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7 Interactions

We have learned a lot about the three basic constituents of QFT in four
dimensions:

• scalar fields (spin j = 0 or helicity h = 0),
• spinor fields (spin j = 1

2
or helicity h = ±1

2
),

• vector fields (helicity h = ±1 or spin j = 1).

So far we considered only free fields. The particle number was conserved by all
processes and most operators.

Now we would like to introduce interactions between such fields. Unfortunately,
interactions cannot be treated exactly.

We have to assume the strength of interactions to be sufficiently small. The
well-understood free fields will dominate, and we insert interactions as small
perturbations. This eventually leads us to Feynman diagrams to describe particle
interactions order by order.

7.1 Interacting Lagrangians

One of the main reasons to consider QFT is its ability to deal with processes that
do not conserve the number of particles.

Quantum fields are particle creation and annihilation operators: φ→ a, a†. So far,
we used them for two purposes:

• to build the multi-particle Fock space from a vacuum state, i.e. a† . . . a†|0〉;
• to write conserved charges as quadratic combinations of the fields which

conspired to yield one creation and one annihilation operator a†a and thus
conserve the particle number.

Combining more than two fields typically yields a quantum operator which
changes the particle number.

Time evolution of a quantum system is governed by its Hamiltonian, therefore it is
natural to include such higher-order terms in it and consequently in the
Lagrangian.

Scalar Interactions. For a real scalar field we could consider an interacting
Lagrangian of the form

L = −1
2
∂µφ∂µφ− 1

2
m2φ2 − 1

6
µφ3 − 1

24
λφ4. (7.1)
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This model called the φ4 theory.1 It is perhaps the conceptually simplest
interacting QFT model, but it leads to very non-trivial physics. The φ4 term is also
an interaction of the scalar Higgs field which is essential for the Higgs mechanism.

We might also add higher-order terms or terms involving derivatives such as

φ5, φ(∂φ)2, φ2(∂φ)2, (∂φ)4, . . . . (7.2)

Such terms are in principle allowable in QFT, but they have some undesirable
features to be discussed later. We will, however, never add non-local terms of the
type to the action∫

d4xφ(x)φ(x+ a),

∫
d4x d4y f(x, y)φ(x)φ(y). (7.3)

These terms represent some unphysical action at a distance, we consider only local
interactions which can be written using a local Lagrangian2

S =

∫
d4xL(x), L(x) = L[φ(x), ∂φ(x), . . .]. (7.4)

The equation of motion for the above Lagrangian reads

∂2φ−m2φ− 1
2
µφ2 − 1

6
λφ3 = 0. (7.5)

It is a non-linear differential equation. Our usual strategy to deal with the
differential equation of motion was to go to momentum space

0 = − p2φ(p)−m2φ(p)− 1
2
µ

∫
d4q

(2π)4
φ(q)φ(p− q)

− 1
6
λ

∫
d4q1 d

4q2
(2π)8

φ(q1)φ(q2)φ(p− q1 − q2). (7.6)

Unfortunately, we obtain an integral equation instead of an algebraic equation. We
cannot solve it in general, but for small µ� m and small λ� 1 we can try to find
useful approximations.

Quantum Electrodynamics. Electrons and positrons carry an electrical charge
∓q and their conserved current Jµ = −qψ̄γµψ couples to the Maxwell equations.
Putting together the Dirac and Maxwell Lagrangians we can simply add a source
term for the electromagnetic potential JµAµ

LQED = ψ̄(iγµ∂µ −m)ψ − 1
4
F µνFµν + q ψ̄γµψAµ. (7.7)

1One often drops the term φ3 and gains a discrete symmetry φ 7→ −φ. A term φ3 without a
term φ4 would lead to a potential unbounded from below.

2Non-local terms could be recovered as Taylor series involving derivatives of arbitrary order. It
is therefore desirable to restrict the number of derivatives in L.
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This yields the desired inhomogeneous Maxwell equations, but also a modification
of the Dirac equation

∂µF
µν = −qψ̄γνψ.

(∂µγµ −m)ψ = −qγµAµψ. (7.8)

The above model is called quantum electrodynamics (QED). It is a model that has
been tested at a remarkable accuracy within its domain of validity, i.e. at low
energies where the other elementary particles play no essential role. For instance,
the electron anomalous magnetic dipole moment, also known as g − 2, was
predicted to more than 10 digits, and many of the leading digits are due to plain
QED alone.

In the Standard Model, the above type of interaction between vectors and spinors
is arguably the most important one because it couples matter in the form of spinor
fields (leptons and quarks) to forces in the form of vector fields (photons, gluons
and others).

Gauge Invariance. A crucial property of the electromagnetic potential is its
gauge symmetry. In the quantisation procedure it eliminated an unphysical degree
of freedom of the electromagnetic potential. We therefore want to preserve this
symmetry in the presence of interactions.

The interaction term breaks the original gauge symmetry, but the latter can be
restored by extending the symmetry to the Dirac field

A′µ(x) = Aµ(x) + ∂µα,

ψ′(x) = exp
(
iqα(x)

)
ψ(x). (7.9)

Note that the latter transformation rule is just the global U(1) symmetry of the
Dirac field which is responsible for conservation of the current Jµ. This global
symmetry is enhanced to a local transformation parameter α(x). The derivative
terms of α(x) are now compensated by the inhomogeneous gauge transformation of
the potential Aµ.

There is a construction which makes the gauge invariance more manifest.
Introduce the gauge covariant derivative

Dµ = ∂µ − iqAµ. (7.10)

Under gauge transformations this operator transforms homogeneously

D′µ = ∂µ − iqA′µ = ∂µ − iqAµ − iq∂µα
= Dµ + [Dµ,−iqα]

= exp(+iqα)Dµ exp(−iqα). (7.11)

In the QED Lagrangian written with a covariant derivative

LQED = ψ̄(iγµDµ −m)ψ − 1
4
F µνFµν , (7.12)
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the factors of exp(±iqα) trivially cancel between ψ̄, Dµ and ψ. Moreover the
electromagnetic field strength can be written as

Fµν ∼ [Dµ, Dν ], (7.13)

which makes manifest its invariance under gauge transformations.

Consequently, we can also couple the complex scalar field to the electromagnetic
field via its kinetic term

LSQED = −(Dµφ)∗Dµφ−m2|φ|2 − 1
4
λ|φ|4 − 1

4
F µνFµν . (7.14)

This model is called scalar QED.

Further Interactions. Let us list some other simple interactions. We want to
consider only those interactions which respect Lorentz symmetry. Curiously all of
them appear in the Standard Model.

Two Dirac spinors can be multiplied to form a scalar combination. This can be
multiplied by a scalar field

ψ̄ψ φ. (7.15)

This term was originally proposed by Yukawa for the interaction between nucleons
of spin 1

2
and scalar pions. In the standard model such term couple the Higgs field

to the leptons and quarks.

A similar term coupling a scalar and two Dirac fermions but with different parity
properties is

ψ̄iγ5ψ φ. (7.16)

There is also an analog of the spinor-vector coupling with different parity
properties

ψ̄γ5γµψAµ. (7.17)

This axial vector coupling term is relevant to the weak nuclear interactions. Here,
gauge invariance needs to extend to local chiral transformations of the spinors.

The above interactions for Dirac 4-spinors can be written in terms of more
elementary chiral 2-spinor fields,

χTσ2χφ, χ†σ̄µχAµ. (7.18)

Note that the first interaction is complex, and therefore only some real projection
can appear in the Lagrangian. This leads to two couplings, one for the real part
and one for the imaginary part. The second term is perfectly real and requires a
single real coupling constant.

Power Counting. We have encountered several types of interaction terms.
These have a rather simple form with very few factors. Moreover, most of the
simple terms have been observed directly or indirectly in nature. However, there
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are many more local terms one could imagine, but which have not been observed.
What distinguishes the above interactions?

To answer this question, consider the mass dimension. The action S must be a
dimensionless quantity.3 The action is the integral of the Lagrangian S =

∫
d4xL

and length counts as inverse mass, dx ∼ m−1, therefore the Lagrangian must have
mass dimension 4,

L ∼ m4. (7.19)

The kinetic terms (∂φ)2, ψ̄∂ψ and F 2 where the derivative counts as a mass,
∂ ∼ m, determine the mass dimensions of the scalar, spinor and vector fields

φ ∼ Aµ ∼ m, ψ ∼ m3/2. (7.20)

The mass dimension of the remaining terms is now fixed, e.g. for the mass terms

φ2 ∼ m2, ψ̄ψ ∼ m3, (7.21)

and for the simple interaction terms

φ3 ∼ m3, φ4 ∼ ψ̄γµψAµ ∼ ψ̄ψφ ∼ m4. (7.22)

All of these terms have mass dimension at most 4. When they appear in the
Lagrangian L ∼ m4, their coupling constant must compensate for the missing mass
dimension. The scalar and fermion mass terms therefore read m2φ2, mψ̄ψ. Among
the interaction terms, only φ3 requires a dimensionful coupling µ ∼ m. All the
other terms have mass dimension 4 and their coupling constants are plain numbers.

We can take the bound of mass dimension 4 4 as an experimentally observed
principle. There are good reasons to consider only terms of this type:

• Such interactions are reasonably simple.
• There are only finitely many such term, hence finitely many parameters for the

model.
• All higher-dimensional terms require a coupling constant with negative mass

dimension.
• Coupling constants with negative mass dimension lead to undesirable effects in

the ultraviolet or short-distance regimes.
• Such theories are called non-renormalisable. Renormalisability will be

considered later in QFT II.
• In the infrared or long-distance regime,5 only the interactions of mass dimension

up to 4 are relevant. The higher-dimensional terms have small effects are are
mostly irrelevant.

3Quantities that appear in an exponent must be dimensionless numbers. The action carries the
same units as Planck constant ~ which in natural units is a number ~ = 1.

4More generally, the number of spacetime dimensions.
5The meaning of long-distance depends on the point of view. It can be astronomical units,

everyday length scales, atomic scales or even less when interested in fundamental description of
nature.
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• The mass term for a vector field appears as an inverse power in the massive
vector propagator. This also leads to a non-renormalisable model. To explain
the mass of the W and Z vector bosons we rely on the Higgs mechanism.6

Symmetries. Unfortunately, it is generally hard to extract information from
interacting QFT models. Usually we can only do certain approximations.
Symmetries are powerful concepts in QFT because they can apply to interacting
models as well:

• Free theories are somewhat trivial because there are infinitely many conservation
laws. For example, the particle number is conserved, but it is related only to a
non-local transformation.
• Only few of the conservation laws typically survive when interactions are added.

Those are related to global symmetries preserved by the interactions.
• The conservation laws allow to make certain statements on the result of QFT

observables even when computations are not feasible.
• Symmetries of the classical theory are not necessarily respected by the quantum

theory. Such symmetries are called anomalous.
• Anomalies of local symmetries are typically bad because they spoil gauge

redundancies which are required for consistency.

For example, consider φ4 theory with a complex field given by the Lagrangian

L = −∂µφ∗∂µφ−m2|φ|2 − 1
4
λ|φ|4. (7.23)

It is invariant under global multiplication by a complex phase φ→ eiαφ. This
leads to the same conserved current as for the complex scalar

Jµ = −i(∂µφ∗φ− φ∗∂µφ). (7.24)

The associated current Q = Na −Nb is exactly conserved even in the presence of
interactions. Conservation of the individual number operators Na and Nb,
however, is broken by interactions.

7.2 Interacting Field Operators

Consider an interacting field theory whose fields (and conjugate momenta) we will
collectively denote by φ(x). More concretely, we can consider φ4 theory.

We want to compute some correlation function, for example a correlator of two
fields at different times t1, t2

F (x2, x1) = 〈0|φ(t2, ~x2)φ(t1, ~x1)|0〉. (7.25)

6Also known as the Englert–Brout–Higgs–Guralnik–Hagen–Kibble–Anderson–and–perhaps–
also–’t–Hooft mechanism.
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Interacting Field. As before, we can quantise the field φ on a time slice at
some time t0. This step is equivalent to a free field φ because the Poisson brackets
are the same.

The full time dependence of φ is recovered by conjugating with the Hamiltonian

φ(t, ~x) = exp(iH(t− t0))φ(~x) exp(iH(t0 − t)). (7.26)

Supposing that the vacuum is time-invariant,7 we can write the correlator as

F (x2, x1) = 〈0|φ(~x2) exp(−iH(t2 − t1))φ(~x1)|0〉. (7.27)

Now everything is explicitly known except how to exponentiate H in practice. The
latter is a hard problem.

Interaction Picture. We can do slightly better whenever the interactions are
weak. In this case, the dominant contribution should come from the free
Hamiltonian H0. The quantisation of fields at a given time slice is the same. We
can thus identify the fields at time t0

φ0(~x) = φ(~x). (7.28)

Time evolution of the free field φ0 is governed by the free Hamiltonian H0

φ0(t, ~x) = exp(iH0(t− t0))φ(~x) exp(iH0(t0 − t)). (7.29)

We know almost everything about this field. For weak interactions and small times
t ' t0, we expect the free field φ0(t, ~x) to be a suitable approximation for the full
field φ(t, ~x).

Comparing φ to φ0 we can write

φ(t, ~x) = U(t, t0)
−1φ0(t, ~x)U(t, t0) (7.30)

with the time evolution operator

U(t, t0) = exp
(
iH0[φ0](t− t0)

)
exp
(
iH[φ0(t0)](t0 − t)

)
. (7.31)

For small interactions and small times, this operator is approximately the identity.

This is called the interaction picture, it is a mixture between the Schrödinger and
the Heisenberg pictures

• In the Schrödinger picture, the field is defined on a constant time slice φ = φ(t0)
and the operator exp(i(t− t0)H) evolves states in time.
• In the Heisenberg picture, the field φ(t) carries the full time dependence, there is

no need for a time evolution operator.
• In the interaction picture, the field φ0(t) carries the time dependence of a free

particle and the operator U(t, t0) evolves states in time.

7A constant energy of the vacuum can always be eliminated by subtracting it from H.
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The correlator in question becomes

〈0|U(t2, t0)
−1φ0(t2, ~x2)U(t2, t0)U(t1, t0)

−1φ0(t1, ~x1)U(t1, t0)|0〉. (7.32)

Note that products of time evolution operators can be joined in the obvious
fashion, they form a group8

U(t2, t1)U(t1, t0)

= exp(iH0[φ0](t2 − t1)) exp(iH[φ0(t1)](t1 − t2))
· exp(iH0[φ0](t1 − t0)) exp(iH[φ0(t0)](t0 − t1))

= exp(iH0[φ0](t2 − t1)) exp(iH0[φ0](t1 − t0))
· exp(iH[φ0(t0)](t1 − t2)) exp(iH[φ0(t0)](t0 − t1))

= exp(iH0[φ0](t2 − t0)) exp(iH[φ0(t0)](t0 − t2))
= U(t2, t1). (7.33)

We write this as

F (x2, x1) = 〈0|U(t0, t2)φ0(x2)U(t2, t1)φ0(x1)U(t1, t0)|0〉. (7.34)

Interacting Ground State. All the operators are expressed using the free field
φ0, but the state |0〉 is a state of the interacting theory and we do not know how to
act on it.

Luckily we can express the interacting ground state |0〉 in terms of the vacuum |00〉
of the free theory with a trick: The free vacuum |00〉 should be some linear
combination of the interacting ground state |0〉 and excited eigenstates |n〉 with
definite energy En > E0

9

|00〉 = c0|0〉+
∑
n

cn|n〉. (7.35)

Letting this state evolve for some time T with the interacting Hamiltonian we
obtain

exp(−iHT )|00〉 = exp(−iE0T )c0|0〉+
∑
n

cn exp(−iEnT )|n〉. (7.36)

All eigenstates oscillate with their respective frequencies. Suppose we give the time
T some negative imaginary part with (En − E0)

−1 � | ImT | � |T |. Then almost
all eigenstates will get exponentially suppressed compared to the interacting
ground state. The latter remains as the dominant contribution

exp(−iHT )|00〉 ≈ exp(−iE0T )c0|0〉. (7.37)

Primarily this identification is a formal trick. In terms of physics, we let a system
in some exited state |00〉 evolve for some long time and find it in its ground state

8It is crucial to note in terms of which fields the respective Hamiltonians are expressed: H0[φ0(t)]
is independent of time, while H[φ0(t)] depends on t due to the mismatch of fields.

9It is reasonable to assume c0 = 〈0|00〉 6= 0 when interactions are sufficiently small.

7.8



|0〉. This is reasonable if we assume the system to be open or damped in some way.
All real world systems, at least those we can expect to observe, are finite and open;
the effect of iε is to implement this assumption into our calculations.

We can thus express the interacting vacuum at some time t0 as the evolution of the
free vacuum at time −T

|0〉 ' U(t0,−T )|00〉, (7.38)

where we did not pay attention to normalisation. Analogously,

〈0| ' 〈00|U(+T, t0). (7.39)

Our final result for the correlation function F (x2, x1):

lim
T→∞(1−iε)

〈00|U(T, t2)φ0(x2)U(t2, t1)φ0(x1)U(t1,−T )|00〉
〈00|U(T,−T )|00〉

. (7.40)

The denominator implements the desired normalisation 〈0|0〉 = 1.

Interacting Correlators. In conclusion, the recipe for determining some
correlation function in the interacting theory is the following

〈0|X|0〉 = lim
T→∞(1−iε)

〈00|U(T, t0)XU(t0,−T )|00〉
〈00|U(T,−T )|00〉

. (7.41)

where all the interacting quantum operators in X are replaced by free fields
evolved from time t0 to the desired time slice

φ(t, ~x)→ U(t0, t)φ0(t, ~x)U(t, t0). (7.42)

Effectively two consecutive time evolution operators can always be combined into
one

U(t2, t0)U(t0, t1) = U(t2, t1). (7.43)

7.3 Perturbation Theory

We still cannot evaluate the time evolution operator U(t, t0), but at least we know
that it is close to the identity when interactions are sufficiently small

U(t, t0) ≈ 1. (7.44)

This approximation is too crude, it is equivalent to computing the correlator in the
free theory, and we gain nothing.

Schrödinger Equation. To improve the approximation, consider the time
derivative of U(t, t0)

i∂tU(t, t0) = exp(iH0(t− t0))
(
H[φ0(t0)]−H0

)
· exp(−iH0(t− t0))U(t, t0).

=
(
H[φ0(t)]−H0

)
U(t, t0). (7.45)
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We see that the time evolution operator is determined by a differential equation
and a trivial initial value condition

i∂tU(t, t0) = Hint(t)U(t, t0), U(t0, t0) = 1. (7.46)

This is a Schrödinger equation, and its Hamiltonian is the so-called interaction
Hamiltonian

Hint(t) := H[φ0(t)]−H0[φ0]. (7.47)

This Hamiltonian is time-dependent, therefore the solution cannot be as simple as
exp(−i(t− t0)Hint).

10 For weak interactions, one can use the Dyson series to solve
the equation perturbatively.

Dyson Series. The interaction Hamiltonian is the quantity which we should
assume to be small. It appears in the Schrödinger equation, so at first order we
can use the above approximation for U

i∂tU(t, t0) = Hint(t)U(t, t0) ≈ Hint(t). (7.48)

Integrating with proper initial value this yields

U(t, t0) ≈ 1− i
∫ t

t0

dt1Hint(t1). (7.49)

This is certainly better than before, it involves interactions at first order.
Nevertheless we can do better.

To go further systematically, write the differential equation in integral form

U(t, t0) = 1− i
∫ t

t0

dt1Hint(t1)U(t1, t0). (7.50)

Substitute the above solution yields a better solution

U(t, t0) ≈ 1− i
∫ t

t0

dt1Hint(t1)

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2). (7.51)

Now use the new solution instead

U(t, t0) ≈ 1− i
∫ t

t0

dt1Hint(t1)

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2)

+ i

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3Hint(t1)Hint(t2)Hint(t3). (7.52)

And so on.

The picture should be clear, we could go to arbitrarily high orders. More
importantly, everything is expressed in terms of free fields φ0 and the interaction
Hamiltonian Hint[φ0].

10Hint is time-dependent because its time evolution is governed by H0 with which it does not
commute in general.
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Time-Ordered Exponential. The multiple integral with a nested sequence of
boundaries is hard to handle. We can improve the situation. Consider the
quadratic term:

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2). (7.53)

We can also write it as

−
∫ t

t0

dt1

∫ t2

t1

dt2Hint(t2)Hint(t1). (7.54)

The integration region assumes t1 ≥ t2 in the first integral and t2 ≥ t1 in the
second integral. Importantly, in both integrands the operator Hint(tk) with larger
tk is to the right of the operator Hint(tj) with smaller tj.

(7.55)

We introduce a time ordering symbol T which puts the affected operators in an
order with time decreasing from left to right, e.g.11

T
(
X(t1)Y (t2)

)
:=

{
X(t1)Y (t2) for t1 > t2,

Y (t2)X(t1) for t1 < t2,
(7.56)

and similarly for multiple operators. This allows to write the integrand of both
above integrals as T(Hint(t1)Hint(t2)). We can thus write the integral as the
average of the two equivalent representations where the integration regions
combine to a square

− 1

2

∫ t

t0

dt1

∫ t

t0

dt2 T
(
Hint(t1)Hint(t2)

)
. (7.57)

Even better, we can write this as the time-ordered square of a single integral

− 1

2
T

(∫ t

t0

dt′Hint(t
′)

)2

(7.58)

11For fermionic operators X,Y one would insert suitable signs for flipping the order.
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As all terms of the perturbative expansion of U(t, t0) are naturally in time ordering,
the above construction generalises straight-forwardly to the n-th order term

1

n!
T

(
−i
∫ t

t0

dt′Hint(t
′)

)n
. (7.59)

Here the integration region is a hypercube in n dimensions. It contains n!
simplices,12 which form the integration regions for the terms in the Dyson series.

Summing up all terms yields the time-ordered exponential

U(t2, t1) = T exp (iSint(t1, t2)) . (7.60)

where we introduced the interaction action Sint between times t1 and t2

Sint(t1, t2) := −
∫ t2

t1

dt′Hint(t
′). (7.61)

The time-ordered exponential represents both the formal solution to the above
Schrödinger equation for U(t2, t1) as well as a concrete perturbative prescription to
evaluate it.

12A hypercube is the generalisation of a cube to n dimensions, a simplex is the generalisation of
a triangle.
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