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11 Loop Corrections

Finally, we will discuss some basic loop effects and how to deal with the divergent
loop integrals we shall encounter.

We use a scalar theory with a quartic potential

L = −1
2
(∂φ)2 − 1

2
µ2φ2 − 1

6
κµφ3 − 1

24
κ2λφ4. (11.1)

The mass is denoted by µ and there are two dimensionless constants κ and λ. We
assume κ to be small and λ to be a freely tunable parameter.

11.1 Self Energy

First, we consider the time-ordered two-point correlator in order to isolate the pole
associated to asymptotic particles. In momentum space we know by means of
momentum conservation

F2(p, q) = −i(2π)4δ4(p+ q)M2(p). (11.2)

Leading Orders. Let us evaluate the first few orders of the function M2 from
Feynman diagrams.

+ + + . . . (11.3)

Obviously the leading contribution is the isolated Feynman propagator

M
(0)
2 (p) =

1

p2 + µ2 − iε
. (11.4)

The first correction involves one loop in the diagram. The tadpole diagram can be
safely ignored.1 The bubble diagram amounts to the following loop integral2

M
(2)
2 (p) =

i(−iµκ)2(−i)4

(p2 + µ2 − iε)2
iI(−p2) ,

I(−p2) =
1

2

∫
−id4`
(2π)4

1

`2 + µ2 − iε
1

(p− `)2 + µ2 − iε
. (11.5)

The resulting quadruple integral is difficult to perform, in particular due to two
different denominators. We will postpone the evaluation, and discuss the
implications for a generic function I(−p2).

1We shall see later on how this can be achieved in practice.
2The resulting integral is Lorentz invariant and can therefore be written as a function of p2 (or

−p2).
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Mass Shift. Altogether we obtain for the two-point function

M2(p) =
1

p2 + µ2 − iε
+

µ2κ2I(−p2)
(p2 + µ2 − iε)2

+ . . . . (11.6)

Now this expression appears to have a double pole at p2 = −µ2. From our earlier
discussion we know that this should not happen; there should only be single poles
in the two-point function.

Taking a peek at higher loop orders, we find, among others, a sequence of iterated
loop integrals terms.

+ + + + . . . (11.7)

All of these we can express easily in the form of a geometric series

M2(p) =
1

p2 + µ2 − iε

∞∑
k=0

(
µ2κ2I(−p2)
p2 + µ2 − iε

)k
+ . . . . (11.8)

Pushing convergence questions aside, we sum the series

M2(p) =
1

p2 + µ2 − µ2κ2I(−p2)− iε
+ . . . . (11.9)

In other words we have moved the correction term to the denominator of the
propagator.

Why should we include precisely these higher-order terms into our first order
correction? There are several reasons:

• There is nothing wrong with it. We just have to make sure to eventually count
every higher-order diagram with the correct weight.
• We avoid unwanted higher poles in the two-point function. The diagrams

contributing to the denominator are one-particle irreducible. They cannot be
cut into two parts by cutting a single internal line. Such diagrams are not
expected to produce additional poles at the mass shell.
• The inverse of the two-point function at leading order is directly related to the

action. It therefore appears somewhat more natural to expand the inverse
1/M2(p) rather than the original function M2(p). Our correction terms are
simply the first correction to 1/M2(p).
• A mass counterterm (to be discussed below) yields the same result.
• In QFT2 we will introduce a useful functional that includes 1/M2(p).

In this form we generically expect only single poles. Particularly, the pole which
was originally at p2 + µ2 = 0 may now have shifted to a new location p2 +m2 = 0.
Assuming that this is the case, we can determine the new mass and also the
residue at the pole. For the mass, we should solve the equation

−m2 + µ2 − µ2κ2I(m2) + . . . = 0. (11.10)

The assumption of the perturbative treatment is that κ is small and that m is
approximated well by µ. Hence we can replace I(m2) by I(µ2) and therefore the
new mass to leading order reads

m2 = µ2 − µ2κ2I(µ2) + . . . . (11.11)
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How about the residue? The expansion of the denominator at p2 +m2 = 0 reads

(p2 +m2)
(
1 + µ2κ2I ′(m2)

)
+ . . . . (11.12)

Altogether the pole of the two-point function corresponding to the asymptotic
particle takes the form

M2(p) =
Z

p2 +m2 − iε
+ . . . (11.13)

with the field strength renormalisation

Z = 1− µ2κ2I ′(µ2) + . . . . (11.14)

Spectral Function. We can now extract the spectral function ρ(s) from M2(p)

M2(p) =

∫ ∞
0

ds

2π

ρ(s)

p2 + s− iε
. (11.15)

To that end, it is most convenient to consider the imaginary part originating from
the iε prescription

1

x− iε
=

1

x
+ iπδ(x). (11.16)

We thus find that the imaginary part of M2 is directly related to the spectral
function up to a factor of 2

ρ(−p2) = 2 ImM2(p). (11.17)

We can evaluate the imaginary part of M2 using the derivative of the above
identity for the iε prescription

1

(x− iε)2
=

1

x2
− iπδ′(x). (11.18)

We then find the spectral function

ρ(s) = 2πδ(−s+ µ2)− 2πµ2κ2 Re I(s)δ′(−s+ µ2)

+
2µ2κ2 Im I(s)

(−s+ µ2)2
+ . . .

= 2πδ
(
s− µ2 + µ2κ2 Re I(µ2)

) (
1− µ2κ2 Re I ′(µ2)

)
+

2µ2κ2 Im I(s)

(s− µ2)2
+ . . .

= 2πZδ
(
s−m2

)
+

2µ2κ2 Im I(s)

(s− µ2)2
+ . . . , (11.19)

which matches precisely with our expectations.

(11.20)
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11.2 Loop Integral

We will now turn back to the loop integral I(−p2) and evaluate it.

Combining Denominators. A standard trick to proceed due to Feynman is to
combine the denominators by virtue of a new integral. For two propagators we use
the integral3

1

AB
=

∫ 1

0

dz

(zA+ z̄B)2
, z̄ := 1− z. (11.21)

An alternative is the trick used by Schwinger to convert each numerator to an
exponent where they automatically sum up

1

A
=

∫ ∞
0

dz e−Az . (11.22)

The loop integral then takes the form with a single squared denominator4

I(−p2) =

∫ 1

0

dz

∫
−id4`
32π4

1(
z`2 + z̄(p− `)2 + µ2 − iε

)2 . (11.23)

Now the denominator has quadratic (`2), linear (`·p) and constant terms. We can
remove the linear term and thus simplify the integral by a shift `→ `+ z̄p of the
integration variable5

I(−p2) =

∫ 1

0

dz

∫
−id4`
32π4

1(
`2 + zz̄p2 + µ2 − iε

)2 . (11.24)

Momentum Integrals. Performing the momentum integrals is not very
difficult. Let us start with the integral over the energy component. The integrand
has double and single poles at

`0 = ±
√
~̀2 + zz̄p2 + µ2 − iε . (11.25)

The integration contour is along the real axis and passes right between the two
poles. It decays sufficiently fast at |l0| → ∞ so that we can close the contour by a
large semicircle in the upper or lower half of the complex plane. Either of the
single poles contributes the same residue

I(−p2) =

∫ 1

0

dz

∫
d3~̀

64π3

1(
~̀2 + zz̄p2 + µ2 − iε

)3/2 . (11.26)

3There are similar formulas for more than two denominators and for higher powers.
4The advantage of this expression is that the new integrand is spherically symmetric for fixed

value of z which simplifies integration drastically. The centre of the sphere, however, varies with
z.

5For an infinite integration domain shifting the integration variable does not change the integral
as long as it is convergent. For divergent integrals this point is subtle.

11.4



We notice that the integral merely reduces the exponent of the denominator by
1/2 and multiplies by a suitable overall factor. The remaining three spatial
momentum integrals yield a very similar result, each of them reducing the
exponent by 1/2. The last integral in fact is logarithmically divergent for large

momenta. We have to cut it off at some bound |~l| ' Λcut, and we obtain

I(−p2) = − 1

32π2

∫ 1

0

dz log
zz̄p2 + µ2 − iε

Λ2
cut

. (11.27)

For a large UV cutoff Λcut the integral diverges logarithmically.

Wick Rotation. Another trick which is commonly used is to rotate the
integration contour for the energy `0 from the real axis to the imaginary axis

`0 = i`E,4. (11.28)

This Wick rotation is permissible since physical integrands are typically perfectly
analytic in the first and third quadrants of the complex plane. For instance, poles
of Feynman propagators are located slightly below the positive real axis in
quadrant four or slightly above the negative real axis in quadrant two.

(11.29)

By means of the residue theorem, the value of the integral does not change by the
Wick rotation ∫

d4` F (`0, ~̀) =

∫
id4`E F (i`E,4, ~̀). (11.30)

Applying this rotation to our loop integral we obtain an integral over
4-dimensional Euclidean space

I(−p2) =

∫ 1

0

dz

∫
d4`E
32π4

1(
`2E + zz̄p2 + µ2 − iε

)2 . (11.31)

Now the integrand depends only on |`E|, and we can use rotational symmetry to
replace the integral over three spherical angles at fixed |`E| by the volume of a
three-sphere 2π2|`E|3 ∫

d4`EF (|`E|) = 2π2

∫ ∞
0

`3E d`EF (`E). (11.32)
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For our integral this implies

I(−p2) =

∫ 1

0

dz

∫ ∞
0

d`E
16π2

`3E(
`2E + zz̄p2 + µ2 − iε

)2 . (11.33)

The integral over `E is divergent again an needs to be cut off at |`E| ' Λcut. The
result is compatible with the above expression up to some minor adjustment of the
cutoff parameter Λcut.

Final Integral. Gladly the remaining integral over the Feynman parameter z
can be performed for our simple integral yielding

I(−p2) =− 1

16π2

√
p2 + 4µ2 − iε
−p2

arctan

√
−p2

p2 + 4µ2 − iε

− 1

32π2
log

µ2

Λ2
cute

2
. (11.34)

The integral is manifestly real for 0 < −p2 < 4µ2. It is also real for −p2 < 0.
However, for −p2 > 4µ2 it develops an imaginary part

Im I(−p2) =
1

32π

√
−p2 − 4µ2

−p2
. (11.35)

It signals the opening of the two-particle creation channel at −p2 > 4µ2.

Spectral Function. We can now write the spectral function for our model at
next-to-leading order

ρ(s) = 2πZδ
(
s−m2

)
+
µ2κ2θ(s− 4µ2)

16π(s− µ2)2

√
s− 4µ2

s
+ . . . . (11.36)

The two terms correspond to the asymptotic particle and the two-particle
continuum. Let us consider its normalisation, we find∫

ds

2π
ρ(s) = Z + κ2

2
√

3π − 9

288π2
+ . . . (11.37)

Since 2
√

3π > 9 we see that the correction term due to the two-particle continuum
is indeed small and positive. Reassuringly the field strength renormalisation
precisely compensates for the correction term

Z = 1− µ2κ2I ′(µ2) + . . . , I ′(µ2) =
2
√

3π − 9

288π2µ2
. (11.38)
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11.3 Regularisation and Renormalisation

Above, we have encountered a divergent integral I(−p2) and in order to evaluate it
anyway, we somewhat arbitrarily introduced a momentum cutoff Λcut. Gladly the
cutoff has only a mild impact on the function I(−p2)

d

dΛcut

I(−p2) =
1

16π2Λcut

. (11.39)

In particular, the dependence on Λcut does not mix at all with the dependence on
the momenta and masses! This allowed us to extract some information from
I(−p2) without caring too much about the cutoff.

Regularisation Schemes. In order to extract precise information from a QFT
model at higher orders, one has to introduce a consistent regularisation scheme.
Such a scheme should make all relevant quantities finite.

There are several schemes, e.g.:

• Cutoff. Our choice was to cut off momentum integrals at very large momenta
(UV). Similarly one could cut off very small momenta (IR). Unfortunately, a
cutoff is not easy to formulate consistently for all quantities. It is often used to
quickly derive individual leading order results.
• Pauli–Villars. Replace Feynman propagators by a difference of two propagators

1

p2 +m2 − iε
→ 1

p2 +m2 − iε
− 1

p2 +M2 − iε
. (11.40)

For large M2 and small p2 the second propagator is suppressed. For large p2,
however, the two propagators almost cancel. Therefore this scheme suppresses
UV divergences. It is similar to a UV cutoff, but it can be applied universally to
Feynman diagrams.
• Point Splitting. In position space, the problem of UV divergences is related to

putting several fields at the same point in spacetime. By separating the field
insertion points in the action by a tiny amount, UV divergences can be avoided.
• Lattice. For the lattice regulator one approximates infinite spacetime by a finite

lattice. For finitely many degrees of freedom there cannot be divergences,
neither from the UV (finite spacing), nor from the IR (finite extent).
• Dimensional Regularisation. The types and degrees of divergences depend

crucially on the number of spacetime dimensions D. In the dimensional
regularisation scheme, one works in a spacetime of dimension D, where D is
taken to be an unconstrained real number. Observables become functions of D,
and divergences appear as poles in the D-dependence, e.g. 1/(D − 4). Although
the definition of this scheme is somewhat abstract, it is one of the favourite ones
because it works well in almost all circumstances.
• Finite Observables. Sometimes divergences can be avoided by considering

physical observables only. In our example, one could try to argue that all
observables can be deduced from I ′(s) which is perfectly finite. The constant
term of I(s) is an integration constant of

∫
ds I ′(s). The divergence happens to

be located precisely in this undetermined coefficient.
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In a regularised QFT, all observables are perfectly finite. However, they are not
quite what we are interested in, we are interested in observables of the original
QFT.

Renormalisation. The next step called renormalisation is to somehow absorb
the divergences consistently. To that end the most important insights are the
following:

• All physically relevant information and all observables for a QFT model are
encoded into its quantum correlation functions.
Example. The spectrum of asymptotic particles is encoded into time-ordered
two-point functions. Moreover, the scattering matrix can be derived from the
poles of higher-point functions.
• The Lagrangian and the action are devices to derive suitable correlation

functions. They are not fundamental objects, in particular their parameters such
as masses and coupling constants are not directly observable.6

Example. The mass terms (µ) in the Lagrangian do not exactly reflect the
masses (m) of asymptotic particles.
• Correlation functions depend on the so-called bare parameters of the

Lagrangian. One should tune the parameter values such that the correlation
functions behave as expected. At the end of the day, the numerical values of the
parameters are not important.
Example. One would adjust µ and κ such that the physical mass m has the
desired physical value.
• In terms of differential geometry: The parameters of a QFT form a manifold. A

Lagrangian description (with a particular regularisation, renormalisation and,
where applicable, a particular gauge fixing scheme) is a chart of the manifold.
The parameter values correspond to coordinates on this particular chart. There
is, however, no universal meaning to coordinates without reference to the
specific chart.

In this picture, renormalisation is the step to adjust the Lagrangian parameters to
the physical parameters. In the regularised and finite QFT this step is
well-defined. We express the bare Lagrangian parameters in terms of the physical
parameters, e.g.

µ = µ(m,Λcut) = m+ 1
2
mκ2I(m2) + . . . . (11.41)

with

I(m2) =
2− π/

√
3

32π2
− 1

32π2
log

m2

Λ2
cut

. (11.42)

Running Coupling. We can now remove the regulator by sending the
regularisation parameters to some appropriately chosen limit. We shall keep the
physical parameters fixed in the limit, but the resulting bare parameters may well

6Some traces of the complete Lagrangian or action may remain valid in the QFT, such as the
exact equations of motion and normalisation of the interacting field, as well as Noether’s theorem.
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be divergent
µ(m,Λcut)→∞ as Λcut →∞. (11.43)

This by itself is not a problem, since we attribute no meaning to µ. We just need
to keep in mind that the definition of bare parameters such as µ depends on a
scale such as Λcut. Changing the scale must be compensated by a change in the
bare parameter. This effect is called running of a coupling constant. In our case
the running is governed by the equation

dµ

dΛcut

=
mκ2

16π2Λcut

+ . . . . (11.44)

Such an equation is often written in logarithmic form

d log µ

d logΛcut

=
κ2

16π2
+ . . . (11.45)

which suggests the scaling behaviour

µ ∼ m(Λcut/m)κ
2/16π2+.... (11.46)

Note that the dependence of the bare mass µ on the physical mass m has become
non-linear by quantum effects. In the quantum field theory the mass term has
acquired a so-called anomalous dimension.

A similar effect can be observed for coupling constants governing the interactions
of several particles. In quantum field theory one may find an anomalous
dependence on the particle momenta, e.g. λ ∼ (p/Λ)∗κ

2+.... It means that one will
measure a different effective coupling strength depending on which length or
energy scale the interaction is probed (e.g. the energy of the probe photon).
Naturally, one would like to define a universally valid coupling strength to appear
in the Lagrangian, e.g. by considering the limit of very high or very low energies.
However, in this limit, the coupling strength often diverges. Therefore one needs to
define the coupling constant at a particular energy scale Λ, and the value of this
coupling constant depends on Λ. This effect is called a running coupling constant.

Renormalisability. The question is whether all physical quantities remain finite
in the limit Λcut →∞, and whether they are independent of the chosen
regularisation scheme. We can only adjust one bare parameter per physical
parameter, are there sufficiently many bare parameters to absorb all the
divergences?

• In the case of our model the answer is yes.
• QFT models where all divergences can be absorbed are called renormalisable.
• In principle, one can introduce further terms and couplings in the Lagrangian to

compensate for more and more divergences. As long as only finitely many terms
are needed to absorb the divergences at all perturbative orders, the model is
called renormalisable.
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• Some models, such as General Relativity, appear to require infinitely many
coupling constants to absorb all divergences. These models are called
non-renormalisable. Here one would need infinitely many measurements to
adjust infinitely many parameters, and effectively the model loses its predictive
power.

Before discussing which models are renormalisable, let us consider some technical
aspects of absorbing divergences into the coupling constants.

Localised Divergences. In principle, we know how to absorb divergences by
writing the bare parameters of the Lagrangian as functions of the physical
parameters. Let us discuss the origin of the divergence in detail.

To that end we investigate the integral I(−p2) more closely. The overall
dependence on p2 is some inverse trigonometric function.7 However, the divergent
or cutoff-dependent contribution to I(−p2) is much simpler

d

dΛcut

I(−p2) =
1

16π2Λcut

. (11.47)

It is actually independent of p2!

This behaviour is in fact general; divergences typically couple to polynomials of
the momenta only. This statement becomes more meaningful when translated to
position space: Any polynomial of the momenta translates to a localised
distribution such as δ4(x) under a Fourier transformation.

In terms of the loop integral in position space we can localise the origin of the
divergence. The loop integrand diverges as r−4 when the two vertices are nearby at
a distance of r, otherwise it is perfectly finite.

(11.48)

This divergence cannot be compensated by the measure d4x ∼ r3dr, and the region
r ≈ 0 contributes an infinite amount to the integral. The divergence is therefore
localised in spacetime, and it can be absorbed by a suitable local term in the
Lagrangian.

(11.49)

Counterterms. Indeed we see that we can absorb the divergence by a suitable
definition of the bare mass term µ = µ(m,Λcut) in the Lagrangian. The
prescription may be somewhat confusing because the integral I(−p2) depends on
the mass µ, so the definition of µ apparently is implicit. For our calculations we
use the interaction picture where we decided to split the Lagrangian L = L0 + Lint

into a free and an interaction contribution

L0 = −1
2
(∂φ)2 − 1

2
µ2φ2, Lint = −1

6
κµφ3 − 1

24
κ2λφ4. (11.50)

7We were extremely lucky to find a simple function. Typically one finds much more complicated
special functions such as polylogarithms or hypergeometric functions. And this only if one is lucky.
Often the encountered integrals lead to functions which do not even have a name.
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However, we are not forced to do this naive split, we are free to choose any free
field as a reference. In this sense, it makes perfect sense to choose the asymptotic
field with the physical mass m as a reference

Las = −1
2
(∂φ)2 − 1

2
m2φ2. (11.51)

This will automatically position all the poles due to Feynman propagators at the
desired physical location. Now we have to add a compensating mass term to the
interaction terms8

Lint = −1
2
µ′m2φ2 − 1

6
κmφ3 − 1

24
λκ2φ4. (11.52)

The new term is called a counterterm. Its role is to compensate all potential mass
shifts due to loop effects. The mass of the reference field will thus conveniently be
the physical mass to all orders.9 In this picture, the loop integral I(−p2) is defined
directly in terms of the physical mass m instead of µ.

When including the counterterm in our example, we obtain the following one-loop
contributions10

+ (11.53)

and the following corrected two-point function

M2(p) =
1

p2 +m2 + µ′m2 −m2κ2I(−p2)− iε
+ . . . . (11.54)

We impose the consistency equation that the physical mass equals the
asymptotical mass

m2 = m2 + µ′m2 −m2κ2I(m2) + . . . , (11.55)

which is solved by µ′ = κ2I(m2). Concerning the counterterm, the rule is that
whenever a bubble with two legs appears in a Feynman graph, there is a
compensating counterterm.11

:= + + (11.56)

It therefore makes sense to introduce a subtracted bubble integral

Isub(−p2) := I(−p2)− I(m2). (11.57)

8The definition of µ′, κ and λ has changed, but this does not matter since the values of the
bare parameters are not directly measurable.

9Only the mass is stabilised by the counterterm. The two Feynman diagrams do not cancel
exactly because the loop integral has a complicated dependence on p2 whereas the counterterm is
a constant function.

10The loop order does not necessarily refer to the literal number of loops in a Feynman graph.
It makes sense to also count counterterms to loop divergences as loops. The loop order commonly
refers to the order in a small coupling constant, in our case κ2.

11We have reintroduced the contribution from the tadpole graph which is equivalent to a mass
term with infinite mass and can therefore be absorbed entirely into a suitable redefinition of µ′.
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Obviously this function is finite and satisfies

Isub(m2) = 0. (11.58)

The corrected two-point function then takes the simplified form

M2(p) =
1

p2 +m2 −m2κ2Isub(−p2)− iε
+ . . . (11.59)

We can even go one step further and decide to add a counterterm for the kinetic
term

Lint = −1
2
ζ(∂φ)2 − 1

2
µ′m2φ2 − 1

6
κmφ3 − 1

24
λκ2φ4. (11.60)

This term changes the overall normalisation of the field φ(x), and allows us to
normalise the residue of the asymptotic particle pole in the two-point function to 1
at all orders. In this case, we can drop the field strength renormalisation factor Z
by setting it to 1.

In conclusion, the asymptotic Hamiltonian describes the canonically normalised
fields with appropriate physical masses. The interaction Hamiltonian contains all
types of allowable interactions terms. Their parameters are tuned to stabilise the
masses and normalisations and to match with physical interaction processes.

Power Counting. Can we understand under which circumstances a QFT model
is renormalisable? We can use a crude argument in terms of the mass dimensions
of interaction terms.

A Feynman diagram evaluates to an integral over a rational function of the
momenta and masses of the particles.

• Earlier, we have discussed that UV divergences of the integral are polynomials of
the momenta.
• Furthermore, we can argue that particle masses in the denominators can be

safely ignored for the purposes of UV divergences.
• Evidently, the coupling constants will appear as overall prefactors.

Altogether this implies that the structure of UV divergences of a loop integral is
given by polynomials in the momenta and the masses

dI

d logΛ
∈ Poly(αk, pk,mk). (11.61)

The polynomials in the momenta pk determine the appropriate local counterterm.

The class of potential divergences is restricted by the following consideration:

• The mass dimension of the integral is determined by the Feynman diagram. It is
a fixed number usually bounded from above by the number of spacetime
dimensions D, in our case D = 4.
• Suppose that all terms of the Lagrangian have mass dimension bounded from

above by D. Equivalently, all coupling constants αk have a non-negative mass
dimension.
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• Then the overall polynomial divergence terms must have non-negative mass
dimension. The remaining mass dimension must be carried by the momenta and
masses.
• This implies that there is only a very restricted set of momentum polynomials

which can carry divergences. In other words, only few counterterms are needed
to compensate the divergences.
• These counterterms have mass dimension bounded from above by D. The

counterterms couplings in turn have non-negative mass dimension.
• Usually, there are finitely many such terms, and therefore such models are

renormalisable.

Note that there is a crucial difference between coupling constants with positive
mass dimension and dimensionless coupling constants. As the dimension of
coupling constants accumulates, dimensionful coupling constants contribute
divergences only for a specific range of low perturbative orders. When there are
also dimensionless coupling constants, counterterms are required for arbitrary loop
orders.

In our example, we have included all interaction terms of mass dimension bounded
from above by 4. For each divergence which can possibly arise, there is a
corresponding counterterm.

When considering Feynman diagrams which contain a divergent loop along with
some other structures, it can be shown that the loop can be replaced by a
universal counterterm corresponding to the loop to cancel the divergence. A subtle
issue at higher loops are overlapping loops, where it may not be evident which
counterterms to use. Gladly, it can be shown that this situation does not leave
behind divergences which cannot be accounted for.

11.4 Vertex Renormalisation

Let us briefly discuss how to renormalise the remaining divergences at the one-loop
level in our example.

Divergent Interactions. By power counting arguments we can derive that
divergences can only appear for two-sided loops.12 Loops with three or more legs
are perfectly finite. There are only three potentially divergent terms in our model.

(11.62)

One of them we have already discussed, the other two integrals can be made finite
by adding appropriate counterterms of the form φ3 and φ4 to the Lagrangian

Lint = −1
6
κmφ3 − 1

24
λκ2φ4 + Lct,

Lct = −1
2
µ′m2φ2 − 1

6
κ′mφ3 − 1

24
λ′κ2φ4

12One-sided tadpoles can be removed entirely by suitable counterterms.
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= + + . (11.63)

Suitable counterterm coefficients to make all observables finite at one loop read

µ′ = κ2I(m2), κ′ = 3κ3λI(m2), λ′ = 3κ2λ2I(m2). (11.64)

As discussed above, µ′ is determined by a stable physical mass at m. There is no
similar universal condition for the coefficients κ′ and λ′; any finite shift w.r.t. the
above values is permissible, it merely leads to a reparametrisation of our model.

We have already seen that the φ2 counterterm effectively replaces the loop integral
by a finite subtracted loop integral

I(−p2)→ Isub(−p2). (11.65)

Exactly the same replacement is achieved by our above choice of counterterms for
φ3 and φ4.

(11.66)

Three-Point Function. Let us briefly consider the resulting one-loop
contributions to the three-point function.

F3 = F
(1)
3 + F

(3)
3 + . . . ,

F
(1)
3 = ,

F
(3)
3 = + +

+ +

= + + . (11.67)

The latter two terms involve bubbles only for which we know the integral already.
The counterterms make both integrals finite.13 The first triangle integral

13Note that because Isub(m2) = 0 the internal Feynman propagator which connects the bubble
to the 3-vertex is precisely cancelled, and only one Feynman propagator with associated asymptotic
particle pole remains for each leg.
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∼
∫
d4`/`6 is UV finite by itself. In fact it is the most complicated contribution

F
(3)
3 = − iκ3m3(2π)4δ4(p1 + p2 + p3)

·
∫
−id4`
(2π)4

1

`2 +m2 − iε

· 1

(`+ p1)2 +m2 − iε
1

(`− p3)2 +m2 − iε
(11.68)

and the only one which allows all three momenta to interact non-trivially.

Four-Point Function. There are many diagrams contributing to a four-point
process. Here we can merely plot all the graphs (up to permutations of the
external legs).

F4 = F
(2)
4 + F

(4)
4 + . . . ,

F
(2)
4 = + ,

F
(4)
4 = + +

+ + +

+ + + . (11.69)
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