
Quantum Field Theory I
ETH Zurich, HS12

Chapter 4
Prof. N. Beisert

4 Symmetries

So far we have not discussed symmetries. QFT does not actually need symmetries,
but they help very much in restricting classes of models, providing stability and
simplifying calculations as well as results.1

For example, in most cases QFT’s have some symmetry of space and time.
Particularly in fundamental particle physics all models have relativistic invariance
or Poincaré symmetry.

Symmetries are some transformations of the fields φ→ φ′ that map solutions of
the equations of motion to other solutions. Hence they can be used to generate a
whole class of solutions from a single one.

We shall discuss the action of various types of symmetries, their groups and
representations, and the resulting conserved charges via Noether’s theorem. Most
of the discussion applies to classical and quantum field theories.

4.1 Internal Symmetries

Let us first discuss internal symmetries. In a QFT with several fields, these
typically transform the fields into each other in some way without making
reference to their dependence on space or time.

The simplest example is a complex scalar field φ(x) with Lagrangian and
corresponding equation of motion

L = −∂µφ∗∂µφ−m2φ∗φ,
∂2φ−m2φ = 0,

∂2φ∗ −m2φ∗ = 0.
(4.1)

Consider a global transformation of the fields

φ′(x) = e+iαφ(x), φ∗ ′(x) = e−iαφ∗(x). (4.2)

It maps a solution of the equations of motion to another solution2

∂2φ′ −m2φ′ = eiα
(
∂2φ−m2φ

)
= 0. (4.3)

Moreover the symmetry leaves the Lagrangian and the action invariant

L(φ′, ∂µφ
′) = L(φ, ∂µφ), S[φ′] = S[φ]. (4.4)

1For free particles symmetries are not that helpful, the true power of symmetries arises in
interacting situations.

2The transformed field φ′ satisfies the equation of motion because φ does. Same for complex
conjugate field φ∗.
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Any such transformation must be a symmetry because it maps extrema of the
action to extrema and hence solutions to solutions. Symmetries of the action are
more powerful than mere symmetries of the equations of motion. In the following
we will only consider symmetries of the action.3

Noether’s Theorem. Every continuous global symmetry of the action leads to
a conserved current and thus a conserved charge for solutions of the equations of
motion.

Let us derive the theorem: Consider a solution φ of the equations of motion. By
construction, any variation of the Lagrangian is a total derivative4

δL =
δL
δφ

δφ+
δL

δ(∂µφ)
∂µδφ

= ∂µ
δL

δ(∂µφ)
δφ+

δL
δ(∂µφ)

∂µδφ = ∂µ

(
δL

δ(∂µφ)
δφ

)
. (4.5)

Suppose now δφ is the infinitesimal field variation of a continuous symmetry. We
know that δS = 0, hence the Lagrangian can only change by some total derivative

δL = δα ∂µJ
µ
0 . (4.6)

Equating the two expressions for δL we find a current5

Jµ =
δL

δ(∂µφ)

δφ

δα
− Jµ0 (4.7)

which is conserved for every solution φ

∂µJ
µ = 0. (4.8)

Furthermore, a conserved current implies a conserved charge

Q(t) =

∫
dd~x J0(t, ~x) (4.9)

if we assume that the field vanishes sufficiently fast at spatial infinity

Q̇ =

∫
dd~x ∂0J

0 = −
∫
dd~x ∂kJ

k = 0. (4.10)

The conserved charge actually generates an infinitesimal symmetry transformation
via the Poisson brackets

[Q,F ] = −δF
δα

(4.11)

as can be shown using its defining relations.

3For example the scaling transformation φ(x) → eβφ(x) also maps solutions to solutions, but
it rescales the Lagrangian L′ = e2βL. If one considers QFT’s to be specified by their Lagrangians,
then this symmetry of the equations of motion relates two different models L and L′. We typically
us the freedom to redefine the fields to bring the Lagrangian in some canonical form.

4Usually we can ignore this term, here it is relevant.
5Any term of the form ∂νB

µν with antisymmetric indices on Bµν can be added to Jµ without
modifying any of the following relations.
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Example. Let us consider the complex scalar field. The field variation is defined
by

δφ = iφ δα, δφ∗ = −iφ∗ δα. (4.12)

The Lagrangian is invariant under the transformation δL = 0, hence Jµ0 = 0. The
other term reads

Jµ =
δL

δ(∂µφ)

δφ

δα
+

δL
δ(∂µφ∗)

δφ∗

δα

= (−∂µφ∗) (iφ) + (−∂µφ) (−iφ∗)
= −i(∂µφ∗φ− φ∗∂µφ). (4.13)

The naive divergence of the current reads

∂µJ
µ = −i(∂2φ∗φ− φ∗∂2φ). (4.14)

This indeed vanishes for a solution of the equations of motion.

The conserved charge reads

Q = i

∫
dd~x (φ̇∗φ− φ∗φ̇) = i

∫
dd~x (πφ− φ∗π∗). (4.15)

Transformed to momentum space we get

Q =

∫
dd~p

(2π)d 2e(~p)

(
a∗(~p)a(~p)− b∗(~p)b(~p)

)
. (4.16)

This charge is indeed time-independent and (Poisson) commutes with the
Hamiltonian. As expected, it obeys

{Q, φ} = −iφ = −δφ
δα

, {Q, φ∗} = +iφ∗ = −δφ
∗

δα
. (4.17)

We furthermore observe a relation to the number operators

Q = Na −Nb. (4.18)

In the quantum theory, Q therefore measures the number of particles created by a†

minus the number of particles created by b†.

Despite the similarities, there is a crucial difference to the number operator: The
charge Q is associated to a symmetry, whereas a single number operator N is not.6

In a symmetric theory with interactions, Q is conserved while N is in general not.

Quantum Action. Let us briefly state how to represent this symmetry in the
quantum theory where Q = Na −Nb becomes a quantum operator. It is obviously
hermitian

Q† = Q. (4.19)

6One might construct a non-local symmetry transformation corresponding the number operator
in a free field theory. However, this symmetry would not generalise to interactions.
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It obeys the following commutation relations with creation and annihilation
operators

[Q, a(x)] = −a(x), [Q, b(x)] = +b(x),

[Q, a†(x)] = +a†(x), [Q, b†(x)] = −b†(x). (4.20)

This tells us that particles of type a carry positive unit charge while the
antiparticles of type b carry negative unit charge.

The commutators of spacetime fields φ ∼ a† + b read

[Q, φ(x)] = +φ(x), [Q, φ†(x)] = −φ†(x), (4.21)

which tell us that φ and φ† carry charges +1 and −1, respectively. The
commutators are also in agreement with the classical result that charges generate
infinitesimal transformations, i.e.

[Q, φ] = +φ = −i δφ
δα

, [Q, φ†] = −φ† = −i δφ
†

δα
. (4.22)

For finite transformations we introduce the operator

U(α) = exp(iαQ). (4.23)

We can convince ourselves that it obeys the following algebra with the fields7

U(α)φ(x)U(α)−1 = e+iαφ(x) = φ′(x),

U(α)φ†(x)U(α)−1 = e−iαφ†(x) = φ† ′(x). (4.24)

So U(α) generates a finite symmetry transformation by means of conjugation while
Q generates the corresponding infinitesimal transformation by means of
commutators.

Note that the operator U(α) is unitary because Q is hermitian

U(α)† = exp(−iαQ†) = exp(−iαQ) = U(−α) = U(α)−1. (4.25)

A crucial property of symmetries in QFT is that they are represented by unitary
operators. This is required to make expectation values invariant under symmetry.

The symmetry group for the complex scalar is simply U(1).

The above discussions only applied to operators, let us finally discuss
transformations for states. States transform under finite transformations as

|Ψ ′〉 = U(α)|Ψ〉. (4.26)

Typically the vacuum is uncharged under symmetries8

Q|0〉 = 0. (4.27)

The transformation for all other states in the Fock space then follows from the
transformation of creation operators.

7Note that Qφ = φ(Q+ 1) implies exp(iαQ)φ = φ exp(iα(Q+ 1)) = eiαφ exp(iαQ).
8This is not a requirement. In fact, a charged vacuum is related to spontaneous symmetry

breaking and Goldstone particles, see QFT II. Note that ordering ambiguities arise in the determi-
nation of the charges, and are resolved by specifying the intended charge of the vacuum. Ordering
ambiguities do not matter for commutators.
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4.2 Spacetime Symmetries

Next we shall consider symmetries related to space and time. In relativistic
theories these are the spatial rotations and Lorentz boosts (altogether called
Lorentz symmetries) as well as spatial and temporal translations. In total they
form the Poincaré group.

Translations. Let us start with simple translations in space and time

(x′)µ = xµ − aµ. (4.28)

We demand that the fields merely change by shifting the position argument

φ′(x′) = φ(x). (4.29)

In other words the new field evaluated at the new position equals the old field at
the old position.9 Explicitly,

φ′(x) = φ(x+ a) or δφ(x) = δaµ∂µφ(x). (4.30)

In order for translations to be a symmetry, we have to require that the Lagrangian
does not explicitly depend on the position

∂L
∂xµ

= 0, L(φ(x), ∂µφ(x), x) = L(φ(x), ∂µφ(x)). (4.31)

Energy and Momentum. The Noether theorem equally applies to this
situation, let us derive the associated currents and charges. The variation of the
Lagrangian reads10

δL = δaµ
(
δL
δφ

∂µφ+
δL
δ∂νφ

∂µ∂νφ

)
= δaµ∂µ(L(φ, ∂φ)). (4.32)

We therefore obtain a contribution (J0)µν = δµνL. All in all we obtain a vector of
conserved currents T µν (with ∂µT

µ
ν = 0) where the index ν labels the d+ 1

dimensions for shifting

T µν =
δL

δ(∂µφ)
∂νφ− δµνL. (4.33)

This object is called energy-momentum (or stress-energy) tensor. For a real scalar
it reads

T µν = −∂µφ ∂νφ+ 1
2
δµν
(
(∂φ)2 +m2φ2

)
. (4.34)

The corresponding conserved charge is the momentum vector

Pµ =

∫
dd~x T 0

µ =

∫
dd~x

(
φ̇ ∂µφ+ 1

2
δ0
µ

(
(∂φ)2 +m2φ2

))
(4.35)

9In other words, the transformation is active. One could also define φ′(x) = φ(x′) corresponding
to a passive transformation.

10The derivative in the last term is meant to act on the x-dependence within the arguments φ(x)
and ∂φ(x) of L.
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We recover the Hamiltonian as its time component

H = P0 =

∫
dd~x

(
1
2
φ̇2 + 1

2
(~∂φ)2 + 1

2
m2φ2

)
, (4.36)

while the total spatial momentum simply reads

~P =

∫
dd~x φ̇ ~∂φ. (4.37)

Quantum Action. We have already encountered the quantum operators for
energy and momentum. Recall that in momentum space they read

Pµ =

∫
dd~p

(2π)d 2e(~p)
pµa

†(~p)a(~p). (4.38)

Performing a quantum commutator with the field yields

[Pµ, φ(x)] = −i∂µφ(x). (4.39)

As before, we can introduce an operator U(a) for finite shift transformations as the
exponential

U(a) = exp(iaµPµ). (4.40)

Conjugating a field with it yields the shifted field11

U(a)φ(x)U(a)−1 = exp(aµ∂µ)φ(x) = φ(x+ a) = φ′(x). (4.41)

Note that the operator U(a) is unitary because Pµ is hermitian.

Lorentz Transformations. Next, consider Lorentz transformations

(x′)µ = (Λ−1)µνx
ν . (4.42)

All upper (contravariant) indices transform according to the same rule as xµ under
Lorentz transformations, whereas lower (covariant) indices transform with the
matrix Λ, just as ∂µ does, e.g.

(∂′)µ = Λνµ∂ν . (4.43)

A product between a covariant and contravariant index is Lorentz invariant

(x′)µ(∂′)µ = Λρµ(Λ−1)µνx
ν∂ρ = xν∂ν . (4.44)

The matrix Λ has the defining property that it leaves the metric ηµν invariant

η′µν = ηρσΛ
ρ
µΛ

σ
ν = ηµν . (4.45)

11The exponentiated derivative exp(aµ∂µ)φ(x) generates all the terms in the Taylor expansion
of φ(x+ a) for small a.
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We can write this relation also as

(Λ−1)µν = ηνσΛ
σ
ρη
ρµ =: Λν

µ. (4.46)

It implies that it makes no difference whether indices are raised or lowered before
or after a Lorentz transformation. Correspondingly, scalar products between equal
types of vectors are invariant.

Lorentz transformations combine spatial rotations (the matrix acts on two of the
spatial dimensions) (

cosϕ − sinϕ
sinϕ cosϕ

)
= exp

(
0 −ϕ
ϕ 0

)
(4.47)

and Lorentz boosts (the matrix acts on time and one of the spatial dimensions)(
coshϑ sinhϑ
sinhϑ coshϑ

)
= exp

(
0 ϑ
ϑ 0

)
. (4.48)

There are also some discrete transformations which we shall discuss below. Here
we restrict to proper orthochronous Lorentz transformations which form the Lie
group SO+(d, 1).

We note that spatial rotations are generated by anti-symmetric matrices while
Lorentz boosts are generated by symmetric matrices. Composing various such
transformations in 2-dimensional subspaces of spacetime we conclude that Lorentz
rotations are generated as

Λµν = exp(ω)µν (4.49)

where ωµν is a matrix satisfying

ωkl = −ωlk, ω0
k = ωk0, ω0

0 = ωkk = 0. (4.50)

Lowering the first index ωµν = ηµρω
ρ
ν , this is equivalent to an anti-symmetric

matrix
ωµν = −ωνµ. (4.51)

Angular Momentum. For a (scalar) field the transformation reads

φ′(x) = φ(Λx), δφ = δωµνx
ν∂µφ. (4.52)

Lorentz invariance of the action requires the Lagrangian to transform in the same
way12

δL = δωµν x
ν∂µL = δωµν ∂

µ(xνL). (4.53)

Note that the measure dd+1x is Lorentz invariant. Comparing this to an explicit
variation of L(φ, ∂φ) implies the relation

δL
δ(∂µφ)

∂νφ =
δL

δ(∂νφ)
∂µφ. (4.54)

12The anti-symmetry of ωµν allows to pull xν past the derivative.
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This relation holds whenever ∂µφ appears only in the Lorentz-invariant
combination (∂φ)2 = ηµν(∂µφ)(∂νφ). For the energy-momentum tensor it implies
symmetry in both indices when raised or lowered to the same level

T µν = T νµ. (4.55)

The currents Jµ,ρσ = −Jµ,σρ corresponding to the anti-symmetric matrix δωρσ can
be expressed in terms of the energy momentum tensor T

Jµ,ρσ = T µρxσ − T µσxρ. (4.56)

Conservation of Jµ,ρσ is then guaranteed by conservation and symmetry of T

∂µJ
µ,ρσ = T σρ − T ρσ = 0. (4.57)

The integral of J is the Lorentz angular momentum tensor

Mµν =

∫
dd~x J0,µν =

∫
dd~x

(
T 0µxν − T 0νxµ

)
. (4.58)

For a scalar field in d = 3 dimensional space we obtain the well-known spatial
angular momentum

Jm = 1
2
εmklMkl =

∫
d3~x φ̇ ((~∂φ)× ~x)m. (4.59)

Furthermore, the momentum for Lorentz boosts reads13

Bm = M0m =

∫
d3~x

(
T 00xm

)
− Pmt. (4.60)

We can also write the Lorentz generators in momentum space14

Mµν = i

∫
dd~p

(2π)d2e(~p)

(
pµ∂νa∗(~p)a(~p)− pν∂µa∗(~p)a(~p)

)
. (4.61)

In the quantum theory, all components of the tensor Mµν are hermitian operators.
Consequently, the operators for finite transformations are unitary

U(ω) = exp( i
2
ωµνM

µν), U(ω)† = U(ω)−1. (4.62)

The interesting conclusion is that we have found a unitary representation of the
Poincaré group. As the latter is non-compact this representation is necessarily
infinite-dimensional. Indeed, the field φ(x) and Fock space carry infinitely many
degrees of freedom.

13Conservation basically implies that the motion of the centre of gravity (first term) is governed

by the momentum (second term). Note that our convention uses ~p ∼ −m~̇x.
14Its form is reminiscent of the position space form because Lorentz rotations in both spaces are

practically the same
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4.3 Poincaré Representations

Above we have derived Lorentz (Mµν) and momentum (P µ) generators for
relativistic transformations of a scalar field. Let us now discuss the algebraic
foundations and generalisations.

Some Basic Definitions. Here are some sketches of basic definitions in group
and representation theory.15

Group. A set G with an associative composition law G×G→ G (usually called
multiplication), a unit element and inverse map G→ G.

Algebra. A vector space A with a bi-linear composition law A⊗ A→ A (usually
called multiplication).

Lie Group. A group G that is also a manifold.

Lie Algebra. An algebra g with an anti-symmetric product [·, ·] (called Lie bracket)
that satisfies the Jacobi identity[

[a, b], c
]

+
[
[b, c], a

]
+
[
[c, a], b

]
= 0. (4.63)

The tangent space of a Lie group G at the unit element is a Lie algebra.

Quantum Group, Quantum Algebra. The algebra of operators in quantum
mechanics is called a quantum group or a quantum algebra. In addition to being
an algebra, it has a unit element and an inverse for most elements A∗ → A∗. It can
act as any of the above structures: It is an algebra. It has a subgroup A∗. The
subgroup may contain Lie groups. A Lie algebra can be realised by the map
[a, b] = a · b− b · a which automatically satisfies the Jacobi identity.

Representation. A map R : X → End(V ) from a group or an algebra X to linear
operators (matrices, endomorphism) on some vector space V . The representation
must reflect X’s composition law by operator composition (matrix multiplication).
If a · b = c then R(a)R(b) = R(c).

Representation of a Lie Algebra. The Lie bracket must be represented by a
commutator: If [a, b] = c then R(a)R(b)−R(b)R(a) = R(c).

Physics. The notation in physics often does not distinguish between abstract Lie
algebra generators a and their representations R(a), both may be denoted simply
by a. Likewise the distinction between Lie brackets and commutators may be
dropped (this is perfectly reasonable in a quantum algebra). Moreover the term
representation is used not only for an operatorial version of algebra generators, but
also for the space on which these operators act (in mathematics: module of the
algebra).

Poincaré Algebra. It is straight-forward to derive the algebra of infinitesimal
transformations from the operators derived earlier

[Mµν ,Mρσ] = iηνρMµσ − iηµρMνσ − iηνσMµρ + iηµσMνρ,

15See a textbook for proper definitions.
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[Mµν , P ρ] = iηνρP µ − iηµρP ν ,

[P µ, P ν ] = 0. (4.64)

These define the so-called Poincaré algebra. The operators Mµν generate the
algebra so(d, 1) of Lorentz (orthogonal) transformations in d+ 1 spacetime
dimensions. The spatial components M jk generate the algebra so(d) of rotations in
d spatial dimensions.

The Poincaré group is obtained by exponentiating the algebra

g(ω, a) = exp
(
i
2
ωµνM

µν + iaµP
µ
)
. (4.65)

More precisely it is the component of the Poincaré group connected to the identity
element. It includes Spin+(d, 1), the double cover of the proper orthochronous
Lorentz group, along with translations.

The above algebra generators and group elements should be viewed as abstract
objects in algebra without immediate connection to a physics problem. Above we
have found an explicit representation (M,P ) of the Poincaré algebra and the
corresponding representation U(ω, a) of the Poincaré group acting on Fock space of
a scalar particle. Since (M,P ) commute with the number operator N , the
representation is reducible.16

• The most relevant representation is the one acting on single particle states.
• The other representations are symmetric tensor powers of it.
• The vacuum transform in the trivial representation.
• The single-particle representation is complex, unitary, infinite-dimensional and

irreducible.

Unitary Irreducible Representations. We can reproduce what we have
learned about the free Klein–Gordon field from representation theory of the
Poincaré algebra. We can also learn how to generalise the construction. Let us
therefore investigate the unitary irreducible representations of the Poincaré group
(Wigner’s classification). These will be the elementary building blocks for physical
theories with relativistic invariance. The derivation will parallel the derivation of
unitary irreducible representations of the rotation group SO(3) ' SU(2) (in QM1)
which leads an understanding of spin. Here the result will characterise the types of
admissible particles in a relativistic QFT.

First, we should look for commuting (combinations of) elements of the algebra.
Their eigenvalues classify representations because if measured on one state, any
other state related to it by symmetry must have the same eigenvalue. The analog
for so(3) is the operator J2. There, a representation of spin j is uniquely
characterised by the eigenvalue j(j + 1) of J2.

We notice that the Poincaré algebra possesses a quadratic invariant

P 2 = P µPµ. (4.66)

16In other words, the action of (M,P ) neither creates nor annihilates particles and will therefore
maps Vn → Vn. The representation on Fock space thus splits into representations on the individual
Vn.
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This combination obviously commutes with all the momenta P µ. It also commutes
with the Lorentz generators Mµν because it is constructed as a scalar product.

The combination P 2 must be represented by a unique number on an irreducible
representation. Otherwise one could split the representation according to their
eigenvalues of P 2. Clearly, P 2 measures the mass of a particle

P 2 = −m2. (4.67)

For unitary representations P 2 must be real. There are three cases to be
distinguished

• P 2 < 0, i.e. massive particles,
• P 2 = 0, i.e. massless particles,
• P 2 > 0, i.e. tachyons.

We shall discuss the massive case in detail and comment only briefly on the others.

The next observation is that the momentum generators P µ span an abelian ideal17

of the Poincaré algebra. For abelian ideals the representation space is spanned by
simultaneous eigenvectors of all its elements. More concretely, the space is spanned
by momentum eigenstates |p〉 with Pµ|p〉 = pµ|p〉. We have already fixed
P 2 = −m2 and hence we must restrict to a mass shell p2 = −m2. As the
representation of finite transformations is given by exp(ia·P ), the representation is
necessarily complex.

(4.68)

This completes the discussion of the representation of momentum generators P µ.
What about the Lorentz generators Mµν?

The condition p2 = −m2 has two connected components with positive and negative
energy, respectively. Orthochronous Lorentz boosts can map between any two
momentum vectors on a single mass shell. Mapping between the two mass shells is
achieved only by discrete time reversal transformations which we will consider
later. For an irreducible representation of the orthochronous Poincaré group, all

17An ideal is a subalgebra such that brackets between its elements and elements of the algebra
always end up in the subalgebra, here [M,P ] ∼ P .
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energies must have the same sign. The positive-energy representation space is now
spanned by the vectors |+em(~p), ~p〉. For negative energies we can define states
|−em(~p), ~p〉 or alternatively use the hermitian conjugates
|+em(~p), ~p〉† ∼ 〈+em(~p), ~p|. Let us consider only positive energies from now on;
negative energy representations are analogous. All admissible momentum vectors p
can be mapped into each other by Lorentz transformations. For further discussions
let us restrict to p = (m, 0) which is as good as any other.

Among the Lorentz generators, there are some which change ~p. These are the
Lorentz boosts. The Lorentz boosts ensure that the following discussion for
p = (m, 0) equivalently applies to any other ~p.

The transformations which do not change p = (m, 0) are the spatial rotations
forming the orthogonal group SO(d) or its double cover Spin(d).18 This group is
called the little group (physics) or stabiliser (mathematics) of p. The
representation subspace with fixed ~p must therefore transform under a
representation of Spin(d). For the most relevant case of d = 3 spatial dimensions,
the unitary irreducible representations of Spin(3) = SU(2) are labelled by a
non-negative half-integer j. Their representation space is spanned by 2j + 1
vectors |−j〉, |−j − 1〉, . . . , |+j − 1〉, |+j〉 with definite z-component of spin. An
equivalent representation of Spin(d) must apply to all momenta ~p because it can
be shifted to the point ~p = ~0.19 We have now considered all algebra generators and
hence the representation is complete. The representation space is thus spanned by
the states |~p, j3〉 = |~p〉 ⊗ |j3〉.
Altogether we find that the massive UIR’s of the Poincaré algebra are labelled by
their mass m > 0, the sign of energy and a unitary irreducible representation of
Spin(d). In the case of d = 3, the latter UIR are labelled by a non-negative
half-integer j. The representation space for (m,±, j) is spanned by the vectors

|~p, j3〉(m,±,j) (4.69)

with continuous ~p and discrete j3 = −j,−j + 1, . . . , j − 1, j.

For spin j = 0 the representation space is simply spanned by momentum
eigenstates |~p〉 with arbitrary three-momentum ~p. These are just the single-particle
states of a scalar field. The conjugate states 〈~p| also transform in a UIR, but one
with negative momentum.

The next interesting case is j = 1
2

which we shall discuss in the following section.

In addition, there are massless representations of positive or negative energy. They
are classified by a representation of Spin(d− 1).20 For d = 3 the massless
representations of Spin(2) = U(1) are labelled by a positive or negative half-integer
h known as helicity. There is only one state in the representation (0,±, h) with

18Reflections extend SO(d) to O(d) or Spin(d) to Pin(d), but they are not included in the identity
component of the Poincaré algebra.

19Each momentum vector ~p has a different stabiliser subgroup Spin(d) ⊂ Spin(d, 1), but these
are all equivalent, and the same applies to their representation.

20In fact, the stabiliser is the euclidean group in d− 1 dimensions which also allows for so-called
continuous spin representations.
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given helicity
|~p〉(0,±,h). (4.70)

Last but not least, there is the trivial representation with P = 0. The Fock space
vacuum transforms under it. Finally, there are tachyonic representations with
P 2 > 0, but the latter are typically non-unitary.

4.4 Discrete Symmetries

In addition to the continuous symmetries discussed above, there are also relevant
discrete symmetries. The most prominent ones are parity, time reversal and charge
conjugation. Let us discuss them for the example of a complex scalar field.

Parity. Spatial rotations in d dimensions form the special orthogonal group
SO(d). However, also spatial reflections preserve all distances, and it is natural to
consider them among the symmetries, too. Reflections were long believed to be a
symmetry of nature, until the electroweak interactions were shown to violate
parity symmetry. On the mathematical side, reflections flip the orientation and
together with the rotations they form the general orthogonal group O(d).21

For an odd number of spatial dimensions d, it is convenient to introduce parity P
as the transformation which inverts all spatial components of the position vector

P : (t, ~x) 7→ (t,−~x). (4.71)

It is an element of O(d), but not of SO(d), and it is convenient to choose this
element because it does not introduce any preferred directions. There are many
more orientation-inverting elements in O(d); these can be obtained as products of
P with elements of SO(d). Hence it is sufficient to consider only P . In spacetime,
introducing parity enlarges the identity component of the Lorentz group SO+(d, 1)
to the orthochronous Lorentz group O+(d, 1).

A scalar field should transform under parity as follows

Pφ(t, ~x)P−1 = ηPφ(t,−~x),

Pφ†(t, ~x)P−1 = η∗Pφ
†(t,−~x), (4.72)

where the constant ηP is the intrinsic parity of the field φ. We want that two
parity transformations equal the identity P 2 = 1, therefore the parity can be either
positive or negative, ηP = ±1.

For the creation and annihilation operators it implies a transformation which
reverses the momentum

Pa(~p)P−1 = ηPa(−~p), Pa†(~p)P−1 = ηPa
†(−~p),

P b(~p)P−1 = ηPb(−~p), P b†(~p)P−1 = ηPb
†(−~p). (4.73)

It is a unitary operation.

21The double cover of O(d) is called Pin(d) in analogy to Spin(d) which is the double cover of
SO(d).
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Time Reversal. The other discrete transformation of the Lorentz group is time
reversal

T : (t, ~x) 7→ (−t, ~x). (4.74)

It enlarges the orthochronous Lorentz group O+(d, 1) to the complete Lorentz
group O(d, 1).

Time reversal is a rather special transformation due to the distinguished role of
time in quantum mechanics and special relativity.

For a field φ we expect

Tφ(t, ~x)T−1 = ηTφ(−t, ~x),

Tφ†(t, ~x)T−1 = η∗Tφ
†(−t, ~x). (4.75)

Comparing to the mode expansion of fields, this could be implemented by a linear
transformation of the type a†(~p) 7→ b(−~p). However, such a transformation would
not act well on Fock space because it would annihilate all states (but the
vacuum).22 Instead, time reversal (sometimes called motion reversal) is defined by
an anti-linear operator which also conjugates plain complex numbers, let us denote
it by T̄ . This inverts the plane wave factors e±ip·x and allows to map a† 7→ a†,
more explicitly

T̄ a(~p)T̄−1 = η∗T̄a(−~p), T̄ a†(~p)T̄−1 = ηT̄a
†(−~p),

T̄ b(~p)T̄−1 = ηT̄b(−~p), T̄ b†(~p)T̄−1 = η∗T̄b
†(−~p). (4.76)

The difference w.r.t. parity is merely the anti-linear feature of T̄ . Time reversal
actually allows for a complex ηT̄ only restricted by |ηT̄|2 = 1.

Charge Conjugation. Also the internal symmetry groups can come along with
several connected components. For example the complex scalar field has a global
U(1) = SO(2) symmetry. This can be extended to O(2) by adding a charge
conjugation symmetry.

We already know that the complex conjugate scalar field φ∗ or φ† satisfies the
same equations of motion as the original field φ. Charge conjugation symmetry
thus maps between the fields φ and φ†

Cφ(x)C−1 = ηCφ
†(x),

Cφ†(x)C−1 = η∗Cφ(x). (4.77)

Requiring that two charge conjugations square to unity, the parity ηC must be on
the complex unit circle |ηC|2 = 1.

Ca(~p)C−1 = η∗Cb(~p), Ca†(~p)C−1 = ηCb
†(~p),

Cb(~p)C−1 = ηCa(~p), Cb†(~p)C−1 = η∗Ca
†(~p). (4.78)

22Unless the vacuum is mapped to a different states, e.g. 〈0|, which makes this definition similar
to the conventional one.
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Although C maps φ 7→ φ†, it is a perfectly linear map. Charge conjugation is not
complex conjugation. One might as well make an anti-linear ansatz for C, but it
would lead to a transformation of the kind a† 7→ a which would again annihilate
almost all of Fock space.

There are several conceptual difficulties with charge conjugation parity:

• In the presence of a corresponding internal symmetry the parity ηC actually does
not have deeper meaning. In this case one can define a new charge conjugation
operation C ′ by conjugating C by the internal symmetry. This would lead to a
different ηC, and it makes sense to choose C ′ such that ηC = 1.
• Even if there is no continuous internal symmetry, there can be discrete internal

symmetries. For example, a possible transformation for a real scalar field is
φ 7→ −φ.
• In a model with multiple fields, several independent internal parities can coexist,

and there may not be a distinguished charge conjugation symmetry. In general,
one would expect C to invert all internal charges.
• In the presence of some internal parity C, the spacetime parities P and T

become somewhat ambiguous, as one could define P ′ = PC.23

Hence the choice of discrete symmetries C, P , T can be ambiguous, and its
sometimes tricky to identify the most suitable (or established) one.24

Implications. A discrete transformation is a symmetry if it commutes with the
Hamiltonian. It is natural to assume parity and time reversal as symmetries of
relativistic QFT models and of nature. For a scalar field, it appears impossible to
violate parity or time reversal. However, as we shall see, this need not be so for
other types of fields. In nature, indeed, some of these symmetries are violated.

Discrete symmetries also lead to conserved charges in the quantum theory. States
can be classified by their eigenvalue (parity) under the discrete symmetry.
Typically these parities are not additive (as the electrical charge, e.g.), but they
only take finitely many values (e.g. +1 or −1).

23This may appear strange at first sight as P ′ would conjugate the field φ. But by writing
φ = (φ1 + iφ2)/

√
2 we get two fields with opposite parities ηP.

24For example, the question of whether a certain discrete symmetry applies should be interpreted
as the question where there exist some choice of this discrete transformation that is a symmetry.
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