Quantum Field Theory I Problem Set 8

ETH Zurich, HS12 G. Abelof, J. Cancino, F. Dulat, B. Mistlberger, Prof. N. Beisert

1. The massive vector field

On this sheet we will develop the QFT for the free massive spin-1 field V_{μ} . We start with the Lagrangian for the electromagnetic field and simply add a mass term

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} V^{\nu} \partial_{\mu} V_{\nu} - \frac{1}{2} \partial^{\mu} V^{\nu} \partial_{\nu} V_{\mu} - \frac{1}{2} m^2 V^{\mu} V_{\mu}.$$
(1)

- a) Derive the Euler–Lagrange equations of motion for V_{μ} .
- b) By taking a derivative of the equation, show that V_{μ} is a conserved current.
- c) Show that V_{μ} satisfies the Klein–Gordon equation.

2. Hamiltonian formulation

The Hamiltonian formulation of the massive vector is somewhat tedious due to the presence of constraints.

a) Derive the momenta Π_{μ} conjugate to the fields V_{μ} . Considering the space and time components separately, what do you notice?

Your observation is related to constraints. The time component V_0 of the vector field is completely determined by the spatial components and their conjugate momenta (without making reference to time derivatives)

b) Use the equations derived in problem 1 to show that

$$V_0 = -m^{-2}\partial_k \Pi_k, \qquad \dot{V}_0 = \partial_k V_k. \tag{2}$$

c) Substitute this solution for V_0 and V_0 into the Lagrangian and perform a Legendre transformation to obtain the Hamiltonian. Show that

$$H = \int d^{3}\vec{x} \left(\frac{1}{2}\Pi_{k}\Pi_{k} + \frac{1}{2}m^{-2}\partial_{k}\Pi_{k}\partial_{l}\Pi_{l} + \frac{1}{2}\partial_{k}V_{l}\partial_{k}V_{l} - \frac{1}{2}\partial_{l}V_{k}\partial_{k}V_{l} + \frac{1}{2}m^{2}V_{k}V_{k} \right).$$
(3)

d) Derive the Hamiltonian equations of motion for V_k and Π_k , and compare them to the results of problem 1.

3. Commutators

The unequal time commutators $[V_{\mu}(x), V_{\nu}(y)] = \Delta^{V}_{\mu\nu}(x-y)$ for the massive vector field read

$$\Delta_{\mu\nu}^{\rm V}(x) = \left(\eta_{\mu\nu} - m^{-2}\partial_{\mu}\partial_{\nu}\right)\Delta(x),\tag{4}$$

where $\Delta(x)$ is the corresponding function for the scalar field.

- a) Show that these obey the equations derived in problem 1.
- **b**) Show explicitly that they obey the constraint equations in 2b), i.e.

$$[m^2 V_0(x) + \partial_k \Pi_k(x), V_\nu(y)] = [\dot{V}_0(x) - \partial_k V_k(x), V_\nu(y)] = 0.$$
(5)

c) Confirm that the equal time commutators take the canonical form

$$[V_k(\vec{x}), V_l(\vec{y})] = [\Pi_k(\vec{x}), \Pi_l(\vec{y})] = 0, \qquad [V_k(\vec{x}), \Pi_l(\vec{y})] = i\delta_{kl}\delta^3(\vec{x} - \vec{y}).$$
(6)

 \rightarrow

4. Coupled Maxwell and Dirac fields

Quantum electrodynamics describes a coupled system of a Maxwell and an electrically charged Dirac field. The Lagrangian density for this theory is given by

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - e \bar{\psi} \gamma^{\mu} \psi A_{\mu}.$$
⁽⁷⁾

- a) Derive the classical equations of motion.
- **b)** Obtain the stress-energy tensor and show that it is invariant under the gauge transformation

$$A'_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}\alpha(x), \qquad (8)$$

$$\psi'(x) = \exp\left[-ie\alpha(x)\right]\psi(x). \tag{9}$$

c) Show that the total energy and momentum of the system are conserved.