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8 Correlation Functions

We have seen how to formally write the time evolution operator

U(t1, t0) = T exp (iSint(t0, t1)) (8.1)

in an interacting QFT model based on the interaction picture and time-ordered
products.

A particularly convenient correlator is one where the operators are already in
proper time order

〈X[φ]〉 := 〈0|T
(
X[φ]

)
|0〉. (8.2)

Such time-ordered correlation functions have multiple applications in QFT, for
example, it can be used for particle scattering processed. In this chapter we will
develop methods to compute them in more practical terms. The outcome will be a
set graphical rules, the Feynman rules.

For simplicity we will drop all free field indices φ0 → φ from now on and instead
mark interacting correlators by an index “int”.

8.1 Interacting Time-Ordered Correlators

Consider the correlator of two time-ordered fields with t1 > t2

F = 〈φ(t1, ~x1)φ(t2, ~x2)〉int = 〈0int|φint(t1, ~x1)φint(t2, ~x2)|0int〉. (8.3)

In the expression in terms of free fields

X = U(T, t2)φ(x2)U(t2, t1)φ(x1)U(t1,−T ), (8.4)

we notice that all operators are in proper time order and we can extend the time
ordering over all the operators

X = (T exp (iSint(t2, T )))φ(x2) (T exp (iSint(t1, t2)))

· φ(x1) (T exp (iSint(−T, t1)))
= T

(
exp (iSint(t2, T ))φ(x2) exp (iSint(t1, t2))

· φ(x1) exp (iSint(−T, t1))
)
. (8.5)

Inside the time-ordering symbol the order of operators does not matter. The
exponents can now be combined nicely:

X = T
(
φ(x1)φ(x2) exp (iSint(−T, T ))

)
. (8.6)

We thus find the correlation function 〈φ(x1)φ(x2)〉int

F = lim
T→∞(1−iε)

〈0|T
(
φ(x1)φ(x2) exp(iSint(−T, T ))

)
|0〉

〈0|T
(
exp(iSint(−T, T ))

)
|0〉

. (8.7)
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This formula generalises to vacuum expectation values of arbitrary time-ordered
combinations X[φ] of quantum operators

〈T(X[φ])〉int = lim
T→∞(1−iε)

〈0|T
(
X[φ] exp(iSint(−T, T ))

)
|0〉

〈0|T
(
exp(iSint(−T, T ))

)
|0〉

'
〈0|T

(
X[φ] exp(iSint)

)
|0〉

〈0|T
(
exp(iSint)

)
|0〉

. (8.8)

Here the complete interaction action Sint implies a small imaginary part for the
time coordinate in the distant past and future. We can thus express time-ordered
correlators in the interacting theory in terms of similar quantities in the free theory.

This expression has several benefits and applications:

• Typically there are no ordering issues within X because time ordering puts all
constituent operators into some well-defined order. This is useful when interested
in the quantum expectation value of some product of classical operators.
• It directly uses the interaction terms Sint in the action.
• Time-ordered products and expectation values can be evaluated conveniently.
• This expression appears in many useful observables, for example in particle

scattering amplitudes.

8.2 Time-Ordered Products

We now look for a method to evaluate a time-ordered correlator of a combination
of free field operators X[φ]

〈X[φ]〉 := 〈0|T
(
X[φ]

)
|0〉. (8.9)

Feynman Propagator. We start with two fields

GF(x1, x2) = i〈0|T
(
φ(x1)φ(x2)

)
|0〉. (8.10)

By construction and earlier results it reads

GF(x1, x2) =

{
i〈0|φ(x1)φ(x2)|0〉 for t1 > t2,

i〈0|φ(x2)φ(x1)|0〉 for t2 > t1

= iθ(t1 − t2)∆+(x1 − x2) + iθ(t2 − t1)∆+(x2 − x1). (8.11)

Comparing this to the retarded propagator GR(x)

GF(x) = iθ(t)∆+(x) + iθ(−t)∆+(−x),

GR(x) = iθ(t)∆+(x)− iθ(t)∆+(−x), (8.12)

we can write
GR(x) = GF(x)− i∆+(−x). (8.13)
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As such it obeys the equation of a propagator,

− ∂2GF(x) +m2GF(x) = δd+1(x), (8.14)

but with different boundary conditions than of the retarded propagator. It is
called the Feynman propagator.

The momentum space representation of the Feynman propagator for the scalar
field reads

GF(p) =
1

p2 +m2 − iε
. (8.15)

Here the two poles at e = ±e(~p) are shifted up and down into the complex plane
by a tiny amount

GF(p) =
1

2e(~p)

(
1

e− (−e(~p) + iε)
− 1

e− (+e(~p)− iε)

)
. (8.16)

(8.17)

Concerning the relation to the position space representation:

• The positive energy pole e = e(~p)− iε is below the real axis and thus relevant to
positive times.
• The negative energy pole e = −e(~p) + iε is above the real axis and thus relevant

to negative times.

Alternatively, to obtain the correct contour around the two poles, we could
integrate on a slightly tilted energy axis in the complex plane

e ∼ (1 + iε). (8.18)

Note that this corresponds to assuming times to be slightly imaginary, but in the
opposite direction such that et is real

t ∼ (1− iε). (8.19)

The iε prescription of the Feynman propagators is thus directly related and
equivalent to the iε prescription for converting the free vacuum to the interacting
one.

(8.20)
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Wick’s Theorem. To evaluate more complex time-ordered vacuum expectation
values one typically employs Wick’s theorem. It relates a time-ordered product of
operators T(X[φ]) to a normal-ordered product of operators N(X[φ]). The
normal-ordered product is useful when evaluating vacuum expectation values
because the VEV picks out field-independent contributions only.

Let us recall the definition of normal ordering: Split up the free fields φ into pure
creation operators φ+ and pure annihilation operators φ−

φ = φ+ + φ−, φ+ ∼ a†, φ− ∼ a. (8.21)

Normal ordering of a product is defined such that all factors of φ+ are to the left of
all factors φ−. For example,

N
(
φ(x1)φ(x2)

)
= φ+(x1)φ

+(x2) + φ−(x1)φ
−(x2)

+ φ+(x1)φ
−(x2) + φ+(x2)φ

−(x1), (8.22)

where the latter two terms are in normal order and the ordering of the former two
terms is irrelevant.

In comparison, time-ordering of the same product is defined as

T
(
φ(x1)φ(x2)

)
= φ+(x1)φ

+(x2) + φ−(x1)φ
−(x2)

+ θ(t2 − t1)
(
φ+(x2)φ

−(x1) + φ−(x2)φ
+(x1)

)
+ θ(t1 − t2)

(
φ+(x1)φ

−(x2) + φ−(x1)φ
+(x2)

)
. (8.23)

The difference between the two expressions reads

(T− N)
(
φ(x1)φ(x2)

)
= θ(t2 − t1)[φ−(x2), φ

+(x1)]

+ θ(t1 − t2)[φ−(x1), φ
+(x2)]

= θ(t2 − t1)∆+(x2 − x1)
+ θ(t1 − t2)∆+(x1 − x2)

= − iGF (x1 − x2). (8.24)

Wick’s theorem is a generalisation of this result to an arbitrary number of fields: It
states that the time-ordered product of a set of fields equals the partially
contracted normal-ordered products summed over multiple contractions between
pairs of fields. A Wick contraction between two, not necessarily adjacent, fields
φ(xk) and φ(xl) replaces the relevant two field operators by their Feynman
propagator −iGF(xk, xl), in short:

[. . . φk−1φkφk+1 . . . φl−1φlφl+1 . . .]

:=− iGF(x1 − x2) [. . . φk−1 φk+1 . . . φl−1 φl+1 . . .]. (8.25)
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For example:

T
(
φ1φ2

)
= N

(
φ1φ2

)
+ φ1φ2,

T
(
φ1φ2φ3

)
= N

(
φ1φ2φ3

)
+ φ1φ2φ3 + φ1φ2φ3 + φ1φ2φ3,

T
(
φ1φ2φ3φ4

)
= N

[
φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4

+ φ1φ2φ3φ4 + φ1φ2φ3φ4

+ φ1φ2φ3φ4 + φ1φ2φ3φ4

]
+ φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4, (8.26)

To prove the statement by induction is straight-forward:

• Assume the statement holds for n− 1 fields.
• Arrange n fields in proper time order φn . . . φ1 with tn > . . . > t1.
• Consider T[φn . . . φ1] = (φ+

n + φ−n )T[φn−1 . . . φ1] and replace T[φn−1 . . . φ1] by
contracted normal-ordered products.
• φ+

n is already in normal order, it can be pulled into N[. . .].
• Commute φ−n past all the remaining fields in the normal ordering.
• For every uncontracted field φk in N[. . .], pick up a term
∆+(xn − xk) = −iGF(xn − xk) because tn > tk.
• Convince yourself that all contractions of n fields are realised with unit weight.
• Convince yourself that for different original time-orderings of φn . . . φ1, the step

functions in GF do their proper job.

Time-Ordered Correlators. To compute time-ordered correlators we can use
the result of Wick’s theorem. All the normal-ordered terms with remaining fields
drop out of vacuum expectation values. The only terms to survive are those where
all the fields are complete contracted in pairs

〈φ1 . . . φn〉 :=
∑

complete

contractions

φ1φ2 . . . . . . . . . . . . φn−1φn. (8.27)

In particular, it implies that correlators of an odd number of fields must be zero.

This formula applies directly to a single species of real scalar fields, but for all the
other fields and mixed products there are a straight-forward equivalents:

• For fields with spin, use the appropriate propagator, e.g. (GD)ab for contracting
the Dirac fields ψa and ψ̄b.
• For any crossing of lines attached to fermionic fields, multiply by a factor of

(−1).

8.5



8.3 Some Examples

We have learned how to reduce time-ordered correlators in a weakly interacting
QFT to free time-ordered correlators

〈X[φ]〉int =
〈X[φ] exp(iSint[φ])〉
〈exp(iSint[φ])〉

. (8.28)

We have also learned how to evaluate the latter

〈φ1 . . . φn〉 :=
∑

complete

contractions

φ1φ2 . . . . . . . . . . . . φn−1φn. (8.29)

We will now apply these formulas to some basic types of time-ordered correlators
in order to develop an understanding for them.

Setup. We will consider φ4 theory, i.e. a single real scalar field with a φ4

interaction
L = −1

2
∂µφ∂µφ− 1

2
m2φ2 − 1

24
λφ4. (8.30)

We define the interaction picture using the quadratic terms in the action

L0 = −1
2
∂µφ∂µφ− 1

2
m2φ2. (8.31)

What remains is the interaction term

Lint = − 1
24
λφ4, (8.32)

whose coefficient, the coupling constant λ, is assumed to be small. The interaction
part of the action is thus

Sint(t1, t2) :=

∫ t2

t1

dt

∫
d3~xLint(x), Sint := Sint(−∞,+∞). (8.33)

We would like to evaluate the correlators of two and four fields

T12 = 〈φ1φ2〉int, F1234 = 〈φ1φ2φ3φ4〉int, (8.34)

where φk denotes the field φ(xk) evaluated at position xk. These are functions of
the coupling constant λ which we formally expand for small λ as

T (λ) =
∞∑
n=0

T (n), F (λ) =
∞∑
n=0

F (n), T (n) ∼ F (n) ∼ λn. (8.35)
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Leading Order. First, we shall evaluate T and F at lowest order in the coupling
strength. At leading order we simply set λ = 0 and obtain the correlator in the
free theory

T (0) = 〈φ1φ2〉, F (0) = 〈φ1φ2φ3φ4〉. (8.36)

Using Wick’s theorem this evaluates to

T (0) = φ1φ2,

F (0) = φ1φ2φ3φ4 + φ1φ2φ3φ4 + φ1φ2φ3φ4. (8.37)

More formally, these equal

T (0) = (−i)G12,

F (0) = (−i)2G12G34 + (−i)2G13G24 + (−i)2G14G23, (8.38)

where Gkl denotes GF(xk − xl). In a graphical notation we could write this as

T (0) = ,

F (0) = + + . (8.39)

Each vertex represents a spacetime point xk and each line connecting two vertices
k and l represents a propagator −iGF(xk − xl).

Two-Point Function at First Order. The contributions to the interacting
two-point function at the next perturbative order read

T (1) = 〈φ1φ2iSint[φ]〉 − 〈φ1φ2〉〈iSint[φ]〉

= − iλ

24

∫
d4y 〈φ1φ2φyφyφyφy〉

+
iλ

24

∫
d4y 〈φ1φ2〉〈φyφyφyφy〉. (8.40)

Using Wick’s theorem the two terms expand to 15 and 3 contributions. Consider
the first term only: The 15 contributions can be grouped into two types. The first
type receives 12 identical contributions from contracting the 4 identical φy’s in
superficially different ways. The remaining 3 terms in the second group are
identical for the same reason. We summarise the groups as follows

T
(1)
1a = − i

2
λ

∫
d4y φ1φ2φyφyφyφy = − i

2
λ

∫
d4y ,

T
(1)
1b = − i

8
λ

∫
d4y φ1φ2φyφyφyφy = − i

8
λ

∫
d4y . (8.41)
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The term originating from the denominator of the interacting correlator evaluates
to

T
(1)
2 = −1

8
(−iλ)

∫
d4y φ1φ2φyφyφyφy = −T (1)

1b . (8.42)

It precisely cancels the second contribution to the first term. Altogether we find
the following expression for the first-order correction to the two-point function

T (1) = T
(1)
1a = 1

2
(−i)4λ

∫
d4y G1yG2yGyy

= − i
2
λ

∫
d4y . (8.43)

Tadpoles. We were careful enough not to write this expression too explicitly

T (1) = 1
2
λGF(0)

∫
d4y GF(x1 − y)GF(x2 − y). (8.44)

We notice that one of the propagators decouples from the function. Moreover its
argument is precisely zero because the propagator connects a point to itself.

• The result is in general divergent, it is very similar to the vacuum energy we
encountered much earlier in QFT.
• In our derivation of time ordering we were sloppy in that we did not discuss the

case of equal times. In a local Lagrangian, however, all terms are defined at
equal time, moreover at equal spatial position. It would make sense to employ
normal ordering in this case, which eliminates the term at the start.
• Whatever the numerical value of GF(0), even if infinite, it does not yield any

interesting functional dependence to T (1). In fact it could be eliminated by
adding a term − i

4
λGF(0)φ2 to the interaction Lagrangian. This has the same

effect as normal ordering the Lagrangian.

This term is called a tadpole term because the corresponding diagram looks like a
tadpole sitting on the propagator line

(8.45)

More generally, tadpoles are internal parts of a diagram which are attached to the
rest of the diagram only via a single vertex. In most cases, they can be
compensated by adding suitable local terms to the interaction Lagrangian. Even
though this correction term is somewhat dangerous and somewhat trivial, let us
pretend it is a regular contribution and carry it along.
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First Order Four-Point Function. The first-order contributions to the
interacting four-point function take a similar form

F (1) = 〈φ1φ2φ3φ4iSint[φ]〉 − 〈φ1φ2φ3φ4〉〈iSint[φ]〉

= − iλ

24

∫
d4y 〈φ1φ2φ3φ4φyφyφyφy〉

+
iλ

24

∫
d4y 〈φ1φ2φ3φ4〉〈φyφyφyφy〉. (8.46)

These expressions are not as innocent as they may look: Using Wick’s theorem the
two terms expand to 7 · 5 · 3 · 1 = 105 and 3 · 3 = 9 terms. Gladly, most of these
terms are identical and can be summarised, we group them into 24, 6 · 12 and 3 · 3
terms from the first contribution and 3 · 3 terms from the second one

F
(1)
1a = (−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy,

F
(1)
1b = 1

2
(−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy + 5 perm.,

F
(1)
1c = 1

8
(−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy + 2 perm.,

F
(1)
2 = −1

8
(−iλ)

∫
d4y φ1φ2φ3φ4φyφyφyφy + 2 perm.. (8.47)

The graphical representation of these terms is

F
(1)
1a ' ,

F
(1)
1b ' + +

+ + + ,

F
(1)
1c ' + + . (8.48)

Let us now discuss the roles of the three terms.

8.9



Vacuum Bubbles. In the above result we notice that again the contribution
F

(1)
2 from the denominator of the interacting correlator cancels the term F

(1)
1c from

the numerator. This effect is general:

Some graphs have components which are coupled neither to the rest of the graph
nor to the external points. Such parts of the graph are called vacuum bubbles.

• Vacuum bubbles represent some virtual particles which pop out of the quantum
mechanical vacuum and annihilate among themselves. They do not interact with
any of the physically observed particles, hence one should be able to ignore such
contributions.
• Vacuum bubbles are usually infinite. Here we obtain as coefficient GF(0)2

∫
d4y.

This contains two divergent factors of GF(0) and an infinite spacetime volume∫
d4y.

• Formally, we could remove such terms by adding a suitable field-independent
term to the Lagrangian. Alternatively we could normal order it.
• In any case, vacuum bubbles are generally removed by the denominator of the

interacting correlation function. This cancellation ensures that the interacting
vacuum is properly normalised, 〈0|0〉int = 1. Any diagram containing at least
one vacuum bubble can be discarded right away.

Disconnected Graphs. The contribution from F
(1)
1b is reminiscent of the

correction T (1) to the two-point function. In fact it can be written as a sum of
products of two-point functions

F
(1)
1b = T

(0)
12 T

(1)
34 + T

(0)
13 T

(1)
24 + T

(0)
14 T

(1)
23

+ T
(1)
12 T

(0)
34 + T

(1)
13 T

(0)
24 + T

(1)
14 T

(0)
23 . (8.49)

This combination is precisely the first-order contribution to a product of two T (λ)’s

= + λ + . . . . (8.50)

This is also a general feature of correlation functions:

• Correlation functions contain disconnected products of lower-point functions.
The corresponding graphs contain disconnected components (each of which is
connected to at least one external field).
• Such contributions are typically put aside because their form is predictable.1

Nevertheless, they are essential and non-negligible contributions.
• Such disconnected contributions represent processes that take place

simultaneously without interfering with each other.

1When computing an n-point function one will typically already have computed all the k-point
functions with k < n anyway.
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Quite generally one can split the contributions into connected and disconnected
terms. Here we know, to all orders in λ

F (λ) = T12(λ)T34(λ) + T13(λ)T24(λ) + T14(λ)T23(λ)

+ Fconn(λ)

= + +

+ . (8.51)

where Fconn(λ) summarises all connected contributions. In our case

F (1)
conn = F

(1)
1a = −iλ

∫
d4y G1yG2yG3yG4y

= λ + . . . . (8.52)

Symmetry Factors. In our computation, we have encountered many equivalent
contributions which summed up into a single term. We observe that these sums
have conspired to cancel most of the prefactors of 1/24. The purpose of having a
prefactor of 1/24 for φ4 in the action is precisely to be cancelled against
multiplicities in correlators, where λ typically appears without or with small
denominators.

We can avoid constructing a large number of copies of the same term by
considering the symmetry of terms or the corresponding graphs. The symmetry
factor is the inverse size of the discrete group that permutes the elements of a term
or a graph while leaving its structure invariant.

To make use of symmetry factors for the calculation of correlation functions, one
should set up the Lagrangian such that every product of terms comes with the
appropriate symmetry factor. For example, the term φ4 allows arbitrary
permutations of the 4 φ’s. There are 4! = 24 such permutations, hence the
appropriate symmetry factor is 1/24.2

The crucial insight is the following: When the symmetry factors for the
Lagrangian are set up properly, the summed contributions to correlation function
also have their appropriate symmetry factors.

2After all, we are free to call the term that multiplies φ4 either λ/24 or λ′. It is not even difficult
to translate between them.
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To determine the symmetry factors correctly sometimes is difficult, as one has to
identify all permissible permutations. This can be difficult, for example, when the
graphical representation has a difficult topology or when it hides some relevant
information.

Let us consider the symmetry factors of the terms we have computed so far. The
contributions T (0), F (0) and F

(1)
conn have trivial symmetry factors.

(8.53)

Permutations of any of the elements would change the labelling of the external
fields. The symmetry factor for the tadpole diagram is 1/2.

(8.54)

The relevant Z2 symmetry flips the direction of the tadpole line.3 Finally, the
vacuum bubble diagram has a symmetry factor of 1/8.

(8.55)

There are two factors of 1/2 for flipping the direction of the tadpole lines. Then
there is another factor of 1/2 for permuting the two tadpole lines.

8.4 Feynman Rules

We have seen how to evaluate some perturbative contributions to interacting
correlators. Following the formal prescription leads to a lot of combinatorial
overhead as the results tend to be reasonably simple compared to the necessary
intermediate steps. Feynman turned the logic around and proposed a simple
graphical construction of correlators:

The interacting correlator of several fields can be expressed as a sum of so-called
Feynman graphs. Each Feynman graph represents a certain mathematical
expression which can be evaluated from the graph by the Feynman rules. Moreover
a Feynman graph display nicely the physical process that leads to the
corresponding term of the correlator.

3In fact, the symmetry acts on the connections of lines to vertices. Here, exchanging the two
endpoints of the tadpole line is the only symmetry.

8.12



For every weakly coupled QFT there is a set of Feynman rules to compute its
correlators.4 Here we list the Feynman rules for the scalar φ4 model.

Feynman Rules in Position Space. A permissible graph for a correlator

F (x1, . . . , xn) = 〈φ(x1) . . . φ(xn)〉int (8.56)

• has undirected and unlabelled edges,

(8.57)

• has n 1-valent (external) vertices labelled by xj,

(8.58)

• has an arbitrary number k of 4-valent (internal) vertices labelled by yj,

(8.59)

• can have lines connecting a vertex to itself (tadpole),

(8.60)

• can have several connection components,

(8.61)

• must not have components disconnected from all of the external vertices xj
(vacuum bubble),

(8.62)

4Similar graphs and rules can actually be set up and applied to a wide range of algebraic
problems not at all limited to relativistic QFT’s.
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For each topologically distinct graph we can compute a contribution according to
the following rules:

• For each edge connecting two vertices zi and zj write a factor of −iGF(zi − zj).

→ −iGF(zi − zj) (8.63)

• For each 4-valent vertex yj, write a factor of −iλ and integrate over
∫
d4yj.

→ −iλ
∫
d4yj (8.64)

• Multiply by the appropriate symmetry factor, i.e. divide by the number of
discrete symmetries of the graph.

Feynman Rules in Momentum Space. One of the problems we have not yet
mentioned is that the Feynman propagator GF is a complicated function in
spacetime. Moreover, we need to compute multiple convolution integrals of these
functions over spacetime, e.g. the integral defining F

(1)
conn. This soon enough exceeds

our capabilities.

These computations can be simplified to some extent by going to momentum
space. Such a momentum space representation will be particularly useful later
when we compute the interaction between particles with definite momenta in
particle scattering experiments.

The momentum space version is defined as follows5

F (p1, . . . , pn) =

∫
d4x1 . . . d

4xn e
ix1·p1+...+ixn·pn〈φ1 . . . φn〉. (8.65)

A Feynman graph in momentum space

• has edges labelled by a directed flow of 4-momentum `j from one end to the
other,

(8.66)

• has n 1-valent (external) vertices with an inflow of 4-momentum pj,

(8.67)

5Note that we are evaluating a time-ordered correlator. This is well-defined in position space
and we have to perform the Fourier integrals after computing the correlator. It implies that
the momenta pj can and should be taken off-shell p2j + m2 6= 0. It is different from computing a

correlator such as 〈0|a(~p1) . . . a†(~pn)|0〉 where all the momenta are defined only on shell p2j +m2 = 0.
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• has an arbitrary number k of 4-valent (internal) vertices which conserve the flow
of momentum

(8.68)

• shares the remaining attributes with the position space version.

The Feynman rules for evaluating a graph read

• Work out the flow of momentum from the external vertices across the internal
vertices. Label all edges with the appropriate momenta `j.

(8.69)

• There is a momentum-conservation condition pj1 + . . .+ pjm for each connected
component of the graph. Write a factor of (2π)4δ4(pj1 + . . .+ pjm) including all
contributing external momenta pj.

→ (2π)4δ4(pj1 + . . .+ pjm) (8.70)

• For each internal loop of the graph, there is one undetermined 4-momentum `j.
Integrate the final expression over all such momenta

∫
d4`j/(2π)4.

→
∫

d4`j
(2π)4

(8.71)

• For each edge write a factor of −i/(`2j +m2 − iε).

→ −i
`2j +m2 − iε

(8.72)

• For each 4-valent vertex, write a factor of −iλ.

→ −iλ (8.73)
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• Multiply by the appropriate symmetry factor, i.e. divide by the number of
discrete symmetries of the graph.

General Models. We observe that the Feynman graphs and rules for a QFT
model reflect quite directly the content of its action:

• In particular, the free part of the action S0 determines the types and features of
the fields and particles. These are reflected by the Feynman propagator GF

which is associated to the edges.
• The interaction part of the action Sint contains all the information about the set

of interaction vertices.

Examples. Let us apply the Feynman rules to compute the mathematical
expressions for a few Feynman graphs.

Consider first the graph for the leading connected contribution F
(1)
conn to the

four-point function.

(8.74)

Applying the rules for position space, we obtain right away

F (1)
conn = −iλ

∫
d4y

4∏
j=1

GF(xj − y) . (8.75)

In momentum space, the corresponding result is

F (1)
conn = −iλ(2π)4δ4(p1 + p2 + p3 + p4)

4∏
j=1

1

p2j +m2 − iε
. (8.76)

This expression is merely a rational function and does not contain any integrals. It
is therefore conceivably simpler than its position space analog. Unfortunately, it is
generally not easy to perform the Fourier transformation to position space.6

Next, consider a slightly more complicated example involving an internal loop.

(8.77)

6A notable exception is the massless case where the correlation functions in position space has
a reasonably simple form.
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Evaluation of the Feynman graph in position space is straight-forward

F =
1

2
(−iλ)2(−i)6

∫
d4y1 d

4y2GF(y1 − y2)2

·GF(x1 − y1)GF(x2 − y1)GF(x3 − y2)GF(x4 − y2). (8.78)

The symmetry factor is 1/2 because the two lines of the internal loop can be
interchanged.

For momentum space, we first have to label the remaining lines along the internal
loop: The total flow of momentum into the left vertex from the external lines is
p1 + p2, whereas the momenta on both internal lines are yet undetermined. The
sum of internal momenta flowing into the vertex must therefore equal −p1 − p2 by
momentum conservation.7 One internal momentum remains undetermined, let us
call it ` and eventually integrate over it. The other one must equal `′ = p1 + p2− `.

F =
1

2
(−iλ)2(−i)6(2π)4δ4(p1 + p2 + p3 + p4)

4∏
j=1

1

pj +m2 − iε∫
d4`

(2π)4
1

`2 +m2 − iε
1

(p1 + p2 − `)2 +m2 − iε
. (8.79)

Now we are left with a multiple integral over a rational function. There exist
techniques to deal with this sort of problem, we will briefly discuss some of the
basic ones at the end of this course. Some integrals like this one can be performed,
but most of them remain difficult and it is an art to evaluate them. Unfortunately,
numerical methods generally are not applicable either. This is a generic difficulty
of QFT with no hope for a universal solution. The Feynman rules are a somewhat
formal method and it is hard to extract concrete numbers or functions from them.

8.5 Feynman Rules for QED

Finally, we would like to list the Feynman rules for the simplest physically relevant
QFT model, namely quantum electrodynamics (QED). We shall use the
Lagrangian in Feynman gauge

L0 = ψ̄(iγµ∂µ −m)ψ − 1
2
∂µAν∂µAν , Lint = q ψ̄γµψAµ. (8.80)

A non-trivial interacting correlation function in this model must contain as many
fermionic fields ψ as conjugates ψ̄ due to global U(1) symmetry. Consider such a
correlation function

〈Aµ1(k1) . . . Aµm(km) ψ̄a1(p1)ψ
b1(q1) . . . ψ̄an(pn)ψbn(qn)〉. (8.81)

Admissible Feynman graphs have the following properties in addition or instead of
to the ones of the φ4 model:

7By considering the right vertex, it must also equal p3 + p4. This requirement is consistent by
means of overall momentum conservation p1 + p2 + p3 + p4 = 0.
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• There are two types of edges: undirected wavy lines (photons) or directed
straight lines (electrons and/or positrons).

(8.82)

• The edges are labelled by a directed flow of 4-momentum `j.
• The ends of wavy lines are labelled by indices ρj and σj; the ends of straight lines

are labelled by indices cj and dj in the direction of the arrow of the straight line.
• There is a 1-valent (external) vertex for each field in the correlator. The

momentum inflow and the label at the end of the edge are determined by the
corresponding field.

(8.83)

• There is one type of (internal) vertex: It is 3-valent and connects an ingoing and
an outgoing straight line (fermion) with a wavy (photon) line.

(8.84)

The QED-specific Feynman rules read as follows:

• The graph can have only fermion loops, which contribute an extra factor of (−1)
due to their statistics.

→ (−1)

∫
d4`j

(2π)4
(8.85)

• For each wavy edge write a factor of −iηνiνj/(`2j − iε).

→
−iηνiνj
`2j − iε

(8.86)

for each straight edge write a factor of −i(`j·γ +m)cj dj/(`
2
j +m2 − iε).

→
−i(`j·γ +m)cidj
`2j +m2 − iε

(8.87)
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• For each 3-valent vertex, write a factor of −iq(γνj)cidi .

→ −iq(γνj)cidi (8.88)

QED and Gauge Invariance. Note that QED is a gauge theory which requires
some gauge fixing. Feynman gauge is very convenient, but any other consistent
gauge is acceptable, too. Different gauges imply different propagators which lead
to non-unique results for correlation functions. Unique results are only to be
expected when the field data within the correlation function is gauge invariant.

More precisely, the correlator should contain the gauge potential Aµ(x) only in the
combination Fµν(x) or as the coupling

∫
d4x JµAµ to some conserved current

Jµ(x). Moreover, charged spinor fields should be combined into uncharged
products, e.g. ψ̄(x) . . . ψ(x) potentially dressed with covariant derivatives.
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