Quantum Field Theory I

Problem Set 4

ETH Zurich, HS12

G. Abelof, J. Cancino, F. Dulat, B. Mistlberger, Prof. N. Beisert

1. Properties of γ -matrices

The γ -matrices satisfy a Clifford algebra,¹

$$\{\gamma^{\mu}, \gamma^{\nu}\} = -2\eta^{\mu\nu} \mathbf{1}.\tag{1}$$

- a) Show the following contraction identities using (1):
 - 1. $\gamma^{\mu}\gamma_{\mu} = -4 \cdot \mathbf{1}$.
 - 2. $\gamma^{\mu}\gamma^{\nu}\gamma_{\mu} = 2\gamma^{\nu}$.
 - 3. $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma_{\mu} = 4\eta^{\nu\rho}\mathbf{1}$.
 - 4. $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma_{\mu} = 2\gamma^{\sigma}\gamma^{\rho}\gamma^{\nu}$.
- **b)** Show the following trace properties using (1):
 - 1. $\operatorname{tr} \gamma^{\mu_1} \cdots \gamma^{\mu_n} = 0$ if n is odd.
 - 2. $\operatorname{tr} \gamma^{\mu} \gamma^{\nu} = -4 \eta^{\mu \nu}$.
 - 3. $\operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} = 4(\eta^{\mu\nu} \eta^{\rho\sigma} \eta^{\mu\rho} \eta^{\nu\sigma} + \eta^{\mu\sigma} \eta^{\nu\rho}).$

2. Dirac and Weyl representations of the γ -matrices

Using the Pauli matrices together with the identity,

$$\sigma^0 \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma^1 \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{2}$$

we can realize the *Dirac representation* of the γ -matrices,

$$\gamma_{\rm D}^0 \equiv \sigma^0 \otimes \sigma^3, \qquad \gamma_{\rm D}^j \equiv \sigma^j \otimes i\sigma^2 \quad (j = 1, 2, 3),$$
 (3)

where

$$A \otimes B \equiv \begin{pmatrix} b_{11}A & b_{12}A \\ b_{21}A & b_{22}A \end{pmatrix}. \tag{4}$$

Denoting the Pauli matrices collectively by σ^{μ} and defining $(\bar{\sigma}^0, \bar{\sigma}^i) = (\sigma^0, -\sigma^i)$. we can then define the γ -matrices in the Weyl representation:

$$\gamma_{\rm W}^{\mu} \equiv \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix}. \tag{5}$$

Show that both representations satisfy the Clifford algebra (1). Can you show their equivalence, i.e. $\gamma_{\rm W}^{\mu}=T\gamma_{\rm D}^{\mu}T^{-1}$ for some matrix T?

The minus sign is due to our choice of metric $\eta^{\mu\nu} = \text{diag}(-1, +1, +1, +1)!$ Alternatively, we might use a plus sign (as in the opposite signature) and instead multiply all γ -matrices by a factor of i.

3. Spinors, spin sums and completeness relations

In this exercise we will use the Weyl representation (5) defined in the previous exercise.

- a) Show that $(p \cdot \sigma)(p \cdot \bar{\sigma}) = -p^2$.
- b) Prove that the below 4-spinor $u_s(\vec{p})$ solves Dirac's equation $(p_\mu \gamma^\mu m\mathbf{1})u_s(\vec{p}) = 0$

$$u_s(\vec{p}) = \begin{pmatrix} \sqrt{p \cdot \sigma} \, \xi_s \\ \sqrt{p \cdot \bar{\sigma}} \, \xi_s \end{pmatrix}, \tag{6}$$

where ξ_{\pm} form a basis of 2-spinors.

c) Suppose, the 2-spinors ξ_+ and ξ_- are orthonormal. What does it imply for $\xi_s^{\dagger}\xi_s$ and

$$\sum_{s \in \{+,-\}} \xi_s \xi_s^{\dagger} ? \tag{7}$$

- d) Show that $\bar{u}_s(\vec{p})u_s(\vec{p})=2m$ for $s\in\{+,-\}$.
- e) Show the completeness relation:

$$\sum_{s \in \{+,-\}} u_s(\vec{p}) \bar{u}_s(\vec{p}) = p_{\mu} \gamma^{\mu} + m \mathbf{1}.$$
 (8)

4. Gordon identity

Prove the Gordon identity,

$$\bar{u}_t(\vec{q})\gamma^{\mu}u_s(\vec{p}) = \frac{1}{2m}\,\bar{u}_t(\vec{q})\big[-(q+p)^{\mu} - \frac{1}{2}[\gamma^{\mu},\gamma^{\nu}](q-p)_{\nu}\big]u_s(\vec{p}). \tag{9}$$

Hint: You can do this using just (1).