Quantum Field Theory I Problem Set 1

ETH Zurich, HS12 G. Abelof, J. Cancino, F. Dulat, B. Mistlberger, Prof. N. Beisert

1. Classical particle in an electromagnetic field

Consider the classical Lagrangian density of a particle of mass m and charge q, moving in an electromagnetic field, specified by the electric potential $\phi(x)$ and the magnetic vector potential $A_i(x)$:

$$\mathcal{L} = \frac{m}{2} (\partial_t x^i)^2 + q A_i(x) \partial_t x^i - q \phi(x).$$
(1)

Find

a) The canonical momentum conjugate to the coordinate x_i .

- b) The equations of motion corresponding to the Lagrangian density.
- c) The Hamiltonian of the system

Compare your results to a free particle.

2. Stress-energy tensor

Consider the variational principle:

$$\delta S = 0 = \delta \int d^4 x \, \mathcal{L}(\phi, \pi). \tag{2}$$

The Lagrangian density \mathcal{L} is a function of the two classical fields $\phi(x)$ and $\pi_{\mu}(x) = \partial_{\mu}\phi(x)$. Note that \mathcal{L} does not depend directly on the space-time coordinate x^{μ} , but only indirectly through ϕ and π . Show that the conserved Noether current associated with infinitesimal space-time translations

$$x^{\mu} \to x^{\mu} + \epsilon^{\mu} \tag{3}$$

→

is the stress-energy tensor $T^{\mu\nu}$ given by

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial \pi_{\mu}} \partial^{\nu} \phi - g^{\mu\nu} \mathcal{L}.$$
 (4)

Remind yourself how a general function $f(x^{\mu})$ of the space-time coordinates will transform under an infinitesimal translation.

Note that x^{μ} is a standard Minkowski-space coordinate, so that x^{0} is the time. $\eta^{\mu\nu} = \text{diag}(-1, +1, +1, +1)$ is the metric tensor.

3. Coherent quantum oscillator

Consider the Hamiltonian of a quantum harmonic oscillator:

$$\mathcal{H} = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}.$$
(5)

- a) Introduce ladder operators to diagonalise the Hamiltonian.
- b) Calculate the expectation values of the number operator $N \sim a^{\dagger}a$ as well as of the x and p operator in a general number state $|n\rangle$.
- c) Calculate the variances Δx , Δp and ΔN in the same state $|n\rangle$ and use them to determine the Heisenberg uncertainty of $|n\rangle$.
- d) Show that the coherent state

$$|\alpha\rangle = e^{\alpha p}|0\rangle \tag{6}$$

is an eigenstate of the annihilation operator you defined in a).

e) Calculate the time-dependent expectation values of x, p and N:

$$\langle \alpha | x(t) | \alpha \rangle \tag{7}$$

$$\langle \alpha | p(t) | \alpha \rangle$$
 (8)

$$\langle \alpha | N(t) | \alpha \rangle$$
 (9)

as well as the corresponding variances to determine the uncertainty of the state $|\alpha\rangle$. Compare your result with the result obtained in c).

4. Relativistic point particle

The action of a relativistic point particle is given by

$$S = -\alpha \int_{\mathcal{P}} ds \tag{10}$$

with the relativistic line element

$$ds^{2} = -g_{\mu\nu}dX^{\mu}dX^{\nu} = dt^{2} - dx^{2} - dy^{2} - dz^{2}$$
(11)

and α a (yet to be determined) constant.

The path \mathcal{P} between two points X_1^{μ} and X_2^{μ} can be parametrised by a parameter τ . With that, the integral of the line element ds becomes an integral over the parameter

$$S = -\alpha \int_{\tau_1}^{\tau_2} d\tau \sqrt{-g_{\mu\nu}} \frac{\partial X^{\mu}}{\partial \tau} \frac{\partial X^{\nu}}{\partial \tau} \,. \tag{12}$$

- a) Parametrise the path by the time coordinate t (i.e. x^0) and take the non-relativistic limit $|\partial_0 x^{\mu}| \ll 1$ to determine the value of the constant α .
- **b**) Derive the equations of motion by varying the action. *Hint:* You may want to determine the canonically conjugate momentum first.