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6 Free Vector Field

Next we want to find a formulation for vector fields. This includes the important
case of the electromagnetic field with its photon excitations as massless relativistic
particles of helicity 1. This field will be the foundation for a QFT treatment of
electrodynamics called quantum electrodynamics (QED). Here we will encounter a
new type of symmetry which will turn out to be extremely powerful but at the
price of new complications.

6.1 Classical Electrodynamics

We start by recalling electrodynamics which is the first classical field theory most
of us have encountered in theoretical physics.

Maxwell Equations. The electromagnetic field consists of the electric field
~E(t, ~x) and the magnetic field ~B(t, ~x). These fields satisfy the four Maxwell
equations (with ε0 = µ0 = c = 1)

0 = div ~B := ~∂· ~B = ∂kBk,

0 = rot ~E + ~̇B := ~∂ × ~E + ~̇B = εijk∂jEk + Ḃi,

ρ = div ~E = ~∂· ~E = ∂kEk,

~ = rot ~B − ~̇E = ~∂ × ~B − ~̇E = εijk∂jBk − Ėi. (6.1)

The fields ρ and ~ are the electrical charge and current densities.

The solutions to the Maxwell equations without sources are waves propagating
with the speed of light. The Maxwell equations were the first relativistic wave
equations that were found. Eventually their consideration led to the discovery of
special relativity.

Relativistic Formulation. Lorentz invariance of the Maxwell equations is not
evident in their usual form. Let us transform them to a relativistic form.

The first step consists in converting Bi to an anti-symmetric tensor of rank 2

Bi = −1
2
εijkFjk, F =

 0 −Bz +By

+Bz 0 −Bx

−By +Bx 0

 . (6.2)

Then the Maxwell equations read

0 = −εijk∂kFij, ρ = ∂kEk,

0 = εijk(2∂jEk − Ḟjk), ~ = ∂jFji − Ėi. (6.3)
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These equations are the 1 + 3 components of two 4-vectors which can be seen by
setting

Ek = F0k = −Fk0, Jµ = (ρ,~). (6.4)

Now the Maxwell equations simply read

εµνρσ∂νFρσ = 0, ∂νF
νµ = Jµ. (6.5)

Electromagnetic Potential. For QFT purposes we need to write a Lagrangian
from which the Maxwell equations follow. This is however not possible using Fµν
as the fundamental degrees of freedom. A Lagrangian can be constructed by the
help of the electromagnetic vector potential Aµ. This is not just a technical tool,
but it will be necessary to couple the field to charged matter. This fact can be
observed in the Aharonov–Bohm effect, where a quantum particle feels the
presence of a non-trivial electromagnetic potential A, although it is confined to a
region of spacetime where the field strength vanishes F = 0.

The first (homogeneous) equation is an integrability condition for the field Fµν . It
implies that it can be integrated consistently to an electromagnetic potential Aµ

Fµν = ∂µAν − ∂νAµ. (6.6)

With this parametrisation of F the homogeneous equation is automatically
satisfied.

The electromagnetic potential is not uniquely defined by the electromagnetic fields
F . For any solution A, we can add the derivative of a scalar field

A′µ(x) = Aµ(x) + ∂µα(x). (6.7)

The extra term cancels out when anti-symmetrising the two indices in Fµν and
hence

F ′µν(x) = Fµν(x). (6.8)

This freedom in defining Aµ is called a gauge symmetry or gauge redundancy. It is
called a local symmetry because the transformation can be chosen independently
for every point of spacetime. Gauge symmetry will turn out very important in
quantising the vector field.

Lagrangian. A Lagrangian for the electromagnetic fields can now be formulated
in terms of the potential Aµ

L = −1
4
F µν [A]Fµν [A] = 1

2
~E[A]2 − 1

2
~B[A]2. (6.9)

Here and in the following, Fµν [A] is not considered a fundamental field, but merely
represents the combination

Fµν [A] = ∂µAν − ∂νAµ. (6.10)
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The equation of motion yields the second (inhomogeneous) Maxwell equation (here
with a trivial source term)

∂νF
νµ = 0. (6.11)

The first (homogeneous) Maxwell equation is already implied by the definition of
F in terms of A.

Due to Poincaré symmetry we can also derive an energy momentum tensor Tµν . It
takes the form1

Tµν = −FµρFνρ + 1
4
ηµνF

ρσFρσ. (6.12)

6.2 Gauge Fixing

Hamiltonian Framework. Towards quantisation we should proceed to the
Hamiltonian framework. The canonical momentum Π conjugate to the field A
reads

Πµ =
∂L
∂Ȧµ

= F0µ. (6.13)

Here a complication arises because the component Π0 is strictly zero and the field
A0 has no conjugate momentum. The non-zero components are the electrical field
F0k = Ek. Moreover the equations of motion imply ∂kΠk = 0 which is an equation
without time derivative.

The missing of the momentum Π0 and the spatial differential equation for Πk are
two constraints which the momenta will have to satisfy, even in the initial
condition. These are so-called constraints. For the massless vector field they are
related to gauge redundancy of A. Although Aµ has four components, one of them
can be chosen arbitrarily using gauge symmetry. Effectively Aµ has only three
physically relevant components, which is matched by only three conjugate
momenta.

Coulomb Gauge. A simple ansatz to resolve the problem of Π0 = 0 is to
demand that

A0 = 0. (6.14)

This can always be achieved by a suitable gauge transformation.

This choice does not completely eliminate all gauge freedom for Ak, a
time-independent gauge redundancy α(~x) remains. It can be eliminated by the
demanding

∂kAk = 0 (6.15)

which is called the Coulomb gauge (fixing).

Now Πk = F0k = Ek = Ȧk and for the Hamiltonian we obtain

H =

∫
d3x 1

2
( ~E 2 + ~B 2), (6.16)

1The naive derivation from the Lagrangian yields Tµν = −Fµρ∂νAρ − 1
4L which is neither

symmetric nor gauge invariant. It is repaired by adding the term ∂ρ(FµρAν).
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which indeed represents the energy of the electromagnetic field.

With the Coulomb gauge, we can now quantise the electromagnetic field. The
gauge is however not always convenient, since it specialises the time direction and
therefore breaks relativistic invariance. For instance, it leads to instantaneous
contributions to field correlators, which may feel odd. In physical observables,
eventually such instantaneous or causality-violating contributions will always
cancel.

Lorenz Gauges. A more general class gauge fixings are the Lorenz gauges

∂µAµ = 0. (6.17)

Again, they do not completely fix the gauge freedom since any gauge
transformation with ∂2α = 0 will preserve the Lorenz gauge condition. For
example, one may furthermore demand A0 = 0 to recover the Coulomb gauge.

It is convenient to implement the Lorenz gauge by adding a gauge fixing term
Lgf = −1

2
ξ(∂·A)2 to the Lagrangian

L = LED + Lgf ' −1
2
∂µAν ∂µAν + 1

2
(1− ξ)∂µAµ∂νAν . (6.18)

The equations of motion now read

∂2Aµ − (1− ξ)∂µ∂νAν = 0 (6.19)

Let us show that the equations require ∂2Aµ = 0 and ∂ · A = 0. We solve the
equation in momentum space

p2Aµ − (1− ξ)pµ(p·A) = 0 (6.20)

We first multiply the equation by pµ to get

ξp2(p·A) = 0. (6.21)

Unless ξ = 0, this equation implies that p2 = 0 or p·A = 0. Using this result in the
original equation shows that both p2 = 0 and p·A = 0 must hold unless ξ = 1. 2

For ξ = 1, the equation only requires p2 = 0.

The canonical momenta now read

Πµ = Ȧµ + δ0µ(1− ξ)(∂νAν), (6.22)

which can be solved for all Ȧµ unless ξ = 0. We can now define canonical Poisson
brackets

{Aµ(t, ~x), Πν(t, ~y)} = δνµδ
3(~x− ~y). (6.23)

2This statement might not be accurate in a distributional sense! For example, the function
Aµ = xµ satisfies the equation of motion, but yields ∂·A = −4 6= 0. In momentum space this
function is a distribution.
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There appears to be a catch: The gauge fixing condition ∂·A = 0 constrains the
conjugate momentum Π0

Π0 = ∂kAk − ξ(∂νAν). (6.24)

to be a function of the Ak alone. Substituting this into the Poisson brackets yields
the identity

{A0, Π0} = {A0, ∂kAk} − ξ{A0, ∂
νAν} = −ξ{A0, ∂

νAν}, (6.25)

where we used that the A’s and their spatial derivatives commute. Here the term
on the left hand side is non-trivial whereas the term on the right hand side should
be trivial due to ∂·A = 0.3

Feynman Gauge. To avoid these problems and also to simplify the subsequent
analysis, we shall set ξ = 1. This so-called Feynman gauge4 has a simple
Lagrangian

L = −1
2
∂µAν ∂µAν (6.26)

with simple equations of motion

∂2Aµ = 0. (6.27)

Effectively, it describes 4 massless scalar fields Aµ with the peculiarity that the
sign of the kinetic term for A0 is wrong. With the canonical momenta Πµ = Ȧµ
the Poisson brackets read

{Aµ(~x), Πν(~y)} = ηµνδ
3(~x− ~y). (6.28)

where again the relation for A0 has the opposite sign. Likewise all correlation
functions and propagators equal their scalar counterparts times ηµν .

As such, the model described by the above simple Lagrangian is not
electrodynamics. Only when taking into account the constraint ∂·A = 0 it becomes
electrodynamics. Moreover, the constraint will be crucial in making the QFT
model physically meaningful. Nevertheless we have to be careful in implementing
the constraint since it is inconsistent with the Poisson brackets.

Light Cone Gauge. The above Lorenz gauges do not eliminate all unphysical
degrees of freedom, which introduce some complications later. There are other
useful gauges which avoid these problems, but trade them in for others. A
prominent example is the light cone gauge which eliminates a light-like component
A− = A0 − A3 = 0 of the gauge potential Aµ. The equations of motion then allow
to solve for a non-collinear like-like component of A+ = A0 + A3. The remaining
two degrees of freedom of Aµ then represent the two helicity modes of the
electromagnetic field. Let us nevertheless continue in the Feynman gauge.

3However, note that ∂·A = 0 need not hold in a strict sense, i.e. the above Poisson brackets are
self-consistent and can be quantised.

4Actually, it is a gauge fixing term rather than a gauge.
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6.3 Particle States

Next we quantise the model and discuss its particle states. The construction of
Fock space is the same as for a set of four massless scalar fields, but we need to
implement the gauge-fixing constraint.

Quantisation. We quantise the vector field Aµ(x) in Feynman gauge
analogously to four independent scalar fields where merely one of the kinetic term
has the opposite sign. This leads to the equal-time commutation relations

[Aµ(t, ~x), Ȧν(t, ~y)] = iηµνδ
3(~x− ~y). (6.29)

We then solve the equation of motion ∂2Aµ = 0 in momentum space

Aµ(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xaµ(~p) + eip·xa†µ(~p)

)
(6.30)

and translate the above field commutators to commutators for creation and
annihilation operators

[aµ(~p), a†ν(~q)] = ηµν 2e(~p) (2π)3 δ3(~p− ~q). (6.31)

Fock Space. We define the vacuum state |0〉 to be annihilated by all aµ(~p)

aµ(~p)|0〉 = 0. (6.32)

As before, multi-particle states are constructed by acting with the creation
operators a†µ(~p) on the vacuum |0〉.
There are two problems with this naive Fock space. The first is that there ought to
be only two states (with helicity h = ±1) for each momentum. Here we have
introduced four states. The other problem is that one of these states has a
negative norm: To see this we prepare a wave packet for a†0

|f〉 =

∫
d3~p

(2π)3 2e(~p)
f(~p)a†0(~p)|0〉. (6.33)

The norm of this state is negative definite

〈f |f〉 = −
∫

d3~p

(2π)3 2e(~p)
|f(~p)|2 < 0. (6.34)

A negative-norm state violates the probabilistic interpretation of QFT, hence it
must be avoided at all means.

Physical States. The above problems are eventually resolved by implementing
the gauge-fixing constraint ∂·A = 0 which we have not yet considered. This is not
straight-forward:
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• The commutation relations prevent us from implementing it at an operatorial
level.
• We cannot implement it directly on states: E.g. requiring the vacuum |0〉 to be

physical means setting p·a†(~p)|0〉 = 0 which is inconsistent with the
commutation relations.
• The weakest implementation is to demand that the expectation value of ∂·A

vanishes for all physical states. This is the Gupta–Bleuler formalism.

For two physical states |Ψ〉, |Φ〉 we thus demand

〈Φ|∂·A|Ψ〉 = 0. (6.35)

This is achieved by demanding

p·a(~p)|Ψ〉 = 0 (6.36)

for any physical state. An adjoint physical state then obeys 〈Φ|p·a†(~p) = 0.

• Both conditions together ensure that 〈Φ|∂·A|Ψ〉 = 0.
• Moreover, the vacuum is physical by construction.

We conclude that Fock space is too large. The space of physical states |Ψ〉 is a
subspace of Fock space such that for all ~p

p·a(~p)|Ψ〉 = 0. (6.37)

Nevertheless we cannot completely abandon the larger Fock space in favour of the
smaller space of physical states. For instance, the action of Aµ(x) cannot be
confined to the physical subspace since it does not commute with the operator
p·a(~p).

Evidently, the negative-norm state |f〉 discussed above is not physical since

p·a(~p)|f〉 = f(~p)e(~p)|0〉. (6.38)

It is an element of Fock space, but not of its physical subspace.

Basis of Polarisation Vectors. To investigate the space of physical states
further, we introduce a convenient basis for polarisation vectors ε

(α)
µ (~p) of the

vector field aµ(~p) and a†µ(~p) on the light cone p2 = 0.5

We denote the four polarisations α by G for gauge, L for longitudinal and 1, 2 for
the two transverse directions.

• We first define ε(G) as a light-like vector in the direction of p, e.g. ε(G) = p.
• We construct another light-like vector ε(L) which has unit scalar product with
ε(G), i.e. ε(L)·ε(G) = 1.
• We then construct two orthonormal space-like vectors ε(1,2) which are also

orthogonal to ε(G) and ε(L).

5The polarisation vectors are similar to the spinors u(~p) and v(~p) for the Dirac equation.
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(6.39)

For example, suppose the light-like momentum is given by

pµ = (e, 0, 0, e). (6.40)

Then we can define the following 4 vectors 6

ε(G)
µ (~p) = (e, 0, 0, e),

ε(L)µ (~p) = (−1/2e, 0, 0, 1/2e),

ε(1)µ (~p) = (0, 1, 0, 0),

ε(2)µ (~p) = (0, 0, 1, 0). (6.41)

These four polarisations define a complete basis for vector space. We can thus
decompose the creation and annihilation operators as follows

a(†)µ = ε(G)
µ a

(†)
(L) + ε(L)µ a

(†)
(G) + ε(1)µ a

(†)
(1) + ε(2)µ a

(†)
(2). (6.42)

Likewise we can write the commutation relations7

[a(L)(~p), a
†
(G)(~q)] = [a(1)(~p), a

†
(1)(~q)] =

[a(G)(~p), a
†
(L)(~q)] = [a(2)(~p), a

†
(2)(~q)] = 2e(~p) (2π)3δ3(~p− ~q). (6.43)

By construction we know that

p·a(~p) = ε(G)·a(~p) = a(G)(~p). (6.44)

hence the physical state condition in this basis reads

a(G)(~p)|Ψ〉 = 0. (6.45)

The physical state condition together with the commutation relations implies that
a physical state cannot have any longitudinal excitations a†(L)(~p). It must be of the

form8

|Ψ〉 = a†(G) · · · a
†
(G)a

†
(1,2) · · · a

†
(1,2)|0〉. (6.46)

Since negative norm states can originate exclusively from the commutators
[a(L), a

†
(G)] and [a(G), a

†
(L)], and since the a†(L)’s are absent, the norm of any such

state is positive semi-definite
〈Ψ |Ψ〉 ≥ 0. (6.47)

The modes a†(1,2) have a positive norm while a†(G) is null.

6There is a lot of arbitrariness in defining the polarisation vectors for each momentum p, but
it does not matter.

7The crossing between L and G is due to the construction of the basis using two light-like
directions.

8Note that a(G) commutes with a†(G) and a†(1,2) but not with a†(L).
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Null States. Consider a physical state |Ψ〉 which contains an excitation of type
a†(G), i.e. a state which can be written as

|Ψ〉 = a†(G)(~p)|Ω〉 (6.48)

with some other physical state |Ω〉. This state has zero norm by the physical state
condition

〈Ψ |Ψ〉 = 〈Ω|a(G)(~p)a
†
(G)(~p)|Ω〉 = 〈Ω|a†(G)(~p)a(G)(~p)|Ω〉 = 0. (6.49)

Null states are not normalisable and therefore have to be interpreted
appropriately. Typically null states are irrelevant because QM is a probabilistic
framework. Something that takes place with probability zero does not happen.
Nevertheless, some consistency requirements have to be fulfilled:

By the same argument as above, we can show that a null state

|Ψ〉 = a†(G)(~p)|Ω〉 (6.50)

actually has vanishing scalar products with any physical state |Φ〉 due to the
physicality condition of the latter

〈Φ|Ψ〉 = 〈Φ|a†(G)(~p)|Ω〉 = 0. (6.51)

In particular, this implies that the sum |Ψ ′〉 of a physical state |Ψ〉 and some null
state

|Ψ ′〉 = |Ψ〉+ a†(G)(~p)|Φ〉 (6.52)

behaves just like the original physical state |Ψ〉 in scalar products

〈Φ|Ψ ′〉 = 〈Φ|Ψ〉+ 〈Φ|a†(G)(~p)|Ω〉 = 〈Φ|Ψ〉. (6.53)

We should thus impose an equivalence relation on the physical Fock space

|Ψ〉 ' |Ψ ′〉 = |Ψ〉+ a†G(~p)|Ω〉. (6.54)

Any two states which differ by a state which is in the image of some a†(G) are
physically equivalent. In other words, physical states of the gauge field are not
described by particular vectors but by equivalence classes of vectors.

We may use states which have no contribution of a(G) as reference states of the
equivalence classes9

|Ψ〉 = a†(1,2) · · · a
†
(1,2)|0〉. (6.55)

These representatives show that we have two states for each momentum ~p. It
matches nicely with the massless UIR’s of the Poincaré group with positive and
negative helicity h = ±1. The particle excitations of the electromagnetic field are
the photons.

9Although this appears to be a useful choice at first sight, it is not at all unique. By a change
of basis for the polarisation vectors at any given ~p we can add any amount of a†(G) to a†(1,2). The

new states are certainly in the same equivalence class, but they are different representatives.
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Gauge Transformations. However, inserting some gauge potentials Aµ(x) into
the scalar product may actually lead to some dependence on null states. Let us
therefore compute

〈Φ|Aµ(x)|Ψ ′〉 = 〈Φ|Aµ(x)|Ψ〉+ 〈Φ|Aµ(x)a†(G)(~p)|Ω〉

= 〈Φ|Aµ(x)|Ψ〉+ 〈Φ|[Aµ(x), a†(G)(~p)]|Ω〉 (6.56)

We write a†(G)(~p) = p·a†(~p) and the commutator evaluates to

[Aµ(x), a†(G)(~p)] = pµe
−ip·x = i∂µe

−ip·x (6.57)

The expectation value of Aµ(x) thus changes effectively by a derivative term

Aµ(x) 7→ Aµ(x) +
〈Φ|Ω〉
〈Φ|Ψ〉

i∂µe
−ip·x. (6.58)

This is just a gauge transformation of the potential Aµ(x). We observe that the
states |Ψ〉 and |Ψ ′〉 lead to two expectation values which differ by a gauge
transformation of the fields within the expectation value. Note that the gauge
transformation does not leave the Lorenz gauges

[∂·A(x), a†(G)(~p)] = i∂2e−ip·x = 0. (6.59)

Hence null states induce residual gauge transformation within the Lorenz gauges.

Now it appears that the choice of representative in an equivalence class has
undesirable impact on certain expectation values. Gladly, this does not apply to
gauge-invariant observables. For instance, the electromagnetic field strength is
unaffected

[Fµν(x), a†(G)(~p)] = ∂µ(pνe
−ip·x)− ∂ν(pµe−ip·x) = 0. (6.60)

Moreover, the coupling of the gauge potential to a conserved current Jµ

J [A] =

∫
d4x Jµ(x)Aµ(x) (6.61)

commutes with a†(G)

[J [A], a†(G)(~p)] = i

∫
d4x Jµ(x)∂µe

−ip·x

= −i
∫
d4x e−ip·x∂µJ

µ(x) = 0. (6.62)

The expectation value of any gauge-invariant operator composed from Fµν , J [A] or
similar combinations thus does not depend on the choice of representatives, and it
is consistent to define physical states as equivalence classes.
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6.4 Casimir Energy

At this point we can already compute a quantum effect of the electromagnetic field,
the Casimir effect. The Casimir effect is a tiny force between nearby conductors
which exists even in the absence of charges, currents or medium. In classical
electrodynamics no forces are expected. There are several alternative explanations
for the quantum origin of the force. One is the exchange of virtual photons
between the conductors. An equivalent explanation attributes the force to a change
of vacuum energy of the electromagnetic field induced by the presence of the
plates. The latter one has a quite efficient derivation, and we shall present it here.

Setup. We place two large planar metal plates at a small distance into the
vacuum (much smaller than their size, but much larger than atomic distances). In
our idealised setup, the plates extend infinitely along the x and y directions. They
are separated by the distance a in the z direction. We will not be interested in the
microscopic or quantum details of the metal objects. We simply assume that they
are classical conductors and that they shield the electromagnetic field efficiently.

(6.63)

At the surface of the plates, the electric fields must be orthogonal Ex = Ey = 0
while the magnetic field must be parallel Bz = 0. In order to match these
conditions simultaneously at both plates, the z-component of the wave vector
(momentum) must be quantised

pz ∈
π

a
Z. (6.64)

Careful analysis shows that for pz = 0 only one of the two polarisation vectors is
permissible. Conversely, for pz 6= 0 both polarisations are good. To achieve
cancellations in this case, each wave must be synchronised to its reflected wave
where pz → −pz. Hence we should only count the contributions with pz > 0.

Vacuum Energy. Just like the scalar field, the electromagnetic field carries some
vacuum energy. The discretisation modifies the vacuum energy E0, which results
in a force between the plates if the new vacuum energy depends on the distance a.

The sum and integral of all permissible modes between the plates yields the energy
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E per area A 10

E =

∫
Adpx dpy

(2π)2

(
1
2
e(px, py, 0) + 2

∞∑
n=1

1
2
e(px, py, πn/a)

)
(6.65)

For convenience we shall exploit the rotation symmetry in the x-y-plane to
simplify the expression to

E

A
=

∫ ∞
0

p dp

2π

(
1
2
p+

∞∑
n=1

√
p2 + π2n2/a2

)
(6.66)

As discussed earlier, this expression diverges due to UV contributions at large
momenta.

Regularisation. We also emphasised earlier that infinities are largely our own
fault. The idealised setup was somewhat too ideal.

For macroscopic electromagnetic waves, we certainly made the right assumption of
total reflection. But it is also clear that the conducting plates will behave
differently for hard gamma radiation. This is precisely where the problems arise,
so we seem to be on the right track. Electromagnetic waves with wave length much
smaller than atomic distances or energies much larger than atomic energy levels
will pass the conducting plates relatively unperturbed. These modes therefore
should be discarded from the above sum.11

Therefore, we must introduce a UV cutoff for the modes. Define a function f(e)
which is constantly 1 for sufficiently small energies, constantly 0 for sufficiently
large energy and which somehow interpolates between the 1 and 0 for intermediate
energy. The cutoff replaces each contribution 1

2
e by 1

2
f(e)e

EIR

A
=

∫ ∞
0

p dp

2π

(
1
2
pf(p) +

∞∑
n=1

√
p2 + π2n2/a2f(

√
. . .)

)
. (6.67)

Let us keep in mind the remaining contribution in the ultraviolet where we convert
the sum to an integral due to the absence of quantisation in the z-direction

EUV

A
=

∫ ∞
0

p dp

2π

∫ ∞
0

dn
√
p2 + π2n2/a2

(
1− f(

√
. . .)
)
. (6.68)

10A sum over the modes in some box of volume V in d dimensions turns into an integral over
momenta when the volume is very large. In a box, the positive and negative modes are coupled, so
the integral is over positive p only with integration measure V ddp/πd. In the absence of boundary
contributions, the integration domain extends to positive and negative p which is compensated by
the measure V ddp/(2π)d.

11The modes do contribute to the vacuum energy between the plates. Importantly, the distance
between the plates will hardly enter their contribution, and consequently they cannot contribute
to forces.
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Summation. This expression is now finite, but certainly depends on the cutoff
in f(e). Let us write it as a sum of integrals

EIR

A
= 1

2
F (0) +

∞∑
n=1

F (n), (6.69)

with

F (n) =

∫ ∞
0

p dp

2π

√
p2 + π2n2/a2 f

(√
p2 + π2n2/a2

)
(6.70)

It is convenient to use energy as integration variable

e =
√
p2 + π2n2/a2, p dp = e de, (6.71)

and write the integral as

F (n) =
1

2π

∫ ∞
πn/a

de e2f(e). (6.72)

The Euler–MacLaurin summation formula writes the above sum for EIR/A as an
integral plus correction terms

EIR

A
=

∫ ∞
0

dnF (n)−
∞∑
k=1

(−1)k
B2k

(2k)!
F (2k−1)(0), (6.73)

where we have used that the function F (n) is constantly zero at ∞ due to the
cutoff. Here Bn is the n-th Bernoulli number.

Let us analyse the two terms: The first term we can rewrite as

Eint

A
=

1

2π

∫ ∞
0

dn

∫ ∞
πn/a

de e2f(e) =
2a

4π2

∫ ∞
0

de′
∫ ∞
e′

de e2f(e). (6.74)

It depends on the cutoff, but it is manifestly linear in a. In fact, it combines nicely
with the contribution from UV modes above the cutoff that we dropped earlier

E0

A
=
EUV + Eint

A
=

2a

4π2

∫ ∞
0

de′
∫ ∞
e′

de e2. (6.75)

As such it represents the vacuum energy of the enclosed volume in the absence of
plates. The same vacuum energy density is present outside the plates.12 This term
therefore does not contribute to the force because any shift of the plate would
merely transfer some vacuum energy from the inside to the outside leaving the
overall energy invariant. The fact that E0 is formally infinite does not play a role.
We therefore consider only the change in energy ∆E = E − E0 arising from the
second term of the Euler–MacLaurin summation.

The second term can be evaluated near n = 0

F (n) = F (0)− 1

2π

∫ πn/a

0

de e2f(e) = F (0)− π2n3

6a3
, (6.76)

12The factor of 2/2π is interpreted as follows: 1/2π is the correct measure for integration over
pz. Moreover, in the factor of 2 compensates for the restricted integration region pz ≥ 0.
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where we used that f(e) = 1. Quite surprisingly, F (n) is a polynomial with two
terms. All cutoff dependence is in F (0) which does not appear in the summation
formula.13 The single correction term contributes the following vacuum energy
(B4 = −1/30)

∆E

A
= −B4

4!
F (3)(0) = − π2

720a3
. (6.77)

The presence of the conducting plates decreases the vacuum energy by some
amount proportional to 1/a3.

Casimir Force. The Casimir force can be expressed as the pressure

P =
F

A
=
∆E ′(a)

A
=

π2

240a4
. (6.78)

Some properties:

• Bringing the plates closer decreases the energy, hence the Casimir force is
attractive.
• It increases with the fourth power of the inverse distance as the plates come

closer.
• It is a quantum effect, and there are hidden factor of ~ and c. Due to the

fourth-power behaviour it can nevertheless be detected at reasonable
separations. It becomes relevant at micrometer distance.
• It does not depend on the coupling strength of the electromagnetic field or on

the elementary charge.

6.5 Massive Vector Field

So far we have discussed the massless vector field. Among the UIR’s of the
Poincaré group there is also the massive representation with spin 1. Massive vector
particles exist in nature as the W± and Z0 bosons transmitting the weak nuclear
interactions.14

Lagrangian. We can add a mass term to the vector Lagrangian to obtain the
corresponding quantum field

L = −1
2
∂µVν∂

µV ν + 1
2
∂µVν∂

νV µ − 1
2
m2V µVµ. (6.79)

The corresponding equation of motion reads

∂2Vµ − ∂µ∂νVν −m2Vµ = 0. (6.80)

13The reason is apparently that the cutoff is in a region of energies where the difference between
a sum and an integral does not matter.

14The implementation of interacting massive vector fields actually needs much more care. Inter-
acting vectors fields can acquire mass only through the Higgs mechanism.
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By taking the total derivative of this equation, we see that it implies the simpler
equation −m2∂µVµ = 0. Substituting this result in the original equation of motion
then yields a system of two equations

∂2Vµ −m2Vµ = 0, ∂µVµ = 0. (6.81)

The first equation is the Klein–Gordon equation for each component of Vµ, the
second equation removes one of the four potential orientations. The degrees of
freedom agree with the classification of UIR’s.

Correlators. We now want to quantise this system. In the canonical approach
we first derive the conjugate momenta

Πµ = V̇µ − ∂µV0. (6.82)

As before, there is no conjugate momentum for the field V0 hinting at the presence
of constraints. Constrained systems are somewhat tedious to handle in the
Hamiltonian framework and therefore in canonical quantisation. Instead, let us
take a shortcut. We consider the fields to be operators and cook up unequal-time
commutation relations

[Vµ(x), Vν(y)] = ∆V
µν(x− y). (6.83)

Our previous experience has shown that correlators can be composed from
derivatives acting on the correlator of the scalar field. This automatically
implements the Klein–Gordon equation. Here we propose15 16

∆V
µν(x) =

(
ηµν −m−2∂µ∂ν

)
∆(x). (6.84)

The combination of derivatives was constructed such that ∆V satisfies the
polarisation equations

∂µ∆V
µν(x) = ∂ν∆V

µν(x) = 0. (6.85)

Equal-Time Commutators. Next let us see what this proposal implies for the
equal-time commutators. The non-vanishing ones read as follows

[V0(~x), Vk(~y)] = im−2∂kδ
3(~x− ~y),

[V0(~x), V̇0(~y)] = −im−2∂k∂kδ3(~x− ~y),

[Vk(~x), V̇l(~y)] = iδklδ
3(~x− ~y)− im−2∂k∂lδ3(~x− ~y),

[V̇0(~x), V̇k(~y)] = i∂kδ
3(~x− ~y)− im−2∂k∂l∂lδ3(~x− ~y). (6.86)

These relations appear somewhat unusual since they mix time and space
components of Vµ.

15The correlator ∆+ and the propagator G take an equivalent form in terms of their scalar field
counterparts.

16The factor of 1/m2 in not as innocent as it may appear. When adding interactions, this term
involving an inverse mass scale actually makes the theory behave badly for large momenta.
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Let us replace the time derivatives V̇k by the associated conjugate momenta Πk.
For the spatial components we recover the canonical commutator

[Vk(~x), Πl(~y)] = iδklδ
3(~x− ~y). (6.87)

The commutators involving V0 and V̇0 can be recovered using the equations of
motion. The latter actually give an explicit solution for the field V0 and its time
derivative V̇0

V0 = −m−2∂kΠk, V̇0 = ∂kVk. (6.88)

In other words, V0 is not an elementary field and its commutation relations follow
from the canonical one above

[V̇0(~x), Πk(~y)] = i∂kδ
3(~x− ~y),

[Vk(~x), V0(~y)] = im−2∂kδ
3(~x− ~y),

[V0(~x), V̇0(~y)] = im−2∂k∂kδ
3(~x− ~y). (6.89)

Hamiltonian Framework. We have obtained a reasonable QFT framework for
our massive scalar field. Now we can revisit the Hamiltonian framework. First we
perform a Legendre transformation of the Lagrangian for spatial components of
the fields Vk

17

H =

∫
d3~x

(
ΠkV̇k − L

)
=

∫
d3~x

(
1
2
ΠkΠk + 1

2
m−2∂kΠk∂lΠl

+ 1
2
∂kVl∂kVl − 1

2
∂lVk∂kVl + 1

2
m2VkVk

)
. (6.90)

Here, we have also substituted the solution for the field V0 and its time derivative.

We note that the Hamiltonian is slightly unusual in that it contains derivatives of
the momenta along with inverse powers of the mass. The inverse powers of the
mass in fact prevent us from taking the massless limit.18

Gladly, this Hamiltonian implies the desired equations of motion

V̇k = −{H,Vk} = Πk −m−2∂k∂lΠl,

Π̇k = −{H,Πk} = ∂l∂lVk − ∂k∂lVl −m2Vk. (6.91)

It is not at all obvious that these equations imply the Klein–Gordon equation.
However, their twisted form is required to be able to solve for the field V0 easily
and thereby obtain the correct energy.

17The Hamiltonian is manifestly positive since 1
2∂kVl∂kVl −

1
2∂lVk∂kVl = 1

4 (∂kVl − ∂lVk)2.
18We may impose a gauge by demanding ∂kΠk = −m−2V0 = 0. This eliminates the inverse

mass from the Hamiltonian and validates the massless limit. Using ∂kΠk = −m−2V0 the gauge
also implies V̇0 = ∂kVk = 0, i.e. the gauge is the Coulomb gauge.
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