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5 Free Spinor Field

We have seen that next to the scalar field there exist massive representations of
Poincaré algebra with spin. The next higher case is spin j = 1

2
. It is described by

the Dirac equation, and as a field with half-integer spin it should obey Fermi
statistics.

5.1 Dirac Equation and Clifford Algebra

Dirac Equation. Dirac attempted to overcome some of the problems of
relativistic quantum mechanics by introducing a first-order wave equation.1

iγµ∂µψ −mψ = 0. (5.1)

Here the γµ are some suitably chosen operators acting on ψ. This wave equation
can be viewed as a factorisation of the second-order Klein–Gordon equation as
follows:

(iγν∂ν +m)(iγµ∂µ −m)ψ = (−γνγµ∂ν∂µ −m2)ψ = 0. (5.2)

The latter form becomes the Klein–Gordon equation provided that the γ’s satisfy
the Clifford algebra2 3

{γµ, γν} = γµγν + γνγµ = −2ηµν . (5.3)

This means that every solution of the Dirac equation also satisfies the
Klein–Gordon equation and thus describes a particle of mass m.

Clifford Algebra. The Clifford algebra obviously cannot be realised in terms of
plain numbers, but finite-dimensional matrices suffice. The realisation of the
Clifford algebra strongly depends on the dimension and signature of spacetime.

The simplest non-trivial case is three-dimensional space (without time). A
representation of the corresponding Clifford algebra is given by the 2× 2 Pauli
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

+i 0

)
, σ3 =

(
+1 0
0 −1

)
. (5.4)

1The combination of a gamma matrix and an ordinary vector γµBµ is often denoted by a slashed
vector /B.

2The indices of the two derivatives are automatically symmetric, hence only the symmetrisation
of γµγν must equal −ηµν .

3We will use conventional γ matrices for signature +−−− and the minus sign in the Clifford
algebra adjusts for our choice of opposite signature. Alternatively, one could multiply all γ-matrices
by i and drop the minus sign.
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One can convince oneself that these matrices obey the algebra4

σjσk = δjk + iεjklσl. (5.5)

This also implies the three-dimensional Clifford algebra

{σi, σj} = 2δij. (5.6)

In this course we will be predominantly be interested in the case of d = 3 spatial
dimensions plus time, i.e. spacetime with D = d+ 1 = 4 dimensions. There, the
smallest non-trivial representation of the Clifford algebra is four-dimensional
(coincidence!). The elements of this four-dimensional vector space are called
spinors, more precisely, Dirac spinors or 4-spinors.

There are many equivalent ways to write this representation as 4× 4 matrices.
The best-known ones are the Dirac, Weyl and Majorana representations. These
are often presented in the form of 2× 2 matrices whose elements are again 2× 2
matrices. The latter are written using the Dirac matrices. We shall mainly use the
Weyl representation

γ0 =

(
0 1
1 0

)
, γk =

(
0 +σk

−σk 0

)
. (5.7)

One can easily confirm that these matrices obey the Clifford algebra
{γµ, γν} = −2ηµν by means of the three-dimensional Clifford algebra. A useful
property of the Weyl representation is that all four gamma matrices are block
off-diagonal. The Dirac and Majorana representations have different useful
properties. In most situations, it is however convenient not to use any of the
explicit representations, but work directly with the abstract Clifford algebra.

Solutions. The Dirac equation is homogeneous therefore it is conveniently
solved by Fourier transformation

ψ(x) =

∫
d4p e−ip·xψ(p), (pµγ

µ −m)ψ = 0. (5.8)

To construct the solutions, let us introduce the matrices

Π± =
1

2m
(m± p·γ) (5.9)

such that the Dirac equation becomes Π−ψ = 0. We are interested in the kernel of
Π−.

As noted above, we have the identity

Π+Π−ψ =
1

4m2
(m2 + p2)ψ. (5.10)

4We will not introduce a distinguished symbol for unit matrices. 1 is the unit element. Here
the term δij has an implicit 2× 2 unit matrix.
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This operators acts identically on all components of ψ. Any solution therefore
requires the mass shell condition p2 = −m2.

On the mass shell p2 = −m2, the operators Π± act as orthogonal projectors:

Π±Π± = Π±, Π±Π∓ = 0. (5.11)

Now the operators Π± are very similar.5 Evidently, their kernels have the same
dimension. Therefore Π± both have half-maximal rank. The Dirac equation
therefore has two solutions for each on-shell momentum p.

A basis of two positive-energy solutions is denoted by

ua(~p), a = ±, (p·γ −m)ua(~p) = 0. (5.12)

Instead of introducing negative-energy solutions, we prefer to consider equivalent
positive-energy solutions of the opposite Dirac equation Π+ψ = 0

va(~p), a = ±, (p·γ +m)va(~p) = 0. (5.13)

To write such solutions explicitly, we can recycle the projectors Π± and set

u = Π+λ, v = Π−λ, (5.14)

where λ is some spinor. The properties of the projectors immediately show that u
and v are solutions to their respective equations. Note, however, that some
components of λ are projected out in u and in v.

Let us consider explicitly solutions in the Weyl representation. E.g. setting
λ = (κ, 0) with κ some 2-spinor, we find

u(~p) =
1

2m

(
m e(~p) + ~p·~σ

e(~p)− ~p·~σ m

)(
κ
0

)
=

1

2m

(
mκ

e(~p)κ− ~p·~σκ

)
,

v(~p) =
1

2m

(
mκ

−e(~p)κ+ ~p·~σκ

)
. (5.15)

There are two independent choices for the 2-spinor κ, hence there are two solutions
for u and v, respectively. One typically considers uγ(~p), vγ(~p), γ = ±, as two pairs
of fixed basis vectors for each momentum ~p.

Altogether the general solution can now be expanded as

ψ(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xuγ(~p)bγ(~p) + eip·xvγ(~p)a

†
γ(~p)

)
(5.16)

Here the negative-energy coefficient bγ is chosen differently from aγ because
gamma matrices are generally complex and therefore also the Dirac spinor ψ.

5We might as well have declared (iγµ∂µ +m)ψ = 0 to be the Dirac equation.
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5.2 Poincaré Symmetry

The Dirac equation is a relativistic wave equation. Translational invariant is
evident. Most importantly, we have not yet shown its Lorentz covariance (although
the resulting Klein–Gordon equation certainly is covariant).

Lorentz Symmetry. Let us therefore consider a Lorentz transformation
x′ = Λ−1x with Λ(ω) = exp(ω). Suppose ψ is a solution of the Dirac equation. It is
not sufficient to use the transformation rule for scalar fields ψ′(x′) = ψ(x). In
analogy to vectors we should also transform spinors. We make the ansatz

ψ′(x′) = S(ω)ψ(x), (5.17)

where S(ω) is a matrix that acts on Dirac spinors. We then substitute
ψ′(x) = Sψ(Λx) into the Dirac equation

0 = iγµ∂µψ
′ −mψ′

=
(
iγνSΛµν∂µψ − Smψ

)
(Λx)

= S
(
iS−1γνSΛµν∂µψ − iγµ∂µψ

)
(Λx)

= iS
(
ΛµνS

−1γνS − γµ
)
(∂µψ)(Λx). (5.18)

So the term in the bracket must vanish for invariance of the Dirac equation.

Indeed, the canonical Lorentz transformation of gamma matrices

γ′µ = (Λ−1)µν Sγ
νS−1, (5.19)

where not only the vector index is transformed by Λ−1, but also the spinor matrix
is conjugated by the corresponding spinor transformation S.6 In analogy to the
invariance of the Minkowski metric, η′ = η, the Dirac equation is invariant if the
gamma matrices are invariant

γ′µ = γµ. (5.20)

This condition relates S to the Lorentz transformation Λ.

The infinitesimal form of the invariance condition reads

[δS, γµ]− δωµνγν = 0, (5.21)

Now δS does not carry any vector indices, but it should be proportional to two
δωµν which carries two of them. We can only contract them to two gamma
matrices, and we make the ansatz δS = 1

2
αδωµνγ

µγν . Substituting this into the
invariance condition and using

[γργσ, γµ] = γρ{γσ, γµ} − {γρ, γµ}γσ. (5.22)

we arrive at (2α− 1)δωµνγ
ν = 0. We conclude that a Lorentz transformation for

spinors is given by the matrix

δS = 1
4
δωµνγ

µγν or S(ω) = exp
(

1
4
ωµνγ

µγν
)
. (5.23)

6In general, spinors are transformed by S from the left, co-spinors by the S−1 from the right.

5.4



Comparing this result to the abstract form of finite Lorentz transformations as
U(ω) = exp( i

2
ωµνM

µν) we have derived a new representation on spinors

Mµν = − i
4
[γµ, γν ]. (5.24)

This representation obeys the Lorentz algebra derived above, i.e.
[Mµν ,Mρσ] = iM + . . ..

Double Cover. Spinor representations exist only for the double cover Spin(X)
of an orthogonal group SO(X). Let us observe this fact in a simple example.

Consider a rotation in the x-y-plane with angle ω12 = −ω21 = ϕ. The associated
finite Lorentz transformation matrix in the x-y-plane reads

Λ(ϕ) = exp(ω) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
. (5.25)

The associated spinor transformation reads

S(ϕ) = diag(e−iϕ/2, e+iϕ/2, e−iϕ/2, e+iϕ/2). (5.26)

The vector rotation Λ(ϕ) is 2π-periodic in ϕ whereas the spinor rotation is merely
4π-periodic. The rotation by ϕ = 2π is represented by the unit matrix for vectors,
but for spinors it is the negative unit matrix

Λ(2π) = 1 = (−1)F , S(2π) = −1 = (−1)F . (5.27)

The spin group thus has an element which represents a rotation by 2π
(irrespectively of the direction). On vector representations (integer spin) it acts as
the identity, on spinor representations (half-integer spin) it acts as −1. Due to the
relation between spin and statistics, the extra element is equivalent to (−1)F

where F measures the number of fermions (odd for spinors, even for vectors).

Chiral Representation. There is an important feature of the spin
representation Mµν which is best observed in the Weyl representation of gamma
matrices

γµ =

(
0 σµ

σ̄µ 0

)
. (5.28)

Here we have introduced the sigma matrices σµ, σ̄µ as an extension of the Pauli
matrices σk to four spacetime dimensions as follows

σ0 = σ̄0 =

(
1 0
0 1

)
, σ̄k = −σk. (5.29)

The Lorentz representation now reads

Mµν = − i
4

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ
)
. (5.30)
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This representation has block-diagonal form and therefore reduces to two
independent representations Mµν = diag(Mµν

L ,Mµν
R ) with

Mµν
L = − i

4
(σµσ̄ν − σν σ̄µ), Mµν

R = − i
4
(σ̄µσν − σ̄νσµ). (5.31)

In other words, the Dirac spinor ψ = (ψL, ψR) transforms in the direct sum of two
(irreducible) representations of the Lorentz group. The 2-spinors ψL and ψR are
called left-chiral and right-chiral spinors. The massive Dirac equation, however,
mixes these two representations

iσµ∂µψR −mψL = 0,

iσ̄µ∂µψL −mψR = 0. (5.32)

It is therefore convenient to use Dirac spinors for massive spinor particles. We
shall discuss the massless case later on.

The decomposition into chiral parts is not just valid in the Weyl representation of
the Clifford algebra. More abstractly, it is due to the existence of the matrix

γ5 = i
24
εµνρσγ

µγνγργσ = iγ0γ1γ2γ3. (5.33)

In the Weyl representation it reads γ5 = diag(−1,+1), it therefore measures the
chirality of spinors. In general, it anti-commutes with all the other gamma
matrices,

{γ5, γµ} = 0. (5.34)

This property implies that a single gamma matrix maps between opposite
chiralities, i.e. it inverts chirality. The property is also sufficient to prove
commutation with Mµν . Alternatively, it follows by construction of γ5 as a
(pseudo)-scalar combination of gamma matrices.

A further useful property is
γ5γ5 = 1, (5.35)

It can be used to show that the combinations 1
2
(1± γ5) are two orthogonal

projectors to the chiral subspaces.

Sigma Matrices. Let us briefly discuss the sigma matrices which are chiral
analogs of the gamma matrices. The sigma matrices obey an algebra reminiscent
of the Clifford algebra7 8

σµσ̄ν + σν σ̄µ = −2ηµν = σ̄µσν + σ̄νσµ. (5.36)

Inspection shows that all sigma matrices are hermitian

(σµ)† = σµ, (σ̄µ)† = σ̄µ. (5.37)

7The assignment of bars enables a 2-dimensional representation for this algebra unlike the
Clifford algebra which requires a larger 4-dimensional representation.

8Note that for any reasonable product of sigma matrices the sequence of factors will alternate
between σ and σ̄. This agrees with the fact that a single γ maps between the two chiralities.
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In other words, the four sigma matrices form a real basis for 2× 2 hermitian
matrices. Likewise one can confirm that that the matrices Mµν

L,R form a real basis
of 2× 2 complex traceless matrices.9 Furthermore,

(Mµν
L )† = −Mµν

R . (5.38)

These are just the defining relations for the fundamental representation of sl(2,C)
along with its conjugate representation.10

The Lorentz algebra so(3, 1) is indeed equivalent to the algebra sl(2,C). At the
level of groups, Spin+(3, 1) = SL(2,C) is the double cover of SO+(3, 1).

• A chiral 2-spinor of Spin+(3, 1) is equivalent to the fundamental representation
(space) of SL(2,C).
• Similarly, a 2-spinor of opposite chirality is equivalent to the conjugate

fundamental representation (space) of SL(2,C).
• Spinor representation exist only for the double-cover group Spin+(3, 1), but not

for the original Lorentz group SO+(3, 1).

5.3 Discrete Symmetries

In addition to the continuous Poincaré symmetry and an obvious U(1) internal
symmetry, there are several discrete symmetries and transformations which we
shall now discuss. These are also needed to formulate a Lagrangian.

Parity. Spatial parity ~x ′ = −~x is the simplest discrete symmetry. We make the
usual ansatz

ψ′(t,−~x) = γPψ(t, ~x), (5.39)

where γP is a matrix that induces the reflection on spinors.

The new field obeys the same old Dirac equation provided that the gamma
matrices are invariant

γ′µ := ΛµνγPγ
νγ−1

P
!

= γµ. (5.40)

We need to find a matrix γP that

• commutes with γ0 (because Λ0
0 = 1),

• anti-commutes with γk (to compensate Λkk = −1),
• squares to unity (because P 2 = 1).

This matrix is easily identified as

γP = γ0. (5.41)

Note that γP interchanges the two chiralities. Hence the Dirac spinor is

9A traceless 2× 2 matrix has 2 · 2− 1 = 3 degrees of freedom. If the latter are complex, there
are altogether 6 real d.o.f.. A pair of anti-symmetric vector indices provides the same number of
d.o.f., noting that all Mµν

L,R are linearly independent (over the real numbers).
10 The group SL(N) of matrices with unit determinant is generated by the algebra sl(N) of

traceless matrices.
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• reducible under proper orthochronous Lorentz rotations,
• but irreducible under orthochronous Lorentz rotations.

Time Reversal. Anti-linear time (motion) reversal also has a representation on
spinors

ψ′(−t, ~x) = γT̄ψ(t, ~x), (5.42)

The anti-linear nature of T̄ implies that a solutions of the Dirac equation should
be mapped to a solution of the complex conjugated Dirac equation. In the Weyl
representation this is achieved by the matrix

γT̄ = γ1γ3. (5.43)

The gamma matrices satisfy the following identity with the time reversal matrix

ΛµνγT̄(γν)∗γ−1
T̄

= −γµ. (5.44)

Charge Conjugation. The Dirac field is charged, it therefore makes sense to
define charge conjugation. We will use it later to investigate the statistics
associated to spinor fields.

Linear charge conjugation maps a field to its conjugate field11

ψ′(x) = γCψ
†T (5.45)

such that ψ′ solves the same wave equation as ψ. Let us substitute

(iγµ∂µ −m)ψ′ = (iγµ∂µ −m)γCψ
†T =

(
(−i(γµ)∗∂µ −m)γ∗Cψ

)†T
. (5.46)

This vanishes if
γC(γµ)∗γ−1

C = −γµ. (5.47)

In the Weyl representation only γ2 is imaginary, and the condition is solved by the
matrix

γC = −iγ2. (5.48)

CPT-Transformation In QFT a discrete transformation of fundamental
importance is the combination of charge conjugation, parity and time reversal,
called CPT. Effectively, it flips the sign of all coordinates12 and performs a
complex conjugation.

A spinor transforms according to

ψ′(x) = γT̄γPγCψ
†T(−x) (5.49)

11The composition of adjoint and transpose operations is almost the same as complex conjuga-
tion. There is however a slight difference which becomes relevant only later.

12This is an orientation-preserving transformation which belongs to Spin(3, 1), but not to
Spin+(3, 1).
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We find that the combination of matrices is just the additional gamma matrix γ5

γT̄γPγC = −iγ1γ3γ0γ2 = iγ0γ1γ2γ3 = γ5. (5.50)

This anti-commutes with all gamma matrices

γ5γµγ5 = −γµ. (5.51)

The sign is compensated by flipping the sign of all vectors.

The CPT-theorem states that all reasonable relativistic QFT’s must be invariant
under the CPT-transformation. They need not be invariant under any of the
individual transformations.

Hermitian Conjugation. The Dirac spinor ψ is complex. To construct real
quantities for use in the Lagrangian or the Hamiltonian one typically uses
hermitian conjugation. However, the various gamma matrices transform differently
under this operation.

The transformation can be uniformised by conjugation with some other matrix γ†

γ†(γ
µ)†γ−1

† = γµ. (5.52)

In most relevant representations, in particular in the chiral one, one finds

γ† = γ−1
† = γ0. (5.53)

Therefore, one should modify hermitian conjugation for a spinor ψ and likewise for
a spinor matrix X as

ψ̄ = ψ†γ−1
† , X̄ = γ†Xγ

−1
† . (5.54)

The gamma matrices are self-adjoint under modified hermitian conjugation,
γ̄µ = γµ.

5.4 Spin Statistics

So far we have only considered the Dirac equation. For quantisation, conserved
charges and later for adding interactions we should construct a Lagrangian.

Lagrangian. It is straight-forward to guess

L = ψ̄(iγµ∂µ −m)ψ. (5.55)

The variation w.r.t. ψ† obviously yields the Dirac equation. Variation w.r.t. ψ
gives the hermitian conjugate equation

− i∂µψ̄γµ −mψ̄ = (iγµ∂µψ −mψ)†γ0 = 0 (5.56)
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In fact, the Lagrangian is almost real

L† = ψ†(−i(γµ)†∂†µ −m)γ0ψ = ψ̄(−iγµ∂†µ −m)ψ

= −i∂µ(ψ̄γµψ) + L. (5.57)

There is merely an imaginary topological term left,13 the action is manifestly real.

Hamiltonian Formulation. To go to the Hamiltonian framework we compute
the conjugate momenta π = ∂L/∂ψ̇ = iψ† and π† = ∂L/∂ψ̇† = 0. It turns out that
the conjugate momenta are proportional to the fields:14

• Dirac equation is a first-order differential equation.
• There are no independent momenta.
• Phase space equals position space.

Keep in mind that ψ and ψ† are canonically conjugate fields.

Instead of computing the Hamiltonian, we can compute the energy-momentum
tensor of which it is a component

T µν = iψ̄γµ∂νψ − ηµνL. (5.58)

Unfortunately this tensor is not symmetric as it should for Lorentz invariance.
Gladly, the anti-symmetric part can be written as (making use of the e.o.m.)

T [µν] = i∂ρ(ψ̄γ
[ργµγν]ψ) = ∂ρK

ρµν . (5.59)

The contribution from K is a boundary term for the integral defining the total
momentum integral P µ. We should thus subtract ∂ρK

ρµν from T µν .

The Hamiltonian for the Dirac equation now reads

H = −
∫
d3xT 00 =

∫
d3x ψ̄

(
−i~γ·~∂ +m

)
ψ. (5.60)

Charge Conjugation. A conventional treatment and conventional quantisation
of the above framework of the Dirac equation leads to several undesirable features.

For example, the problem manifests for charge conjugation. For every solution ψ
of the Dirac equation, there is a charge conjugate solution ψC = γCψ

†T. Let us

13The topological term can be removed from the Lagrangian to obtain a manifestly real L′ =
L − i

2∂µ(ψ̄γµψ).
14Here, π† is not the complex conjugate of π because L is not real. For the real L′ we get instead

π = i
2ψ
† and π† = − i

2ψ.
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compute its energy

H[ψC] =

∫
d3xψT(γC)†γ0

(
−i~γ·~∂ +m

)
γCψ

†T

=

∫
d3xψT(γC)†γ0γC

(
+i(~γ)∗·~∂ +m

)
ψ†T

= −
∫
d3xψTγ0

(
+i(~γ)∗·~∂ +m

)
ψ†T

= −
∫
d3xψT

(
+i(~γ)T·~∂ +m

)
γ0ψ†T

∗
= −

∫
d3xψ†γ0

(
+i~γ·~∂ T +m

)
ψ

= −
∫
d3x ψ̄

(
−i~γ·~∂ +m

)
ψ = −H[ψ] (5.61)

The charge conjugate solution has opposite energy

H[ψC] = −H[ψ]. (5.62)

Compare to the scalar field and φC = φ∗. There we have

H[φC] = +H[φ]. (5.63)

This is consistent with positivity of the energy. Naively, the field ψ could not
possibly have positive definite energy.

Related issues arise for propagators and causality.

All above steps are elementary. Only one step (∗) can be changed: Transposition.
We have used

ψTXψ†T = ψaXa
bψ†b = ψ†bXa

bψa = ψ†XTψ. (5.64)

Instead of ψaψ†b = ψ†bψ
a could use a different rule 15

ψaψ†b = −ψ†bψ
a. (5.65)

This inserts a minus sign at ∗ and the energy of a solution and its charge
conjugate are the same

H[ψC] = +H[ψ]. (5.66)

This solves all the issues of the spinor field.

Spin-Statistics Theorem. The spin-statistics theorem states that consistent
quantisation of fields with half-integer spin requires the use of anti-commutation
relations

{ψ, ψ†} ∼ ~. (5.67)

Such fields are called fermionic, they obey the Fermi-Dirac statistics.
Multi-particle wave functions will be totally anti-symmetric.

15Eventually, quantisation will make ψ’s become operators which do not commute either.
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Conversely, fields with integer spin require commutation relations

[φ, φ†] ∼ ~. (5.68)

These fields are called bosonic, they obey the Bose-Einstein statistics.
Multi-particle wave functions will be totally symmetric.

5.5 Grassmann Numbers

Quantisation should be viewed as a deformation of classical physics. Therefore, the
anti-commutation relations of the quantum theory {ψ, ψ†} ∼ ~ should be reflected
by anti-commuting fields {ψ, ψ†} = 0 in the classical theory. More generally,

ψaψb = −ψbψa, ψaψ†b = −ψ†bψ
a, ψ†aψ

†
b = −ψ†bψ

†
a. (5.69)

Besides these additional signs, the fields ψ will commute with numbers and scalar
fields.

We therefore cannot use ordinary commuting numbers to represent the field ψ in
the classical Lagrangian, we need something else.

Description. The required extension of the concept of numbers is called
Grassmann numbers:

• Grassmann numbers form a non-commutative ring with Z2 grading.
• Grassmann numbers are Z2-graded, they can be even or odd: |a| = 0, 1.16

• Sums and products respect the even/odd grading

|a+ b| = |a| = |b|, |ab| = |a|+ |b|. (5.70)

• The product is commutative unless both factors are odd in which case it is
anti-commutative

ab = (−1)|a||b|ba. (5.71)

• Ordinary numbers are among the even Grassmann numbers.
• The field ψ takes values in odd Grassmann numbers.
• Real and complex Grassmann numbers can be defined. Grassmann numbers

then form an algebra over the respective field.

A basis an of odd Grassmann numbers can be constructed out of a Clifford algebra
{γj, γk} = 2δjk

an =
1√
2

(
γ2n + iγ2n+1

)
. (5.72)

In other words, Grassmann numbers can be represented in terms of (large)
matrices. One should view the basis an to be sufficiently large or infinite.17

16Linear combinations of even and odd numbers could be defined, but usually they do not appear.
17There is no distinguished element such as i which extends the real numbers to complex numbers.

We therefore do not have universal means to assign a value to a Grassmann variable. We will mainly
use Grassmann variables to describe classical (fermionic) fields without assigning values.
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Calculus. One can do calculus with Grassmann numbers much like ordinary
numbers, but note:

• odd numbers square to zero: (an)2 = 1
2
{an, an} = 0.

• the square root of zero is ill-defined.
• odd numbers have no inverse.
• some even numbers (e.g. products of two odd numbers) have no inverse.

A derivative for odd numbers can be defined as usual

∂

∂am
an = δnm. (5.73)

Note that derivatives are also odd objects

{∂/∂am, ∂/∂an} = 0. (5.74)

The above relation should be written as

{∂/∂am, an} = δnm. (5.75)

We can also define the derivatives as elements of the same Clifford algebra

∂

∂an
=

1√
2

(
γ2n − iγ2n−1

)
. (5.76)

This leads to the same anti-commutation relations as above.

Complex Conjugation. A complex Grassmann number a can be written as a
combination of the real Grassmann numbers ar, ai as

a = ar + iai. (5.77)

Spinor fields are typically complex and we often need to complex conjugate them.
Confusingly, there are two equivalent definitions of complex conjugation for
Grassmann numbers.

One is reminiscent of complex conjugation

a∗ = ar − iai. (5.78)

It obviously satisfies
(ab)∗ = a∗b∗. (5.79)

The other conjugation is reminiscent of hermitian adjoint. It satisfies

(ab)† = b†a†. (5.80)

For ordinary numbers it would be the same as complex conjugation, but odd
Grassmann numbers do not commute. The two definitions can be related as follows

a† =

{
a∗ if a is even,

−ia∗ if a is odd.
(5.81)
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QM and QFT frequently use the adjoint operation, hence it is convenient to also
use the adjoint for Grassmann numbers.

One should pay attention in defining real and odd Grassmann numbers. An odd
number which satisfies a† = a is not real. In particular, the even product of two
such numbers is imaginary

(ab)† = b†a† = ba = −ab. (5.82)

Instead real odd numbers are defined by

a† = −ia∗ = −ia. (5.83)

5.6 Quantisation

Poisson Brackets. We have also seen that ψ and ψ† are canonically conjugate
fields, there is no need to introduce additional conjugate momenta. The Poisson
bracket for the spinor field should read18

{F,G} = i

∫
d3x

(
δF

δψa(~x)

δG

δψ†a(~x)
+

δF

δψ†a(~x)

δG

δψa(~x)

)
. (5.84)

This expression can also be written as19

{ψa(~x), ψ†b(~y)} = {ψ†b(~y), ψa(~x)} = iδab δ
3(~x− ~y). (5.85)

Anti-Commutators. For quantisation, these Poisson brackets are replaced by
an anti-commutator20

{ψa(~x), ψ†b(~y)} = δab δ
3(~x− ~y). (5.86)

By Fourier transformation to momentum space

ψ(x) =

∫
d3~p

(2π)3 2e(~p)

(
e−ip·xuα(~p)bα(~p) + eip·xvα(~p)a†α(~p)

)
(5.87)

we obtain anti-commutation relations for the Fourier modes

{uaγ(~p)bγ(~p), ūγ,b(~q)b†γ(~q)} = (p·γ +m)ab 2e(~p)(2π)3δ3(~p− ~q).
{v̄γ,b(~p)aγ(~p), vaγ(~q)a†γ(~q)} = (p·γ −m)ab 2e(~p)(2π)3δ3(~p− ~q). (5.88)

It is convenient to split these relations into contributions from quantum operators
and contributions from spinor solutions. We postulate simple anti-commutation
relations for the creation and annihilation operators

{aα(~p), a†β(~q)} = {bα(~p), b†β(~q)} = δαβ 2e(~p)(2π)3δ3(~p− ~q). (5.89)

18The correct normalisation can be derived from Ḟ = −{H,F}.
19Although the Poisson brackets are anti-symmetric in most cases, they are symmetric for two

Grassmann odd elements.
20The sign is determined by the relation [H,ψa(~x)] = −iψ̇a(~x).
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Together with the above anti-commutators, they imply the completeness relation
for the basis of spinor solutions

uα(~p)ūα(~p) = p·γ +m,

vα(~p)v̄α(~p) = p·γ −m. (5.90)

In the Weyl representation these relations are reproduced by the particular choice
for the spinors u, v.

uα(~p) =

(
(p·σ)1/2ξα
(p·σ̄)1/2ξα

)
, vα(~p) =

(
(p·σ)1/2ξα
−(p·σ̄)1/2ξα

)
, (5.91)

where ξα is an orthonormal basis of 2-spinors.

Dirac Sea. The Pauli exclusion principle for fermions states that each state can
be occupied only once. It follows from the (not explicitly written)
anti-commutators

{a†α(~p), a†β(~q)} = {b†α(~p), b†β(~q)} = 0 (5.92)

that
(a†α(~p))2 = (b†α(~p))2 = 0. (5.93)

Dirac used the exclusion principle to make useful proposals concerning
negative-energy states in relativistic quantum mechanics and the prediction of
anti-particles.

The Dirac equation has positive and negative solutions. Furthermore the solutions
carry an (electrical) charge. Dirac proposed that all negative-energy states are
already occupied in the vacuum and cannot be excited further. This picture is
called the Dirac sea, and it explained how to avoid negative-energy solutions.

Continuing this thought, there is now the option to remove an excitation from one
of the occupied states. This hole state would not only have positive energy, but
also carry charges exactly opposite to the ones of the regular positive-energy
solutions. In this way he predicted the existence of positrons as the anti-particles
of electrons. The prediction was soon thereafter confirmed in experiment.

Our view of QFT today is different, so let us compare:

• Positive-energy solutions of ψ are associated to a†.
• Negative-energy solutions of ψ are associated to b.
• Let us define c† = b, it is our choice.
• The vacuum is annihilated by c†. All c-states are occupied.
• A hole in the Dirac sea c = b† creates an anti-particle.

QFT for Dirac particles works as predicted, but:

• There is no need for a Dirac sea.
• Negative-energy solutions are defined as annihilation operators, not as creation

operators with occupied states.
• Dirac’s argument relies on the exclusion principle, it works for fermions only.

QFT can also deal with bosons.
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• The Dirac equation has real solutions (see later) just as well as the
Klein–Gordon equation has complex solutions.
The existence of anti-particles is unrelated to spin and the Dirac equation. It is
a consequence of CPT.

Correlators and Propagators. We now have all we need to compute
correlators of the free quantum fields. There are two non-vanishing correlators of
two fields

∆D
+
a
b(x− y) = 〈0|ψa(x)ψ̄b(y)|0〉,

∆D
−
a
b(x− y) = 〈0|ψ̄b(y)ψa(x)|0〉. (5.94)

They can be expressed in terms of the correlator of two scalars ∆+ with an
additional operator

∆D
+
a
b(x) =

∫
d3~p e−ip·x

(2π)3 2e(~p)
(p·γ +m)ab = (iγ·∂ +m)ab∆+(x),

∆D
−
a
b(−x) =

∫
d3~p e−ip·x

(2π)3 2e(~p)
(p·γ −m)ab = (iγ·∂ −m)ab∆+(x). (5.95)

When acting with the Dirac equation on the correlator, it combines with the
operator to give the Klein–Gordon equation acting on ∆+, e.g.(

i(∂/∂xµ)γµ −m
)a
b∆

D
+
b
c(x)

= (iγ·∂ −m)ab(iγ·∂ +m)bc∆+(x)

= δac
(
(∂/∂x)2 −m2

)
∆+(x) = 0. (5.96)

Likewise, the unequal time anti-commutator

{ψa(x), ψ̄b(y)} = ∆Da
b(y − x) (5.97)

can be written in terms of the one for the scalar field

∆D(x) = (iγ·∂ −m)∆(x). (5.98)

As such it satisfies the Dirac equation and vanishes for space-like separations21

{ψa(x), ψ̄b(y)} = 0 for (x− y)2 > 0. (5.99)

For the Dirac equation with a source, the same methods we introduced earlier for
the scalar field apply. The propagator is a spinor matrix and defined via the
equations

(−iγ·∂ +m)abG
Db

c(x) = δac δ
4(x),

GDa
b(x)(−iγ·∂† +m)bc = δac δ

4(x), (5.100)

21The fact that an anti-commutator vanishes is not in contradiction with causality. Typically
we can observe only fermion bilinears which are bosonic and do commute.
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supplemented by suitable boundary conditions. By the same reasons as above, we
can express the Dirac propagator through the scalar propagator

GDa
b(x) = (iγ·∂ +m)abG(x). (5.101)

Obviously, one has the same relations as before, e.g. for the retarded propagator

GD
R(x) = iθ(t)∆D(x). (5.102)

There are some other useful relationships between correlators and propagators in
momentum space which are worth emphasising because they hold generally.

First of all, by construction the propagator is the inverse of the kinetic term in the
action22

GD(p) = (−γ·p+m)−1 =
γ·p+m

p2 +m2
(5.103)

The corresponding correlators and unequal time commutators take the form

∆D
±(p) = ±2πδ(p2 +m2)θ(±p0)(p·γ +m),

∆D(p) = 2πδ(p2 +m2) sign(p0)(p·γ +m). (5.104)

These reflect precisely the residues times a delta function localised at the position
of the pole along with some restriction to positive or negative energies.

The construction of the propagator and its relationship to correlators and
commutators can be used as a shortcut in deriving the latter. Large parts of the
canonical quantisation procedure can thus be avoided in practice.

5.7 Complex Field

The Dirac spinor is complex and the Lagrangian has the obvious U(1) global
symmetry

ψ′(x) = eiαψ, ψ̄′(x) = e−iαψ̄. (5.105)

The symmetry has a corresponding conserved Noether current23

Jµ =
δψa

δα

δL
δ∂µψa

= −ψ̄γµψ. (5.106)

The time component of the current was used earlier to define a positive definite
probability density, −J0 = ψ†ψ. However, if one follows the spin-statistics theorem
and let ψ be Grassmann odd, the density is not positive. In particular, it changes
sign for the charge conjugate solution

JµC = −ψ̄Cγ
µψC = ψ̄γµψ = −Jµ. (5.107)

22The poles should be shifted away from the real axis to accommodate for the desired boundary
conditions.

23Note the order of terms.
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Nevertheless, the current is conserved and defines a conserved Noether charge

Q =

∫
d3~x J0 = −

∫
d3~xψ†ψ. (5.108)

It leads to the usual charge assignments for the complex field

[Q,ψ(x)] = ψ(x), [Q, ψ̄(x)] = −ψ̄(x). (5.109)

5.8 Real Field

The Dirac field has four independent particle modes, a†α(~p) and b†α(~p), for each
three-momentum. From the classification of Poincaré UIR’s we know that the
irreducible representation for spin j = 1

2
has only two spin orientations for each

three-momentum.

Reality Condition. This discrepancy is associated to the existence of charge
conjugate solutions. We can remove the additional solutions by imposing a reality
condition on ψ, namely24

ψC = ψ. (5.110)

A spinor which satisfies this condition is called a Majorana spinor. There exist
representations of the Clifford algebra where all γµ are purely imaginary. In this
basis the Dirac equation is real, and it makes sense to restrict ψ to real
(Grassmann odd) numbers.

For the momentum modes we can use the identity

uα(~p) = γCv
∗
α′(~p), (5.111)

to show that the identification ψC = ψ implies

aα(~p) = bα′(~p) (5.112)

The identification may involve some translation between the bases aα and bα′ . It
reduces the modes of the Dirac field by a factor of two.

2-Spinors. Let us consider a real spinor ψ = (ψL, ψR) in the Weyl
representation. The reality condition implies

ψL = −iσ2ψ†TR =
1√
2
χ. (5.113)

This allows to write the Lagrangian in terms of the 2-spinor field χ as25

L = χ†iσ̄·∂χ+ i
2
mχTσ2χ− i

2
mχ†σ2χ†T. (5.114)

The Lagrangian for the Dirac field can be written as two identical copies of this.26

24One could also use any other complex phase eiα between ψC and ψ.
25The two mass terms are anti-symmetric in χ, which requires the classical field χ to be an odd

Grassmann number.
26The U(1) global symmetry of the Dirac equation is recovered as a SO(2) rotation symmetry

of the two fields χ.
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Parity. Note that parity interchanges ψL and ψR. The reality condition relates
the two, hence

χ′(t,−~x) = −iσ2χ†T(t, ~x). (5.115)

As this transformation also sends the field χ to its complex conjugate χ†T, it is
usually viewed as the combination CP of charge conjugation C and parity P

CPχ(t, ~x)(CP )−1 = −iσ2χ†T(t,−~x). (5.116)

In that sense there cannot be individual C and P transformations and only CP
can be a symmetry.

An alternative point of view is that C was used to define the reality condition.
Hence C is preserved by construction, and the parity operation P is well-defined
on its own.

Technically, both points of view have the same content: They merely use the same
words to refer to different operators. They are related by identifying C ′ = 1 and
P ′ = CP , where the primed operations refer to the latter approach.

5.9 Massless Real Field

So far we have assumed a non-zero mass m. Let us now consider the massless case
which has some special features. We will assume a real (Majorana) field.

First, let us compare to the UIR’s of the Poincaré group: There are two particles
a†α(~p) for each momentum. Conversely, a UIR with fixed helicity has merely one
state for each momentum. The two particles correspond to UIR’s with helicity
h = ±1

2
. In fact, helicity states must always come in pairs in QFT. One cannot

construct a real Lagrangian which describes just one helicity.

Interestingly, the splitting of representations leads to an enhancement of
symmetry. For m = 0, the Lagrangian in terms of 2-spinors reads

L = χ†iσ̄·∂χ. (5.117)

Quite obviously, this Lagrangian has a global U(1) symmetry

χ′ = eiαχ. (5.118)

It is called chiral symmetry. The associated Noether current reads

Jµ = −χ†σ̄µχ. (5.119)

At the level of 4-spinors chiral symmetry is represented by the transformation

ψ′ = exp(−iαγ5)ψ. (5.120)

The adjoint spinor transforms with the same factor

ψ̄′ = ψ̄ exp(−iαγ5). (5.121)
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This is transformed to the inverse factor by a single gamma matrix

exp(−iαγ5)γµ = γµ exp(iαγ5). (5.122)

The massless Lagrangian is therefore invariant under chiral transformations. Here
the conserved current is the so-called axial vector current

Jµ = −ψ̄γ5γµψ. (5.123)

5.10 Chiral Transformations and Masses

Let us consider the above chiral transformations in the presence of mass

L′ = ψ̄
(
iγ·∂ −m exp(2iαγ5)

)
ψ

= ψ̄
(
iγ·∂ −m cos(2α)−m sin(2α)iγ5

)
ψ. (5.124)

On the one hand, it shows that masses break chiral symmetry. On the other hand,
we have learned that there are two types of mass terms

ψ̄ψ and iψ̄γ5ψ. (5.125)

They are both equivalent under a chiral transformation. When they appear
simultaneously, the physical squared mass is the sum of the squares of the two
coefficients.

For a real field, the transformed Lagrangian in terms of 2-spinors reads

L′ = χ†iσ̄·∂χ+ i
2
me2iαχTσ2χ− i

2
me−2iαχ†σ2χ†T. (5.126)

We could thus also introduce a complex m such that the physically relevant
squared mass is just mm̄ = |m|2.
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