z is called field strength or wave function renormalisation.

Asymptotic Particles. Based on the above discussion we can expand the field
φ(x) as

φ(x) =
√
Zφas(x)︸ ︷︷ ︸
a†+a

+ bound states + continuum︸ ︷︷ ︸
(a†)n+an

+ operators︸ ︷︷ ︸
(a†)man

. (10.8)

2For reasonably strong interactions, bound states may approach the single particle states and
even acquire lower energies. This case shows that the notion of fundamental particles is not
evident in general QFT, but it belongs to weakly interacting models. In fact, some models may
have alternative formulations where the fundamental degrees of freedom are some bound states of
the original formulation.
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Here φas(x) is a canonically normalised free field of mass m expressed by means of
creation and annihilation operators a†, a

φas(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xa(~p) + eip·xa†(~p)

)
. (10.9)

The other terms in the field φ(x) are multiple creation and/or annihilation
operators.

Single particle asymptotic states are created simply by a†(~p) from the vacuum.
The Hamiltonian Has for the free asymptotic field reads

Has =

∫
d3~p

(2π)3 2e(~p)
e(~p)a†(~p)a(~p). (10.10)

The characteristic property of Has is that it reproduces exactly the time evolution
of the vacuum and single-particle states

Has|0〉 = 0 = H|0〉, Hasa
†(~p)|0〉 = e(~p)a†(~p)|0〉 = Ha†(~p)|0〉. (10.11)

We shall use the free creation and annihilation operators as some convenient basis
to expand our interacting fields. The omitted terms in the field φ(x) are some
higher-order polynomials in the operators a†, a which create and annihilate bound
state particles and states from the multi-particle continuum.

Commutator and Normalisation. The other characteristic functions now
follow from our expression for the correlator. As before these can be expressed as
convolutions of the same spectral function ρ(s) with their free counterparts.

The expectation value of the unequal time commutator

∆(x− y) := 〈0|[φ(~x), φ(~y)]|0〉 (10.12)

therefore reads

∆(x) =

∫ ∞
0

ds

2π
ρ(s)∆(s;x). (10.13)

We know that for a normalised free field the equal time commutation relations
imply −∆̇(s; 0, ~x) = iδ3(~x). Hence

〈0|[φ(~x), φ̇(~y)]|0〉 = −∆̇(0, ~x− ~y) = iδ3(~x)

∫ ∞
0

ds

2π
ρ(s). (10.14)

Assuming that the field φ(x) is canonically normalised,3 we have the constraint∫ ∞
0

ds

2π
ρ(s) = 1. (10.15)

When using the above expansion of the real field φ(x) in terms of creation and
annihilation operators, it also follows that the function ρ(s) must be positive.
Hence the coefficient Z for the asymptotic modes should be between 0 and 1.

3This is evident at least if the interaction terms do not contain derivatives.
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10.2 S-Matrix

For the scattering setup we define two asymptotic regions of spacetime, one in the
distance past tin → −∞ and one in the distant future tout → +∞.

Asymptotic Regions. On the initial time slice we create wave packets which
are well separated in position space and narrowly peaked in momentum space. We
let these quantum mechanical wave packets evolve in time. At some instance the
wave packets collide. Then the state is evolved further until all outgoing wave
packets are sufficiently well separated

|f〉 = exp
(
−iH(tout − tin)

)
|i〉. (10.16)

Now the initial and final states are in the Schrödinger picture and they evolve even
at asymptotic times. It is hard to compare them to see what the effect of
scattering is.4

(10.17)

At asymptotic times the wave packets are assumed to be sufficiently well separated
such that they effectively do not interact. Therefore we can use the asymptotic
Hamiltonian of the asymptotic field φas

5

Has =

∫
d3~p

(2π)3 2e(~p)
e(~p)a†(~p)a(~p). (10.18)

to shift the two time slices onto a common one conventionally positioned at t = 0

|out〉 = exp
(
iHastout

)
|f〉, |i〉 = exp

(
−iHastin

)
|in〉. (10.19)

The relationship between the in and out states is the following

|out〉 = exp
(
iHastout

)
exp
(
−iH(tout − tin)

)
exp
(
−iHastin

)
|in〉

=: Uas(tout, tin)|in〉. (10.20)

The in and out states |in〉 and |out〉 are both defined at time t = 0. Consequently,
they are elements of the same Hilbert space and can be compared directly. The

4The latter figure is somewhat misleading in a quantum mechanical setting. It shows only one
out of many potential final states.

5This asymptotic Hamiltonian is a specialisation of the free Hamiltonian H0 used previously in
the interaction picture. The free Hamiltonian was merely required to agree with the full Hamil-
tonian at leading order. The asymptotic Hamiltonian furthermore has to agree with the full
Hamiltonian exactly when action on the vacuum or one-particle states.
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operator Uas is the time evolution operator for the interaction picture based on the
asymptotic Hamiltonian Has and the reference time slice at t = 0.

(10.21)

S-Matrix Definition. As interactions have become negligible at asymptotic
times, the in and out states are almost independent of tin and tout. It therefore
makes sense to take the limit tin,out → ∓∞. The limit of the time evolution
operator for infinite times is called the S-matrix

S = lim
tin,out→∓∞

exp
(
iHastout

)
exp
(
iH(tin − tout)

)
exp
(
−iHastin

)
.

= lim
tin,out→∓∞

U(tout, tin) = U(+∞,−∞). (10.22)

It transforms in states to out states

|out〉 = S|in〉. (10.23)

Note that the in and out Hilbert spaces are isomorphic.6 This allows us to compare
states between the two. To compute matrix elements of the S-matrix, prepare
definite in and out states7 using the creation and annihilation operators a†, a

|in〉 = |p1, . . . , pm〉 := a†(~p1) . . . a†(~pm)|0〉,
〈out| = 〈q1, . . . , qn| := 〈0|a(~q1) . . . a(~qn). (10.24)

Conventionally, scattering amplitudes M are defined as the matrix elements of
S − 1 with the overall momentum-conserving delta function stripped off

〈out|(S − 1)|in〉 = (2π)4δ4(Pin − Pout)iM(p1, . . . pm; q1, . . . , qn). (10.25)

The combination S − 1 is particularly useful for 2→ n scattering processes: It
removes all direct connections between the in and out states as well as all other
disconnected contributions.8

Properties of the S-Matrix. The S-matrix has a number of useful properties,
let us list a few relevant ones.

First of all, the S-matrix is trivial for the ground state and for single-particle states

S|0〉 = |0〉, S|~p〉 = |~p〉. (10.26)

6It is natural to assume that outgoing particles of some scattering process can be used as ingoing
particles of another scattering process. Therefore the in and out spaces must be isomorphic.

7These in and out states are not to be related by |out〉 = S|in〉.
8When one of the ingoing particles does not participate in the scattering, the S-matrix must

act trivially on the other. For general m→ n scattering, the matrix elements indeed contain direct
connections and disconnected contributions.
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This follows from the definition of the asymptotic Hamiltonian to strictly emulate
the action of the interacting Hamiltonian on these states.

The S-matrix is a unitary operator

S† = S−1. (10.27)

This property follows from the definition. It reflects the fact that probabilities are
conserved across scattering processes.

The S-matrix is also Poincaré invariant

U(ω, a)SU(ω, a)−1 = S. (10.28)

10.3 Time-Ordered Correlators

When we expressed the time-evolution operator in the interaction picture, we
realised that time-ordered correlation functions 〈φ(x1) . . . φ(xn)〉 are very natural
objects. The S-matrix is defined as the time evolution operator for the interaction
picture in terms of asymptotic states. Lehmann, Symanzik and Zimmermann
derived a relationship between the S-matrix elements and time-ordered expectation
values.

Asymptotic States. First we need to understand how to represent particle
creation and annihilation operators a†, a in terms of the field φ(x). Above we have
expanded the field φ(x) as

φ(x) =
√
Z

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xa(~p) + eip·xa†(~p)

)
+ . . . . (10.29)

The omitted terms represent the contributions from multi-particle states and
operators which annihilate the vacuum.

Previously we were able to isolate a†(~p) from a time slice of the free field φ0(x) as

a†(~p) =

∫
d3~x e−ip·x

(
e(~p)φ0(x)− iφ̇0(x)

)
. (10.30)

This was easy because there are only two modes with e = ±e(~p) in the free field
φ0. The linear combination of φ and φ̇ selects the correct one.

The interacting field, however, in general carries many other modes whose precise
nature we do not understand a priori. To select the modes corresponding to a† and
a we need to drive the field φ(x) for a sufficiently long time with a frequency that
is in resonance with the relevant modes. Let us sketch the construction for a single
oscillator f(t) = ceiωt with resonance frequency ω

F (e) =

∫ t2

t1

dt e−ietf(t) =
ic

e− ω
(
e−i(e−ω)t2 − e−i(e−ω)t1

)
(10.31)
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The longer the time, the stronger will be the amplitude at e = ω. At infinite time
the function F (e) develops a pole at e, so we set t1 = −∞

F (e) =

∫ t2

−∞
dt e−ietf(t) =

ice−i(e−ω)t2

e− ω
=

ic

e− ω
+ finite. (10.32)

Here we have discarded the term that keeps oscillating at asymptotic times.9 What
remains is an isolated pole at e = ω whose residue is proportional to the amplitude
c. The residue is in fact independent of the time t2 where the driving stops.

Applied to the field φ(x) we find∫ t2

−∞
dt

∫
d3~x e−ip·xφ(x) (10.33)

=
i
√
Z

p2 +m2

(
θ(−e)ain(−~p)− θ(e)a†in(~p)

)
+ . . . . (10.34)

What remains are isolated poles at e = ±e(~p) whose residues are creation and
annihilation operators for ingoing asymptotic particles. The remaining terms are
either finite or irrelevant when creating well-separated wave packets. We decided
to shift the ingoing Fock space back to the time t = 0 using the free asymptotic
Hamiltonian. Therefore we conjugate the creation and annihilation operators by
the appropriate time evolution operator

ain(~p) = U(0,−∞)a(~p)U(−∞, 0). (10.35)

We note:

• The residues of the pole 1/(p2 +m2) isolate the creation and annihilation
operators.10

• The residues at positive and negative energies correspond to creation and
annihilation operators, respectively.
• The residues do not depend on the final time t2.
• Bound state particles correspond to similar poles at different energies.

A similar expression with opposite sign is obtained for driving the field into the
distant future ∫ ∞

t1

dt

∫
d3~x e−ip·xφ(x) (10.36)

= − i
√
Z

p2 +m2

(
θ(−e)aout(−~p)− θ(e)a†out(~p)

)
+ . . . . (10.37)

Here we identify
aout(~p) = U(0,+∞)a(~p)U(+∞, 0). (10.38)

9As usual, one could formally dampen this term by introducing some small imaginary part.
This may be an approximation, but even in practice, one can never isolate a resonance perfectly.

10The can be further operators consisting of several creation and annihilation operators.
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LSZ Reduction. We want to express the elements of the S-matrix in terms of
time-ordered correlation functions in momentum space. Let us start with the
time-ordered expectation value

Fm,n(p, q) =

∫ m∏
k=1

(
d4xk e

−ipk·xk
) n∏
k=1

(
d4yk e

iqk·yk
)

〈0|T
(
φ(x1) . . . φ(xn)φ(y1) . . . φ(ym)

)
|0〉. (10.39)

Consider just the integral of the quantum operator over one of the xk

X =

∫
d4x e−ip·xT

(
φ(x)Y

)
. (10.40)

Now split up the time integral into three regions at the times tmin and tmax

representing the minimal and maximal times within the operator Y

X =

∫ tmin

−∞
dt

∫
d3~x e−ip·xT(Y )φ(x)

+

∫ tmax

tmin

dt

∫
d3~x e−ip·xT

(
φ(x)Y

)
+

∫ +∞

tmax

dt

∫
d3~x e−ip·xφ(x)T(Y ). (10.41)

According to the results of the above consideration of resonances, the two integrals
extending to t = ±∞ produce a pole when the momentum is on shell, p2 = −m2.
Conversely, the middle integral is finite and therefore does not produce a pole. We
can express the residue of the pole using creation operators of in and out particles

X ' −i
√
Z

p2 +m2

(
T(Y )a†in(~p)− a†out(~p)T(Y )

)
, (10.42)

where we discard finite contributions at p2 = −m2. Performing this step for all
ingoing particles yields

Fm,n '
m∏
k=1

(
−i
√
Z

p2
k +m2

)∫ n∏
k=1

(
d4yk e

iqk·yk
)

〈0|T
(
φ(y1) . . . φ(ym)

)
a†in(~p1) . . . a†in(~pm)|0〉

=
m∏
k=1

(
−i
√
Z

p2
k +m2

)∫ n∏
k=1

(
d4yk e

iqk·yk
)

〈0|T
(
φ(y1) . . . φ(ym)

)
U(0,−∞)a†(~p1) . . . a†(~pm)|0〉. (10.43)

Note that all outgoing creation operators a†out directly annihilate the vacuum 〈0|.
Now we perform equivalent steps for the outgoing particles. We use a similar
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relation as above dressed by factors of U(+∞, 0) and U(0,−∞)

X =

∫
d4y eiq·yU(+∞, 0)T

(
φ(y)Y

)
U(0,−∞). (10.44)

' −i
√
Z

q2 +m2

(
U(+∞, 0)T(Y )ain(~q)U(0,−∞) (10.45)

− U(+∞, 0)aout(~q)T(Y )U(0,−∞)
)
, (10.46)

' −i
√
Z

q2 +m2
[U(+∞, 0)T(Y )U(0,−∞), a(~q)]. (10.47)

For each particle this yields one commutator of the remaining fields
U(+∞, 0)T(Y )U(0,−∞) with an annihilation operator. After performing this step
for all the outgoing particles, we are left with the S-matrix

U(+∞, 0)T(1)U(0,−∞) = S. (10.48)

Altogether we find that the residue of Fm,n is given by an element of the S-matrix

Fm,n '
m∏
k=1

(
−i
√
Z

p2
k +m2

)
n∏
k=1

(
−i
√
Z

q2
k +m2

)
〈0|[a(~q1), . . . [a(~qn), S] . . .]a†(~p1) . . . a†(~pm)|0〉. (10.49)

Here, the commutators make all the a(~qk) connect only to the S-matrix. Now there
is nothing else left, and therefore also all a†(~pk) must connect to S.

10.4 S-Matrix Reconstruction

We have seen that time-ordered correlation functions have poles when the external
fields are on the mass shell of asymptotic particles. The residue of these poles is
given by the corresponding element of the scattering matrix.

We can therefore fully reconstruct the S-matrix from time-ordered correlation
functions.

Two-Point Correlator. In the construction of the S-matrix, the two-point
correlation function takes a special role. First, consider the above residue formula
for two legs

F1,1 '
−i
√
Z

p2 +m2

−i
√
Z

q2 +m2
〈0|a(~q)(S − 1)a†(~p)|0〉. (10.50)

Momentum conservation implies p = q, hence the residue of a double pole at
p2 = −m2 is given by 〈0|a(~q)(S − 1)a†(~p)|0〉. However, the S-matrix should act as
the identity on single-particle states. We conclude that there is no double pole in
F1,1 at p2 = −m2. There is no reason to expect a double pole in the first place,
therefore the above residue statement is empty for m = n = 1.
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There is nevertheless a single pole at p2 = −m2 as can be shown using the spectral
representation of the time-ordered two-point function

F2(x− y) = 〈φ(x)φ(y)〉 := 〈0|T
(
φ(x)φ(y)

)
|0〉. (10.51)

Using the spectral function ρ(s) of the interacting field φ(x), it can be written in
terms of the free Feynman propagator of mass

√
s

F2(x− y) = −i
∫ ∞

0

ds

2π
ρ(s)GF(s;x− y). (10.52)

Most importantly, its momentum space representation

F2(p) = −i
∫ ∞

0

ds

2π

ρ(s)

p2 + s− iε
=

−iZ
p2 +m2 − iε

+ . . . (10.53)

contains the parameters of the asymptotic particle: The function F2(p) has an
isolated pole at the physical mass m, and its residue is the wave function
renormalisation factor Z.

Now we can nicely expand F2 in terms of Feynman diagrams with two external
legs and thus determine m and Z.

Amputation. The residue formula for the time-ordered correlation functions can
be inverted to a complete expression for the S-matrix

S = 1 +
∞∑

m,n=2

∫ n∏
k=1

d3~qk a
†(~qk)

(2π)3 2e(~q)

m∏
k=1

d3~pk a(~pk)

(2π)3 2e(~p)

·

(
Fm,n(p, q)

m!n!

m∏
k=1

p2
k +m2

−i
√
Z

n∏
k=1

q2
k +m2

−i
√
Z

)
.

Importantly, the poles and zeros of the latter term must be combined before the
momenta are set on shell p2

k = q2
k = −m2. The construction of this expression

ensures that

• the vacuum does not scatter, S|0〉 = |0〉,
• single-particle states do not scatter, S|p〉 = |p〉,
• for more two or more particles, the residue of Fm,n is reproduced according to

the above formula.

It is now convenient to replace each factor (p2
k +m2) by the inverse of the

corresponding two-point function in the construction of the S-matrix

S = 1 +
∞∑

m,n=2

∫ n∏
k=1

d3~qk a
†(~qk)

(2π)3 2e(~q)

m∏
k=1

d3~pk a(~pk)

(2π)3 2e(~p)

·

(
Fm,n(p, q)

m!n!

m∏
k=1

√
Z

F2(pk)

n∏
k=1

√
Z

F2(qk)

)
.
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This formula has a useful interpretation in terms of Feynman graphs for Fm,n.

= (10.54)

In the second representation we have cut the graph into a smaller (m+ n)-function
and m+ n 2-point functions according to the rules:

• Each 2-point function connects an external leg to the (m+ n)-function at the
core.
• Each 2-point function is maximal.
• The Feynman propagator that connects the 2-point function to the core is

attributed to the 2-point function.

Essentially one chops each leg of the graph as much as possible. Such a graph is
called amputated.

Now it is clear that each 2-point fragment of the graph is a Feynman graph for the
two-point function F2. Moreover all these graphs have natural relative weights.
The sum of all Feynman graphs contributing to Fm,n therefore contains the sum of
all graphs contributing to F2 separately for each leg

= = (10.55)

What remains is a sum over all amputated Feynman graphs at the core. This
expression separates cleanly into factors because all the weights are naturally
defined

Fm,n(p, q) = F̃m,n(p, q)
m∏
k=1

F2(pk)
n∏
k=1

F2(qk). (10.56)

The function F̃m,n therefore is precisely what is needed for reconstruction of the
S-matrix

S = 1 +
∞∑

m,n=2

∫ n∏
k=1

d3~qk a
†(~qk)

(2π)3 2e(~q)

m∏
k=1

d3~pk a(~pk)

(2π)3 2e(~p)

√
Z
m+n

m!n!
F̃m,n.

In other words, the elements of the S-matrix are determined precisely by the sum
of amputated Feynman graphs multiplied by

√
Z for each external leg.
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In General. The general picture is as follows: Poles in the time-ordered
two-point function F2(p) indicate stable asymptotic particle states.11 12

• These may be deformations of the poles in the free theory.
• They may as well be poles corresponding to bound states.
• Also poles for correlators of composite fields are permissible.

The location p2 = −m2 of the pole defines the mass m of the particle.
Time-ordered multi-point correlation functions have poles at these locations. Their
overall residue yields the corresponding element of the S-matrix. Some comments:

• It is clear that all the external legs of the S-matrix must be exactly on shell.
• Note that in this picture of the S-matrix, crossing symmetry follows from

crossing symmetry of time-ordered correlators.
• The S-matrix is completely determined in terms of time-ordered correlation

functions. No reference is made to the original formulation of the QFT, e.g. the
Lagrangian. This fact will be crucial when we go to higher perturbative orders
where Feynman diagrams have internal loops.

Feynman Rules. Let us summarise the Feynman rules for elements of the
S-matrix in φ4 theory

〈q1, . . . , qn|S|p1, . . . , pm〉. (10.57)

The matrix element is given by the sum of all graphs with certain properties. The
properties are similar to the properties of Feynman graphs for correlation functions
in momentum space, but mainly the external legs are handled differently. Let us
state the modified and additional rules:

• The graph has m ingoing and n outgoing external lines labelled by momenta pk
and qk, respectively.

(10.58)

• The external momenta must be on the mass shell, p2
k = q2

k = −m2, and must
have positive energy.
• Cutting the graph at any internal line must not split off a graph with two

11When a field has several components, the notion of pole is more subtle in the sense that the
residue of a pole is typically a matrix of non-maximal rank, e.g. p·γ +m for spinor fields. In this
case only the vectors which are not projected out correspond to asymptotic particles.

12In practice one may not be able to distinguish an exact pole from a very narrow resonance.
One might consider such resonances at the same level as stable external particles and allow them
as legs of the S-matrix. Such an S-matrix would not rest on rigorous assumptions and therefore not
all theorems apply in a strict sense. In this regard, one should remember that in quantum physics
one has to make some separation of scales into the microscopic quantum regime and the regime
of macroscopic classical objects. Alternatively, resonances can be viewed as asymptotic particles
with a complex mass parameter.
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external lines (amputated graph).

(10.59)

The Feynman rules for evaluating a graph are the same as for correlation functions
in momentum space except:

• For each external line write a factor of
√
Z instead of a Feynman propagator

−i/(p2
j +m2 − iε).

, →
√
Z. (10.60)

• Any external line which directly connects an ingoing to an outgoing particle
contributes a factor of 〈qk|pl〉 = 2e(~pl)(2π)3δ3(~pl − ~qk). This line simply bypasses
the S-matrix.13

→ 2e(~pj) (2π)3δ3(~pj − ~qk). (10.61)

For Quantum Electrodynamics the Feynman rules for scattering matrix elements
also has to be adjusted w.r.t. the Feynman rules in momentum space, namely:

• For each external spinor line, write a factor of
√
Zψ along with uα(~q), ūα(~p),

vα(~p) or v̄α(~q) depending on whether the particle is in- or outgoing and whether
it is an electron or a positron.

→
√
Zψ vαj

(~pj), →
√
Zψ ūαj

(~pj),

→
√
Zψ v̄αj

(~qj), →
√
Zψ uαj

(~qj) (10.62)

• For external photon lines, write a factor of
√
ZA along with a normalised

transverse polarisation vector eµ(~p).

→
√
ZA εαj

(~pj), →
√
ZA ε

∗
αj

(~qj) (10.63)

13Such contributions do not directly correspond to the identity within S, i.e. they are present in
S − 1, but only for at least 3 ingoing particles.
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10.5 Unitarity

The S-matrix is a unitary operator

S† = S−1. (10.64)

This is an essential feature of any physical QFT. However, when deriving the
S-matrix from time-ordered correlators by means of the LSZ reduction, unitarity is
not evident at all. Therefore we can use the property to derive some non-trivial
relations between elements of the S-matrix.

Optical Theorem. Commonly, an identity operator is removed from the
S-matrix as

S = 1 + iT. (10.65)

This split is useful because for small coupling T is small. Moreover, the identity in
S is never seen in LSZ reduction.

Unitarity SS† = 1 for the operator T is then written as the optical theorem

2 ImT = −iT + iT † = TT † = T †T. (10.66)

It relates the imaginary part of T to its absolute square. The latter is a quantity
we have already encountered: In the form of matrix elements it appears in the
scattering cross section. It allows to determine the total cross section of some
process in terms of the imaginary part of a matrix element.14 Alternatively, the
imaginary part of T can be obtained as a total cross section,15 The remaining real
part of T can be reconstructed from arguments of complex analyticity.

A graphical representation of the optical theorem is as follows

2 Im =
∞∑
l=2

l∏
j=1

∫
d3~kj

(2π)3 2e(~kj)

∑
pol

. (10.67)

The optical theorem implies that one has to integrate and sum over all allowed
degrees of freedom for these lines which connect T to T †. This is similar as for
internal lines within T and T † with one important distinction: The cut lines
originate from contracting two operators a and a† inside T and T †, respectively,

[a(~p), a†(~q)] = 2e(~p) (2π)3δ3(~p− ~q). (10.68)

14In this matrix element one would choose the ingoing and outgoing momenta to be the same.
Evidently, this requires to split off the momentum-conserving delta function first.

15In fact one needs a generalisation of the total cross section where the ingoing particles of T
are chosen independently of the outgoing particles of T †.
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Therefore the momenta associated to these lines must be on shell, p2 = −m2, with
directed flow of energy p0 from T towards T †. Conversely, the internal lines are
integrated over all off-shell momenta.

Tree Level. It is instructive to discuss the optical theorem at tree level. At first
sight one might think that tree-level contributions to T are manifestly real because
they are rational functions of the momenta and masses with real coefficients.16

Although the iε prescription for Feynman propagators appears negligible, it does
have a considerable impact on the imaginary part

1

p2 +m2 − iε
=

1

p2 +m2
+ iπδ(p2 +m2). (10.69)

Now in the conjugate S-matrix T † all Feynman propagators are conjugated

G∗F(p) =
1

p2 +m2 + iε
6= GF(p). (10.70)

When computing the imaginary part of T one therefore frequently encounters the
difference

1

p2 +m2 − iε
− 1

p2 +m2 + iε
= 2πiδ(p2 +m2). (10.71)

This identity replaces the Feynman propagator for an internal line by an on-shell
correlator for a cut line connecting T and T †. The restriction to positive energies
on the cut is a more subtle issue. It is resolved by the fact that in the sum over all
possible cuts each line appears twice, once for every direction of energy flow.

With these remarks one can show that the optical theorem holds at tree level.17

Here we showed that at tree level T is has an imaginary part concentrated at
isolated momentum configurations. However, the optical theorem is most
frequently applied at loop level where T is generically complex.

16The various prefactors of i for propagators and interaction vertices conspire to cancel out.
17Here it is crucial to also take the disconnected contributions to T into account.
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11 Loop Corrections

Finally, we will discuss some basic loop effects and how to deal with the divergent
loop integrals we shall encounter.

We use a scalar theory with a quartic potential

L = −1
2
(∂φ)2 − 1

2
µ2φ2 − 1

6
κµφ3 − 1

24
κ2λφ4. (11.1)

The mass is denoted by µ and there are two dimensionless constants κ and λ. We
assume κ to be small and λ to be a freely tunable parameter.

11.1 Self Energy

First, we consider the time-ordered two-point correlator in order to isolate the pole
associated to asymptotic particles. In momentum space we know by means of
momentum conservation

F2(p, q) = −i(2π)4δ4(p+ q)M2(p). (11.2)

Leading Orders. Let us evaluate the first few orders of the function M2 from
Feynman diagrams.

+ + + . . . (11.3)

Obviously the leading contribution is the isolated Feynman propagator

M
(0)
2 (p) =

1

p2 + µ2 − iε
. (11.4)

The first correction involves one loop in the diagram. The tadpole diagram can be
safely ignored.1 The bubble diagram amounts to the following loop integral2

M
(2)
2 (p) =

i(−iµκ)2(−i)4

(p2 + µ2 − iε)2
iI(−p2) ,

I(−p2) =
1

2

∫
−id4`

(2π)4

1

`2 + µ2 − iε
1

(p− `)2 + µ2 − iε
. (11.5)

The resulting quadruple integral is difficult to perform, in particular due to two
different denominators. We will postpone the evaluation, and discuss the
implications for a generic function I(−p2).

1We shall see later on how this can be achieved in practice.
2The resulting integral is Lorentz invariant and can therefore be written as a function of p2 (or

−p2).
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Mass Shift. Altogether we obtain for the two-point function

M2(p) =
1

p2 + µ2 − iε
+

µ2κ2I(−p2)

(p2 + µ2 − iε)2
+ . . . . (11.6)

Now this expression appears to have a double pole at p2 = −µ2. From our earlier
discussion we know that this should not happen; there should only be single poles
in the two-point function.

Taking a peek at higher loop orders, we find, among others, a sequence of iterated
loop integrals terms.

+ + + + . . . (11.7)

All of these we can express easily in the form of a geometric series

M2(p) =
1

p2 + µ2 − iε

∞∑
k=0

(
µ2κ2I(−p2)

p2 + µ2 − iε

)k
+ . . . . (11.8)

Pushing convergence questions aside, we sum the series

M2(p) =
1

p2 + µ2 − µ2κ2I(−p2)− iε
+ . . . . (11.9)

In other words we have moved the correction term to the denominator of the
propagator.

Why should we include precisely these higher-order terms into our first order
correction? There are several reasons:

• There is nothing wrong with it. We just have to make sure to eventually count
every higher-order diagram with the correct weight.
• We avoid unwanted higher poles in the two-point function. The diagrams

contributing to the denominator are one-particle irreducible. They cannot be
cut into two parts by cutting a single internal line. Such diagrams are not
expected to produce additional poles at the mass shell.
• The inverse of the two-point function at leading order is directly related to the

action. It therefore appears somewhat more natural to expand the inverse
1/M2(p) rather than the original function M2(p). Our correction terms are
simply the first correction to 1/M2(p).
• A mass counterterm (to be discussed below) yields the same result.
• In QFT2 we will introduce a useful functional that includes 1/M2(p).

In this form we generically expect only single poles. Particularly, the pole which
was originally at p2 + µ2 = 0 may now have shifted to a new location p2 +m2 = 0.
Assuming that this is the case, we can determine the new mass and also the
residue at the pole. For the mass, we should solve the equation

−m2 + µ2 − µ2κ2I(m2) + . . . = 0. (11.10)

The assumption of the perturbative treatment is that κ is small and that m is
approximated well by µ. Hence we can replace I(m2) by I(µ2) and therefore the
new mass to leading order reads

m2 = µ2 − µ2κ2I(µ2) + . . . . (11.11)
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How about the residue? The expansion of the denominator at p2 +m2 = 0 reads

(p2 +m2)
(
1 + µ2κ2I ′(m2)

)
+ . . . . (11.12)

Altogether the pole of the two-point function corresponding to the asymptotic
particle takes the form

M2(p) =
Z

p2 +m2 − iε
+ . . . (11.13)

with the field strength renormalisation

Z = 1− µ2κ2I ′(µ2) + . . . . (11.14)

Spectral Function. We can now extract the spectral function ρ(s) from M2(p)

M2(p) =

∫ ∞
0

ds

2π

ρ(s)

p2 + s− iε
. (11.15)

To that end, it is most convenient to consider the imaginary part originating from
the iε prescription

1

x− iε
=

1

x
+ iπδ(x). (11.16)

We thus find that the imaginary part of M2 is directly related to the spectral
function up to a factor of 2

ρ(−p2) = 2 ImM2(p). (11.17)

We can evaluate the imaginary part of M2 using the derivative of the above
identity for the iε prescription

1

(x− iε)2
=

1

x2
− iπδ′(x). (11.18)

We then find the spectral function

ρ(s) = 2πδ(−s+ µ2)− 2πµ2κ2 Re I(s)δ′(−s+ µ2)

+
2µ2κ2 Im I(s)

(−s+ µ2)2
+ . . .

= 2πδ
(
s− µ2 + µ2κ2 Re I(µ2)

) (
1− µ2κ2 Re I ′(µ2)

)
+

2µ2κ2 Im I(s)

(s− µ2)2
+ . . .

= 2πZδ
(
s−m2

)
+

2µ2κ2 Im I(s)

(s− µ2)2
+ . . . , (11.19)

which matches precisely with our expectations.

(11.20)
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11.2 Loop Integral

We will now turn back to the loop integral I(−p2) and evaluate it.

Combining Denominators. A standard trick to proceed due to Feynman is to
combine the denominators by virtue of a new integral. For two propagators we use
the integral3

1

AB
=

∫ 1

0

dz

(zA+ z̄B)2
, z̄ := 1− z. (11.21)

An alternative is the trick used by Schwinger to convert each numerator to an
exponent where they automatically sum up

1

A
=

∫ ∞
0

dz e−Az . (11.22)

The loop integral then takes the form with a single squared denominator4

I(−p2) =

∫ 1

0

dz

∫
−id4`

32π4

1(
z`2 + z̄(p− `)2 + µ2 − iε

)2 . (11.23)

Now the denominator has quadratic (`2), linear (`·p) and constant terms. We can
remove the linear term and thus simplify the integral by a shift `→ `+ z̄p of the
integration variable5

I(−p2) =

∫ 1

0

dz

∫
−id4`

32π4

1(
`2 + zz̄p2 + µ2 − iε

)2 . (11.24)

Momentum Integrals. Performing the momentum integrals is not very
difficult. Let us start with the integral over the energy component. The integrand
has double and single poles at

`0 = ±
√
~̀2 + zz̄p2 + µ2 − iε . (11.25)

The integration contour is along the real axis and passes right between the two
poles. It decays sufficiently fast at |l0| → ∞ so that we can close the contour by a
large semicircle in the upper or lower half of the complex plane. Either of the
single poles contributes the same residue

I(−p2) =

∫ 1

0

dz

∫
d3~̀

64π3

1(
~̀2 + zz̄p2 + µ2 − iε

)3/2
. (11.26)

3There are similar formulas for more than two denominators and for higher powers.
4The advantage of this expression is that the new integrand is spherically symmetric for fixed

value of z which simplifies integration drastically. The centre of the sphere, however, varies with
z.

5For an infinite integration domain shifting the integration variable does not change the integral
as long as it is convergent. For divergent integrals this point is subtle.
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We notice that the integral merely reduces the exponent of the denominator by
1/2 and multiplies by a suitable overall factor. The remaining three spatial
momentum integrals yield a very similar result, each of them reducing the
exponent by 1/2. The last integral in fact is logarithmically divergent for large

momenta. We have to cut it off at some bound |~l| ' Λcut, and we obtain

I(−p2) = − 1

32π2

∫ 1

0

dz log
zz̄p2 + µ2 − iε

Λ2
cut

. (11.27)

For a large UV cutoff Λcut the integral diverges logarithmically.

Wick Rotation. Another trick which is commonly used is to rotate the
integration contour for the energy `0 from the real axis to the imaginary axis

`0 = i`E,4. (11.28)

This Wick rotation is permissible since physical integrands are typically perfectly
analytic in the first and third quadrants of the complex plane. For instance, poles
of Feynman propagators are located slightly below the positive real axis in
quadrant four or slightly above the negative real axis in quadrant two.

(11.29)

By means of the residue theorem, the value of the integral does not change by the
Wick rotation ∫

d4` F (`0, ~̀) =

∫
id4`E F (i`E,4, ~̀). (11.30)

Applying this rotation to our loop integral we obtain an integral over
4-dimensional Euclidean space

I(−p2) =

∫ 1

0

dz

∫
d4`E

32π4

1(
`2

E + zz̄p2 + µ2 − iε
)2 . (11.31)

Now the integrand depends only on |`E|, and we can use rotational symmetry to
replace the integral over three spherical angles at fixed |`E| by the volume of a
three-sphere 2π2|`E|3 ∫

d4`EF (|`E|) = 2π2

∫ ∞
0

`3
E d`EF (`E). (11.32)
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For our integral this implies

I(−p2) =

∫ 1

0

dz

∫ ∞
0

d`E

16π2

`3
E(

`2
E + zz̄p2 + µ2 − iε

)2 . (11.33)

The integral over `E is divergent again an needs to be cut off at |`E| ' Λcut. The
result is compatible with the above expression up to some minor adjustment of the
cutoff parameter Λcut.

Final Integral. Gladly the remaining integral over the Feynman parameter z
can be performed for our simple integral yielding

I(−p2) =− 1

16π2

√
p2 + 4µ2 − iε
−p2

arctan

√
−p2

p2 + 4µ2 − iε

− 1

32π2
log

µ2

Λ2
cute

2
. (11.34)

The integral is manifestly real for 0 < −p2 < 4µ2. It is also real for −p2 < 0.
However, for −p2 > 4µ2 it develops an imaginary part

Im I(−p2) =
1

32π

√
−p2 − 4µ2

−p2
. (11.35)

It signals the opening of the two-particle creation channel at −p2 > 4µ2.

Spectral Function. We can now write the spectral function for our model at
next-to-leading order

ρ(s) = 2πZδ
(
s−m2

)
+
µ2κ2θ(s− 4µ2)

16π(s− µ2)2

√
s− 4µ2

s
+ . . . . (11.36)

The two terms correspond to the asymptotic particle and the two-particle
continuum. Let us consider its normalisation, we find∫

ds

2π
ρ(s) = Z + κ2 2

√
3π − 9

288π2
+ . . . (11.37)

Since 2
√

3π > 9 we see that the correction term due to the two-particle continuum
is indeed small and positive. Reassuringly the field strength renormalisation
precisely compensates for the correction term

Z = 1− µ2κ2I ′(µ2) + . . . , I ′(µ2) =
2
√

3π − 9

288π2µ2
. (11.38)
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11.3 Regularisation and Renormalisation

Above, we have encountered a divergent integral I(−p2) and in order to evaluate it
anyway, we somewhat arbitrarily introduced a momentum cutoff Λcut. Gladly the
cutoff has only a mild impact on the function I(−p2)

d

dΛcut

I(−p2) =
1

16π2Λcut

. (11.39)

In particular, the dependence on Λcut does not mix at all with the dependence on
the momenta and masses! This allowed us to extract some information from
I(−p2) without caring too much about the cutoff.

Regularisation Schemes. In order to extract precise information from a QFT
model at higher orders, one has to introduce a consistent regularisation scheme.
Such a scheme should make all relevant quantities finite.

There are several schemes, e.g.:

• Cutoff. Our choice was to cut off momentum integrals at very large momenta
(UV). Similarly one could cut off very small momenta (IR). Unfortunately, a
cutoff is not easy to formulate consistently for all quantities. It is often used to
quickly derive individual leading order results.
• Pauli–Villars. Replace Feynman propagators by a difference of two propagators

1

p2 +m2 − iε
→ 1

p2 +m2 − iε
− 1

p2 +M2 − iε
. (11.40)

For large M2 and small p2 the second propagator is suppressed. For large p2,
however, the two propagators almost cancel. Therefore this scheme suppresses
UV divergences. It is similar to a UV cutoff, but it can be applied universally to
Feynman diagrams.
• Point Splitting. In position space, the problem of UV divergences is related to

putting several fields at the same point in spacetime. By separating the field
insertion points in the action by a tiny amount, UV divergences can be avoided.
• Lattice. For the lattice regulator one approximates infinite spacetime by a finite

lattice. For finitely many degrees of freedom there cannot be divergences,
neither from the UV (finite spacing), nor from the IR (finite extent).
• Dimensional Regularisation. The types and degrees of divergences depend

crucially on the number of spacetime dimensions D. In the dimensional
regularisation scheme, one works in a spacetime of dimension D, where D is
taken to be an unconstrained real number. Observables become functions of D,
and divergences appear as poles in the D-dependence, e.g. 1/(D − 4). Although
the definition of this scheme is somewhat abstract, it is one of the favourite ones
because it works well in almost all circumstances.
• Finite Observables. Sometimes divergences can be avoided by considering

physical observables only. In our example, one could try to argue that all
observables can be deduced from I ′(s) which is perfectly finite. The constant
term of I(s) is an integration constant of

∫
ds I ′(s). The divergence happens to

be located precisely in this undetermined coefficient.
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In a regularised QFT, all observables are perfectly finite. However, they are not
quite what we are interested in, we are interested in observables of the original
QFT.

Renormalisation. The next step called renormalisation is to somehow absorb
the divergences consistently. To that end the most important insights are the
following:

• All physically relevant information and all observables for a QFT model are
encoded into its quantum correlation functions.
Example. The spectrum of asymptotic particles is encoded into time-ordered
two-point functions. Moreover, the scattering matrix can be derived from the
poles of higher-point functions.
• The Lagrangian and the action are devices to derive suitable correlation

functions. They are not fundamental objects, in particular their parameters such
as masses and coupling constants are not directly observable.6

Example. The mass terms (µ) in the Lagrangian do not exactly reflect the
masses (m) of asymptotic particles.
• Correlation functions depend on the so-called bare parameters of the

Lagrangian. One should tune the parameter values such that the correlation
functions behave as expected. At the end of the day, the numerical values of the
parameters are not important.
Example. One would adjust µ and κ such that the physical mass m has the
desired physical value.
• In terms of differential geometry: The parameters of a QFT form a manifold. A

Lagrangian description (with a particular regularisation, renormalisation and,
where applicable, a particular gauge fixing scheme) is a chart of the manifold.
The parameter values correspond to coordinates on this particular chart. There
is, however, no universal meaning to coordinates without reference to the
specific chart.

In this picture, renormalisation is the step to adjust the Lagrangian parameters to
the physical parameters. In the regularised and finite QFT this step is
well-defined. We express the bare Lagrangian parameters in terms of the physical
parameters, e.g.

µ = µ(m,Λcut) = m+ 1
2
mκ2I(m2) + . . . . (11.41)

with

I(m2) =
2− π/

√
3

32π2
− 1

32π2
log

m2

Λ2
cut

. (11.42)

Running Coupling. We can now remove the regulator by sending the
regularisation parameters to some appropriately chosen limit. We shall keep the
physical parameters fixed in the limit, but the resulting bare parameters may well

6Some traces of the complete Lagrangian or action may remain valid in the QFT, such as the
exact equations of motion and normalisation of the interacting field, as well as Noether’s theorem.
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be divergent
µ(m,Λcut)→∞ as Λcut →∞. (11.43)

This by itself is not a problem, since we attribute no meaning to µ. We just need
to keep in mind that the definition of bare parameters such as µ depends on a
scale such as Λcut. Changing the scale must be compensated by a change in the
bare parameter. This effect is called running of a coupling constant. In our case
the running is governed by the equation

dµ

dΛcut

=
mκ2

16π2Λcut

+ . . . . (11.44)

Such an equation is often written in logarithmic form

d log µ

d logΛcut

=
κ2

16π2
+ . . . (11.45)

which suggests the scaling behaviour

µ ∼ m(Λcut/m)κ
2/16π2+.... (11.46)

Note that the dependence of the bare mass µ on the physical mass m has become
non-linear by quantum effects. In the quantum field theory the mass term has
acquired a so-called anomalous dimension.

A similar effect can be observed for coupling constants governing the interactions
of several particles. In quantum field theory one may find an anomalous
dependence on the particle momenta, e.g. λ ∼ (p/Λ)∗κ

2+.... It means that one will
measure a different effective coupling strength depending on which length or
energy scale the interaction is probed (e.g. the energy of the probe photon).
Naturally, one would like to define a universally valid coupling strength to appear
in the Lagrangian, e.g. by considering the limit of very high or very low energies.
However, in this limit, the coupling strength often diverges. Therefore one needs to
define the coupling constant at a particular energy scale Λ, and the value of this
coupling constant depends on Λ. This effect is called a running coupling constant.

Renormalisability. The question is whether all physical quantities remain finite
in the limit Λcut →∞, and whether they are independent of the chosen
regularisation scheme. We can only adjust one bare parameter per physical
parameter, are there sufficiently many bare parameters to absorb all the
divergences?

• In the case of our model the answer is yes.
• QFT models where all divergences can be absorbed are called renormalisable.
• In principle, one can introduce further terms and couplings in the Lagrangian to

compensate for more and more divergences. As long as only finitely many terms
are needed to absorb the divergences at all perturbative orders, the model is
called renormalisable.

11.9



• Some models, such as General Relativity, appear to require infinitely many
coupling constants to absorb all divergences. These models are called
non-renormalisable. Here one would need infinitely many measurements to
adjust infinitely many parameters, and effectively the model loses its predictive
power.

Before discussing which models are renormalisable, let us consider some technical
aspects of absorbing divergences into the coupling constants.

Localised Divergences. In principle, we know how to absorb divergences by
writing the bare parameters of the Lagrangian as functions of the physical
parameters. Let us discuss the origin of the divergence in detail.

To that end we investigate the integral I(−p2) more closely. The overall
dependence on p2 is some inverse trigonometric function.7 However, the divergent
or cutoff-dependent contribution to I(−p2) is much simpler

d

dΛcut

I(−p2) =
1

16π2Λcut

. (11.47)

It is actually independent of p2!

This behaviour is in fact general; divergences typically couple to polynomials of
the momenta only. This statement becomes more meaningful when translated to
position space: Any polynomial of the momenta translates to a localised
distribution such as δ4(x) under a Fourier transformation.

In terms of the loop integral in position space we can localise the origin of the
divergence. The loop integrand diverges as r−4 when the two vertices are nearby at
a distance of r, otherwise it is perfectly finite.

(11.48)

This divergence cannot be compensated by the measure d4x ∼ r3dr, and the region
r ≈ 0 contributes an infinite amount to the integral. The divergence is therefore
localised in spacetime, and it can be absorbed by a suitable local term in the
Lagrangian.

(11.49)

Counterterms. Indeed we see that we can absorb the divergence by a suitable
definition of the bare mass term µ = µ(m,Λcut) in the Lagrangian. The
prescription may be somewhat confusing because the integral I(−p2) depends on
the mass µ, so the definition of µ apparently is implicit. For our calculations we
use the interaction picture where we decided to split the Lagrangian L = L0 + Lint

into a free and an interaction contribution

L0 = −1
2
(∂φ)2 − 1

2
µ2φ2, Lint = −1

6
κµφ3 − 1

24
κ2λφ4. (11.50)

7We were extremely lucky to find a simple function. Typically one finds much more complicated
special functions such as polylogarithms or hypergeometric functions. And this only if one is lucky.
Often the encountered integrals lead to functions which do not even have a name.
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However, we are not forced to do this naive split, we are free to choose any free
field as a reference. In this sense, it makes perfect sense to choose the asymptotic
field with the physical mass m as a reference

Las = −1
2
(∂φ)2 − 1

2
m2φ2. (11.51)

This will automatically position all the poles due to Feynman propagators at the
desired physical location. Now we have to add a compensating mass term to the
interaction terms8

Lint = −1
2
µ′m2φ2 − 1

6
κmφ3 − 1

24
λκ2φ4. (11.52)

The new term is called a counterterm. Its role is to compensate all potential mass
shifts due to loop effects. The mass of the reference field will thus conveniently be
the physical mass to all orders.9 In this picture, the loop integral I(−p2) is defined
directly in terms of the physical mass m instead of µ.

When including the counterterm in our example, we obtain the following one-loop
contributions10

+ (11.53)

and the following corrected two-point function

M2(p) =
1

p2 +m2 + µ′m2 −m2κ2I(−p2)− iε
+ . . . . (11.54)

We impose the consistency equation that the physical mass equals the
asymptotical mass

m2 = m2 + µ′m2 −m2κ2I(m2) + . . . , (11.55)

which is solved by µ′ = κ2I(m2). Concerning the counterterm, the rule is that
whenever a bubble with two legs appears in a Feynman graph, there is a
compensating counterterm.11

:= + + (11.56)

It therefore makes sense to introduce a subtracted bubble integral

Isub(−p2) := I(−p2)− I(m2). (11.57)

8The definition of µ′, κ and λ has changed, but this does not matter since the values of the
bare parameters are not directly measurable.

9Only the mass is stabilised by the counterterm. The two Feynman diagrams do not cancel
exactly because the loop integral has a complicated dependence on p2 whereas the counterterm is
a constant function.

10The loop order does not necessarily refer to the literal number of loops in a Feynman graph.
It makes sense to also count counterterms to loop divergences as loops. The loop order commonly
refers to the order in a small coupling constant, in our case κ2.

11We have reintroduced the contribution from the tadpole graph which is equivalent to a mass
term with infinite mass and can therefore be absorbed entirely into a suitable redefinition of µ′.
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Obviously this function is finite and satisfies

Isub(m2) = 0. (11.58)

The corrected two-point function then takes the simplified form

M2(p) =
1

p2 +m2 −m2κ2Isub(−p2)− iε
+ . . . (11.59)

We can even go one step further and decide to add a counterterm for the kinetic
term

Lint = −1
2
ζ(∂φ)2 − 1

2
µ′m2φ2 − 1

6
κmφ3 − 1

24
λκ2φ4. (11.60)

This term changes the overall normalisation of the field φ(x), and allows us to
normalise the residue of the asymptotic particle pole in the two-point function to 1
at all orders. In this case, we can drop the field strength renormalisation factor Z
by setting it to 1.

In conclusion, the asymptotic Hamiltonian describes the canonically normalised
fields with appropriate physical masses. The interaction Hamiltonian contains all
types of allowable interactions terms. Their parameters are tuned to stabilise the
masses and normalisations and to match with physical interaction processes.

Power Counting. Can we understand under which circumstances a QFT model
is renormalisable? We can use a crude argument in terms of the mass dimensions
of interaction terms.

A Feynman diagram evaluates to an integral over a rational function of the
momenta and masses of the particles.

• Earlier, we have discussed that UV divergences of the integral are polynomials of
the momenta.
• Furthermore, we can argue that particle masses in the denominators can be

safely ignored for the purposes of UV divergences.
• Evidently, the coupling constants will appear as overall prefactors.

Altogether this implies that the structure of UV divergences of a loop integral is
given by polynomials in the momenta and the masses

dI

d logΛ
∈ Poly(αk, pk,mk). (11.61)

The polynomials in the momenta pk determine the appropriate local counterterm.

The class of potential divergences is restricted by the following consideration:

• The mass dimension of the integral is determined by the Feynman diagram. It is
a fixed number usually bounded from above by the number of spacetime
dimensions D, in our case D = 4.
• Suppose that all terms of the Lagrangian have mass dimension bounded from

above by D. Equivalently, all coupling constants αk have a non-negative mass
dimension.
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• Then the overall polynomial divergence terms must have non-negative mass
dimension. The remaining mass dimension must be carried by the momenta and
masses.
• This implies that there is only a very restricted set of momentum polynomials

which can carry divergences. In other words, only few counterterms are needed
to compensate the divergences.
• These counterterms have mass dimension bounded from above by D. The

counterterms couplings in turn have non-negative mass dimension.
• Usually, there are finitely many such terms, and therefore such models are

renormalisable.

Note that there is a crucial difference between coupling constants with positive
mass dimension and dimensionless coupling constants. As the dimension of
coupling constants accumulates, dimensionful coupling constants contribute
divergences only for a specific range of low perturbative orders. When there are
also dimensionless coupling constants, counterterms are required for arbitrary loop
orders.

In our example, we have included all interaction terms of mass dimension bounded
from above by 4. For each divergence which can possibly arise, there is a
corresponding counterterm.

When considering Feynman diagrams which contain a divergent loop along with
some other structures, it can be shown that the loop can be replaced by a
universal counterterm corresponding to the loop to cancel the divergence. A subtle
issue at higher loops are overlapping loops, where it may not be evident which
counterterms to use. Gladly, it can be shown that this situation does not leave
behind divergences which cannot be accounted for.

11.4 Vertex Renormalisation

Let us briefly discuss how to renormalise the remaining divergences at the one-loop
level in our example.

Divergent Interactions. By power counting arguments we can derive that
divergences can only appear for two-sided loops.12 Loops with three or more legs
are perfectly finite. There are only three potentially divergent terms in our model.

(11.62)

One of them we have already discussed, the other two integrals can be made finite
by adding appropriate counterterms of the form φ3 and φ4 to the Lagrangian

Lint = −1
6
κmφ3 − 1

24
λκ2φ4 + Lct,

Lct = −1
2
µ′m2φ2 − 1

6
κ′mφ3 − 1

24
λ′κ2φ4

12One-sided tadpoles can be removed entirely by suitable counterterms.
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= + + . (11.63)

Suitable counterterm coefficients to make all observables finite at one loop read

µ′ = κ2I(m2), κ′ = 3κ3λI(m2), λ′ = 3κ2λ2I(m2). (11.64)

As discussed above, µ′ is determined by a stable physical mass at m. There is no
similar universal condition for the coefficients κ′ and λ′; any finite shift w.r.t. the
above values is permissible, it merely leads to a reparametrisation of our model.

We have already seen that the φ2 counterterm effectively replaces the loop integral
by a finite subtracted loop integral

I(−p2)→ Isub(−p2). (11.65)

Exactly the same replacement is achieved by our above choice of counterterms for
φ3 and φ4.

(11.66)

Three-Point Function. Let us briefly consider the resulting one-loop
contributions to the three-point function.

F3 = F
(1)
3 + F

(3)
3 + . . . ,

F
(1)
3 = ,

F
(3)
3 = + +

+ +

= + + . (11.67)

The latter two terms involve bubbles only for which we know the integral already.
The counterterms make both integrals finite.13 The first triangle integral

13Note that because Isub(m2) = 0 the internal Feynman propagator which connects the bubble
to the 3-vertex is precisely cancelled, and only one Feynman propagator with associated asymptotic
particle pole remains for each leg.
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∼
∫
d4`/`6 is UV finite by itself. In fact it is the most complicated contribution

F
(3)
3 = − iκ3m3(2π)4δ4(p1 + p2 + p3)

·
∫
−id4`

(2π)4

1

`2 +m2 − iε

· 1

(`+ p1)2 +m2 − iε
1

(`− p3)2 +m2 − iε
(11.68)

and the only one which allows all three momenta to interact non-trivially.

Four-Point Function. There are many diagrams contributing to a four-point
process. Here we can merely plot all the graphs (up to permutations of the
external legs).

F4 = F
(2)
4 + F

(4)
4 + . . . ,

F
(2)
4 = + ,

F
(4)
4 = + +

+ + +

+ + + . (11.69)
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