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9 Particle Scattering

A goal of this course is to understand how to compute scattering processes in
particle physics.

9.1 Scattering Basics

Setup. The usual setup for scattering experiments at particle colliders is the
following:

(9.1)

• Two bunches of particles are accelerated to high or relativistic velocities and
made to collide.
• Whenever two particles from the bunches come very close, they produce some

complicated interacting quantum state.
• After a while this state evolves into several particles moving away in various

directions.
• The outgoing particles of each scattering event are measured and recorded.

Some additional comments:

• Quantum mechanics is probabilistic, so a large number of particle collisions must
be measured.
• To measure collisions of three or more particles would be technically challenging

because they would all have to be focused within a tiny region of space
simultaneously. The likelihood for two particles to scatter is much higher.
• By Lorentz symmetry, the directions of the two ingoing momenta ~p1,2 can be

adjusted arbitrarily. In some reference frame, the momenta will be parallel and
along the z-axis. The relevant quantity is the centre of mass energy squared
s = −(p1 + p2)

2. The highest energies
√
s are obtained where the collisions are

head-on with equal but opposite momenta. For practical purposes, the particles
can have momenta of different magnitude or one of the two bunches could be a
fixed target at rest.
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• The particle momenta in the beam are not perfectly aligned. By the uncertainty
principle this is actually impossible if the beam is also focused on a finite area.
• The particle detectors are not perfect: They have a certain spatial and temporal

resolution. They measure the energy and momenta at a certain resolution. They
may not be able to detect and distinguish all kinds of particles; they may miss
some particles; they may misidentify some. Scattered particles along the beam
direction are hardest to detect.

Cross Sections. How to quantify scattering? Consider a simple classical
scattering experiment:

(9.2)

• Take two hard balls of radii r1, r2.
• Throw them towards each other along the z axis in opposing directions.
• Depending on the transverse offset d, the balls will either hit (d < r1 + r2) or

miss (d > r1 + r2).
1

• When the balls hit, they bounce off in different directions.

Quantum mechanics is probabilistic, there cannot be such deterministic output.
One has to repeat the experiment many times or perform an experiment with
many identical particles and count:

• Accelerate two bunches of n1 and n2 particles.
• Focus each bunch on a cross-sectional area of A.
• Repeat the experiment nex times.
• Count the number of individual scattering events N .

The expectation value for N is

N =
nexn1n2σ

A
, (9.3)

where the characteristic quantity is the scattering cross section σ. For two classical
hard balls one obtains σ = π(r1 + r2)

2: Given the transverse position of the first
ball, the second ball must be within an area of σ to make the two collide.

In collider experiments one measures scattering cross sections

1More accurately, at a near miss, the flow of air will also deform the balls’ trajectories slightly.
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• Total or inclusive cross sections σ simply count the number of overall collision
events.
• Differential cross sections dσ measure the number of events where the outgoing

particles have predetermined momenta.2 The definition of dσ depends on the
number of outgoing particles. The so-called phase space is furthermore
constrained by Poincaré symmetry.
• One may even resolve the polarisation of the outgoing particles and measure

polarised cross sections.

9.2 Cross Sections and Matrix Elements

The computation of the scattering cross section is not straight-forward. Naively,
we prepare initial and final states with definite momenta p1, p2 and q1, . . . , qn at
some times tin and tout in the distant past and distant future

〈f| ∼ 〈q1, . . . , qn|, |i〉 ∼ |p1, p2〉. (9.4)

The probability is given by the square of the correlator 〈f| exp(−iH(tout − tin))|i〉
σ ∼ |〈f| exp(−iH(tout − tin))|i〉|2 (9.5)

For initial and final states with definite momenta, the correlator contains a delta
function δ4(Pin − Pout) to conserve momentum. It cannot be squared because this
would result in a factor of δ4(0) =∞. We know that such factors represent some
volume of spacetime relevant to the problem. A proper treatment requires the use
of wave packets. They actually account for the finite extent of the ingoing
bunches, namely the cross-sectional area A, and for the finite resolution of the
detector. The factor δ4(0) represents this area A among others.

A somewhat tedious calculation in terms of wave packets yields a meaningful
result for the differential cross section of 2→ n scattering. At the end of the day,
the wave packets can be focused to definite momenta3

dσ =
(2π)4δ4(Pin − Pout)

4|e(~p1)~p2 − e(~p2)~p1|

n∏
k=1

d3~qk
(2π)3 2e(~qk)

|M |2. (9.6)

Here M is the appropriate element of the scattering matrix with the
momentum-conserving delta function stripped off

lim
tin,out→∓∞

〈f| exp(−iH(tout − tin))|i〉 = (2π)4δ4(Pin − Pout)iM. (9.7)

The normalisation is such that in the free theory the correlator for n = 2 two final
state particles equals4

2e(~p1) 2e(~p2) (2π)6δ3(~p1 − ~q1)δ3(~p2 − ~q2). (9.8)

2The direction of the scattered classical balls is determined by the impact parameter d, and
hence certain regions of the scattering cross section correspond to specific angles. In quantum
mechanics this is mostly a matter of probability.

3This quantity is not invariant under Lorentz transformations due to the denominator |e(~p1)~p2−
e(~p2)~p1|. Nevertheless it transforms like an area as it should.

4This contribution representing no scattering is actually removed from M for 2 → 2 particle
scattering.
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The formula simplifies for 2→ 2 scattering in the centre of mass frame

dσ

dΩ
=

1

4|e(~p1)~p2 − e(~p2)~p1|
|~q1|

16π2
√
s
|M |2. (9.9)

Here dΩ represents the spherical angle element of the direction of outgoing particle
1, and s = −P 2

in = −(p1 + p2)
2 is the centre of mass energy squared. It becomes

even simpler in case all four particles are identical

dσ

dΩ
=
|M |2

64π2s
. (9.10)

9.3 Electron Scattering

We can now compute some realistic scattering event in Quantum Electrodynamics.
We shall consider scattering of two electrons into two electrons (Møller scattering).5

(9.11)

Here, we will not distinguish the two polarisation modes of the electron spin. One
might as well consider the polarised cross section, but the experimental setup as
well as the theoretical calculation is more challenging.

Initial and Final States. To prepare the initial and final states we use the
interaction picture. The free reference field provides the creation and annihilation
operators for the in- and outgoing particles which do not interact when sufficiently
far away. Moreover the initial and final states will be practically independent of tin
and tout as long as the latter are sufficiently large.

The initial state is composed from two ingoing electrons

|i〉 = a†α(~p1)a
†
β(~p2)|0〉. (9.12)

The electrons have definite momenta p1, p2. Let us assume they are in their centre
of mass frame with momenta aligned along the z axis

p1,2 = (e, 0, 0,±p) (9.13)

5Depending on conventions, our calculation may also represent positron-positron scattering.
Obviously, the cross section is exactly the same by charge conjugation symmetry.
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where e2 = p2 +m2. The polarisations α, β are required to set up the state
properly. We will not care about them, so we should eventually average over all
ingoing polarisation configurations.

We want to probe the final state for two outgoing electrons

〈f| = 〈0|aδ(~q2)aγ(~q1). (9.14)

In the centre of mass frame they will escape in two opposite directions with the
same magnitude p of momentum. Due to rotational symmetry around the z axis,6

we only need to probe for particles in the x-z plane

q1,2 = (e,±p sin θ, 0,±p cos θ). (9.15)

Again we shall not care about the polarisations. We therefore have to sum over all
outgoing polarisation configurations.

For a fixed particle momentum p or energy e, we will be interested in the angular
distribution of outgoing particles. Due to rotational symmetry the differential
cross section dσ/dΩ must be an even function of the scattering angle θ alone. This
function also has the symmetry θ → π − θ because the outgoing particles are
indistinguishable

dσ

dΩ
=
dσ

dΩ
(θ) =

dσ

dΩ
(−θ) =

dσ

dΩ
(π − θ). (9.16)

Time Evolution. We now insert the time evolution operator Uint of the
interaction picture between the initial and final states to determine the probability
amplitude7

F = 〈f|Uint(tout, tin)|i〉 = (2π)4δ4(Pin − Pout)iM. (9.17)

The matrix element is a function of the momenta and the polarisations
Mαβγδ(p1, p2, q1, q2).

8

The expansion of the amplitude at leading order reads simply

F (0) = 〈f|i〉
= 2e(~p1) 2e(~p2) (2π)6δ3(~p1 − ~q1)δ3(~p2 − ~q2)
− 2e(~p1) 2e(~p2) (2π)6δ3(~p1 − ~q2)δ3(~p2 − ~q1). (9.18)

The contribution from the free theory represents the situation when the two
particles pass by each other without scattering at all. Note that there are two
terms corresponding to the fact that the particles are indistinguishable.

At first perturbative order the matrix element vanishes

F (1) = i〈f|Sint|i〉 = i

∫
d4x 〈f|Lint(x)|i〉

= iq

∫
d4x 〈f|Aµ(x)ψ̄(x)γµψ(x)|i〉 = 0 (9.19)

6We will not measure polarisations which would otherwise break the symmetry.
7The conventional factor of i typically makes the leading contributions to M (mostly) real.
8We can write it as a function of all the external momenta noting that we shall only evaluate

it for p1 + p2 = q1 + q2.
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because there is a single electromagnetic field which cannot contract to anything
else and thus directly annihilates either of the vacua.

Second Order. For the next order we insert two interaction Lagrangians

F (2) = 1
2
i2
∫
d4x d4y 〈f|T

(
Lint(x)Lint(y)

)
|i〉. (9.20)

Each of the interaction Lagrangians contains an electromagnetic field. As they
would otherwise annihilate the vacua, they have to be contracted via Wick’s
theorem (for the field A) by a Feynman propagator

1
2
i2q2

∫
d4x d4y 〈f|T

(
Aµ(x)ψ̄(x)γµψ(x)Aν(y)ψ̄(y)γνψ(y)

)
|i〉

= 1
2
iq2
∫
d4x d4y GF

µν(x− y)〈f|T
(
ψ̄(x)γµψ(x) ψ̄(y)γνψ(y)

)
|i〉. (9.21)

Next, Wick’s theorem should be applied to the time-ordered spinor fields yielding
several contributions:

• There are two vacuum bubble contributions.

(9.22)

These vacuum processes take place everywhere and all the time, and they do not
interact with the scattering process. As discussed earlier, they must be
discarded.
• There are two correction terms with two remaining external fields.

(9.23)

They contribute to two point functions of spinor fields, but cannot be non-trivial
functions of all the four scattering particle momenta. Here they contribute only
to forward scattering, and we can safely ignore their contribution. We will
discuss their relevance later.
• Finally, there is one connected diagram.

(9.24)

This is the leading non-trivial contribution to the scattering process.
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Connected Contribution. In our case, the connected diagram is obtained by
replacing time ordering by normal ordering

1
2
iq2
∫
d4x d4y GF

µν(x− y)〈f|N
(
ψ̄(x)γµψ(x) ψ̄(y)γνψ(y)

)
|i〉. (9.25)

Now we need to contract the fields with the external particles. This is achieved by
the following two anti-commutators which follow from the mode expansion of the
free Dirac field

{ψ̄(x), a†α(~p)} = e−ip·xv̄α(~p),

{aα(~q), ψ(x)} = eiq·xvα(~q). (9.26)

Putting everything together we obtain the matrix element

F (2)
conn = iq2

∫
d4x d4y GF

µν(x− y)eiq1·x+iq2·y−ip1·x−ip2·y

· v̄α(~p1)γ
µvγ(~q1) v̄β(~p2)γ

νvδ(~q2)− . . .

= − (9.27)

The omitted term takes the same form, but with the two outgoing particles
exchanged (q1 ↔ q2, γ ↔ δ). The reason for the doubling of terms is that two
identical types of particles are scattered. The two-particle wave function is
anti-symmetric because the particles are fermionic.

The two remaining integrals are Fourier transforms. One of them transforms the
Feynman propagator to momentum space. The other one generates the momentum
conserving delta function. Altogether the integrals yields

(2π)4δ4(Pout − Pin)GF
µν(q1 − p1). (9.28)

We now separate off the momentum conserving delta function and write the
matrix element M 9

Mαβγδ =
q2ηµν

(p1 − q1)2
v̄α(~p1)γ

µvγ(~q1) v̄β(~p2)γ
νvδ(~q2)− . . . . (9.29)

We could try to evaluate the various spinor products. It turns out to be much
simpler to square the matrix element first

|M |2 =
1

4

∑
α,β,γ,δ

MαβγδM
∗
αβγδ. (9.30)

The factor of 1/22 originates from averaging over the polarisations of the ingoing
particles.

9The iε prescription for the Feynman propagator will not be relevant here.
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Sum over Polarisations. A pleasant feature of the polarisation sums is that
they can be performed by the completeness relations for spinor solutions∑

α

vα(~p)v̄α(~p) = p·γ −m. (9.31)

We obtain the following three terms

|M |2 =
q4Ttt

4(p1 − q1)4
+

q4Tuu
4(p1 − q2)4

− q4Ttu
2(p1 − q1)2(p1 − q2)2

, (9.32)

corresponding to the diagrams

(9.33)
The spinor products have turned into the traces

Ttt = tr[(p1·γ −m)γµ(q1·γ −m)γν ]

· tr[(p2·γ −m)γµ(q2·γ −m)γν ],

Tuu = tr[(p1·γ −m)γµ(q2·γ −m)γν ]

· tr[(p2·γ −m)γµ(q1·γ −m)γν ],

Ttu = tr[(p1·γ −m)γµ(q1·γ −m)γν(p2·γ −m)γµ(q2·γ −m)γν ]. (9.34)

The double-trace terms are most conveniently evaluated using the spinor trace
formulas10

tr(1) = 4,

tr(γµ) = 0,

tr(γµγν) = −4ηµν ,

tr(γµγνγρ) = 0,

tr(γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ). (9.35)

This brings Ttt into the following form

Ttt = 16(p1µq1ν + q1µp1ν − (p1·q1 +m2)ηµν)

· (pµ2qν2 + qµ2 p
ν
2 − (p2·q2 +m2)ηµν)

= 32(p1·p2)(q1·q2) + 32(p1·q2)(q1·p2)
+ 32m2(p1·q1 + p2·q2) + 64m4. (9.36)

10The latter of these formulas follow from anti-commuting one gamma matrix past all the others.
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The other double-trace term takes a similar form with q1 and q2 interchanged. The
crossed single-trace term can be simplified by means of the enveloping identities

γµγ
µ = −4,

γµγ
νγµ = 2γν ,

γµγ
νγργµ = 4ηνρ,

γµγ
νγργσγµ = 2γσγργν . (9.37)

After some algebra we obtain

Ttu = − 32(q1·q2)(p1·p2)− 32m4

− 16m2(p1·p2 + p1·q1 + p1·q2 + p2·q1 + p2·q2 + q1·q2). (9.38)

Mandelstam Invariants. In order to simplify the expressions we introduce the
Mandelstam invariants

s = −(p1 + p2)
2 = −(q1 + q2)

2,

t = −(p1 − q1)2 = −(p2 − q2)2,
u = −(p1 − q2)2 = −(p2 − q1)2. (9.39)

Inverting the relations we can write all scalar products of momenta using the s, t, u

p1·p2 = q1·q2 = m2 − 1
2
s,

p1·q1 = p2·q2 = 1
2
t−m2,

p1·q2 = p2·q1 = 1
2
u−m2. (9.40)

Note furthermore that momentum conservation implies the relation11

s+ t+ u = 4m2. (9.41)

Using Mandelstam invariants, the traces can be expressed very compactly as12

Ttt = 8(t2 − 2su+ 8m4),

Tuu = 8(u2 − 2st+ 8m4),

Ttu = −8(s2 − 8m2s+ 12m4). (9.42)

The squared matrix element now reads13

|M |2 = q4
(
u− s
t

+
t− s
u

)2

+
16q4m2(5m2 − 2s)

tu
. (9.43)

This expression is symmetric under exchange of t and u as it should because the
outgoing particles are of the same kind.

11This constraint implies that functions of s, t, u can be written in several alternative ways much
alike functions of p1, p2, q1, q2 which are constrained by p1 + p2 − q1 − q2 = 0.

12It is not straight-forward to derive these particular expressions, but it is easy to confirm that
they match with some other expression upon substituting, e.g. s = 4m2 − t− u.

13We can identify the first term as the corresponding result in scalar QED.
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Angular Distribution. In order to understand the angular distribution of
scattered particles we express the invariants in terms of the scattering angle θ

s = 4p2 + 4m2, t = −2p2(1− cos θ), u = −2p2(1 + cos θ). (9.44)

and insert everything into the differential cross section

dσ

dΩ
=

q4

64π2e2

(
(4p2 + 2m2)2

p4 sin4 θ
− 8p4 + 12m2p2 + 3m4

p4 sin2 θ
+ 1

)
. (9.45)

This expression is the leading non-trivial contribution to the angular distribution
of scattered electrons.

We can however notice a problem by inspecting the expression. It diverges when

• the electron momenta p are small or
• the scattering angle θ is close to 0 or π.

In those regimes the formula cannot be trusted. The deeper reason for the
divergences is that the photons which transmit the electromagnetic force are
massless. Massless particles cause some conceptual problems in scattering
processes.

The divergences are also relevant to the total cross section14

σ =

∫ 1

0

2πd cos θ
dσ

dΩ
. (9.46)

This integral diverges at cos θ = 1.

In order to properly address the above problematic regimes, one would have to
take higher perturbative corrections and competing processes into account.
However, only the full non-perturbative expression can provide exact results in
those regimes.

Nevertheless one should not expect a meaningful result for the total cross section
because the electromagnetic force is long-ranged: The photon propagator is not
exponentially suppressed at long distances. Effectively all particles scatter at least
by tiny amount and therefore the overall probability for scattering is 1. The
scattering cross section σ is the complete area A of the bunches which is infinite
due to our assumption of exactly defined momenta.

14The outgoing particles are indistinguishable, hence the integration extends only over one half of
the spherical angles. This is sufficient since at leading order 〈f|i〉 has two terms one of which covers
the opposite angles π − θ. Alternative the integral over all spherical angles must be multiplied by
a factor of 1

2 .
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Crossing Symmetry. A closely related process is the scattering of electrons and
positrons (Bhabha scattering).

(9.47)

It can be computed in much the same way.

The relevant connected diagrams for electron-positron scattering are

. (9.48)

The cross section turns out to be exactly the same as for electron scattering but
with s and u interchanged

s↔ u. (9.49)

The resulting leading contribution to the squared matrix element is15

|M |2 = q4
(
s− u
t

+
t− u
s

)2

+
16q4m2(5m2 − 2u)

st
. (9.50)

Indeed the computation is exactly the same when replacing

p2 ↔ −q2,
∑
α

vα(~p2)v̄α(~p2)↔ −
∑
α

uα(~q2)ūα(~q2). (9.51)

This relationship is called crossing symmetry. In terms of Feynman diagrams, the
positron line is equivalent to the electron line in reverse direction

←→ . (9.52)

15Apart from effects due to identical particles, the electron-positron scattering cross section
does not differ substantially from the case of electron-electron scattering. The difference between
attraction and repulsion manifests in the phase of matrix elements rather than in their absolute
value.
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9.4 Pair Production

The above electron-positron scattering involves a process where the two particles
combine into a photon and subsequently split up into a pair. This process is mixed
with photon exchange in the t channel.

A class of similar processes is pair production where the oppositely charged
particles annihilate and create a pair of charged particles of a different kind.

(9.53)

Let us compute scattering cross sections for such processes.

We assume that the outgoing particles have a mass mf and charge ±qf which is
different from the ingoing ones labelled by mi and ±qi.

Spinor Processes. First we consider the case where all external particles are
spinors

(9.54)

There is now only one spinor trace to be evaluated

T = tr[(p1·γ −mi)γµ(p2·γ +mi)γν ]

· tr[(q1·γ +mf)γ
µ(q2·γ −mf)γ

ν ],

= 16(−p1µp2ν − p2µp1ν − (−p1·p2 +m2
i )ηµν)

· (−qµ1 qν2 − q
µ
2 q

ν
1 − (−q1·q2 +m2

f )η
µν)

= 4(t− u)2 + 4s2 + 16(m2
i +m2

f )s. (9.55)

The Mandelstam invariants are defined as above, but due to the different masses
their relationships have to be adjusted

p1·p2 = m2
i − 1

2
s,

q1·q2 = m2
f − 1

2
s,

p1·q1 = p2·q2 = 1
2
t− 1

2
m2

i − 1
2
m2

f ,

p1·q2 = p2·q1 = 1
2
u− 1

2
m2

i − 1
2
m2

f ,

s+ t+ u = 2m2
i + 2m2

f . (9.56)
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Next we express the invariants as functions of the scattering angle

s = 4e2, t = −2pipf(1− cos θ), u = −2pipf(1 + cos θ). (9.57)

The unpolarised matrix element squared now reads

|M |2 =
q2i q

2
f T

4s

= q2i q
2
f

(
e2 −m2

i

e2
e2 −m2

f

e2
cos2 θ +

m2
i +m2

f

e2
+ 1

)
. (9.58)

The formula for the differential cross section for our configuration of masses and
momenta in the centre of mass frame reads

dσ

dΩ
=

√
e2 −m2

f

e2 −m2
i

|M |2

256π2e2
. (9.59)

Total Cross Section. This expression is free from singularities and can be
integrated to a total cross section

σ = 4π

∫ 1

−1

d cos θ

2

dσ

dΩ
=

1

64πe2

√
e2 −m2

f

e2 −m2
i

∫ 1

−1

d cos θ

2
|M |2 . (9.60)

Upon integration we obtain the final result

σ =
q2i q

2
f

48πe2

√
e2 −m2

f

e2 −m2
i

e2 + 1
2
m2

i

e2
e2 + 1

2
m2

f

e2
. (9.61)

We can plot the energy-dependence of this function.

(9.62)

Quite clearly the total energy 2e of the scattered particles must be at least as large
as the sum of masses 2mf of produced particles. There is a sharp increase above
production threshold, a maximum slightly above threshold (for mi < mf), and a
slow 1/e2 descent.
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Processes Involving Scalars. It is interesting to compare this process to the
corresponding one of charged scalars. The matrix element reads

|M |2 = q2i q
2
f

(t− u)2

s2
= q2i q

2
f

e2 −m2
i

e2
e2 −m2

f

e2
cos2 θ , (9.63)

and after integration we obtain the total cross section

σ =
q2i q

2
f

192πe2

√
e2 −m2

f

e2 −m2
i

e2 −m2
i

e2
e2 −m2

f

e2
. (9.64)

Let us finally consider a mixed process of spinors scattering into scalars for which
the matrix element reads

|M |2 = q2i q
2
f

−(t− u)2 + s2 − 4m2
f s

s2

= q2i q
2
f

e2 − (e2 −m2
i ) cos2 θ

e2
e2 −m2

f

e2
. (9.65)

For the total cross section we obtain

σ =
q2i q

2
f

192πe2

√
e2 −m2

f

e2 −m2
i

e2 + 1
2
m2

i

e2
e2 −m2

f

e2
. (9.66)

The opposite process of scalars scattering into spinors merely has a different
overall factor

σ =
q2i q

2
f

48πe2

√
e2 −m2

f

e2 −m2
i

e2 −m2
i

e2
e2 + 1

2
m2

f

e2
. (9.67)

We observe that, although the matrix elements differ substantially, the final cross
sections take a very predictable form: There are particular factors for scalars and
spinors in the initial and final states, namely

• e2 −m2 for ingoing scalars,
• e2 + 1

2
m2

i for ingoing spinors,
• e2 −m2

f for outgoing scalars,
• 4(e2 + 1

2
m2

f ) for outgoing spinors.

The square root on the other hand is a kinematical factor corresponding to the
number/volume of initial and final states (phase space).

The factors actually follow from the total spin of the pairs of particles. Assume
that a spin-0 state couples to the photon by a factor e2 −m2 whereas a spin-1
state couples via e2 +m2.16 Then for scalar we immediately obtain e2 −m2

whereas the four polarisations of two spinors make up one spin-0 and three spin-1
states yielding a factor of (e2 −m2) + 3(e2 +m2) = 4(e2 + 1

2
m2). For ingoing

spinors the factor of 4 is compensated by taking the average rather than that sum.

16It is reasonable that close to threshold e2 = m2 the spin-1 coupling dominates because the
photon is a vector particle. Above threshold the outgoing particles can also have orbital angular
momentum whose spin-1 component would also couple to the photon. Therefore the increase at
threshold is much softer for scalars than for spinors.
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9.5 Loop Contributions

We have obtained the leading-order contributions to some particle scattering
processes. Let us finally peek at contributions at higher orders in the perturbation
series.

For the electron scattering process at the next order q4 there are several types of
diagrams contributing.

(9.68)

Here we listed only the connected diagrams up to obvious symmetric copies.

It is easy to see that these diagrams lead to two types of problems

• The diagram with a bubble on the external leg is ill-defined.

(9.69)

Due to momentum conservation the momentum on both sides of the bubble is
the same. All external momenta originate from particle creation and
annihilation operators a†(~p) and a(~p). These momenta are exactly on the mass
shell p2 = −m2. Conversely, the internal line represents a Feynman propagator
1/(p2 +m2 − iε) which is to be evaluated right on the pole

1

p2 +m2 − iε
at p2 = −m2. (9.70)

This diagram therefore makes no sense as a contribution to the scattering
process.
• Most of the integrals are actually divergent in the UV, i.e. where the loop

momentum ` is very large. For example, the bubble on the photon line yields

∼
∫
d4`

`2 + . . .

`4 + . . .
∼
∫
d4`

`2
→∞. (9.71)

We have to understand how to deal with these two problems. This is going to be
the subject of the final two chapters.
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