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3 Scalar Field Quantisation

We can now go ahead and try to quantise the classical scalar field using the
canonical procedure described before. We will encounter some infinities, and
discuss how to deal with them. Then we shall investigate a few basic objects in
QFT.

3.1 Quantisation

Start with the Hamiltonian formulation of the scalar field discussed earlier.

Equal-Time Commutators. Phase space consists of the field φ(~x) and the
conjugate momentum π(~x) with Poisson bracket1

{φ(~x), π(~y)} = δd(~x− ~y). (3.1)

Hence the canonical quantisation implies operators φ(~x) and π(~x)

[φ(~x), π(~y)] = iδd(~x− ~y). (3.2)

Note that φ and π are now operator-valued fields (rather: distributions).2

Field States. Next have to define some states. Straight QM would lead to a
state |φ0〉 for every field configuration φ0(~x) such that

φ(~x)|φ0〉 = φ0(~x)|φ0〉, π(~x)|φ0〉 = −i δ

δφ0(~x)
|φ0〉. (3.3)

Can be done formally, but not so convenient. Sketch of an eigenstate

|0〉 =

∫
Dφ exp

(
−1

2

∫
dd~x dd~y Ω(~x, ~y)φ(~x)φ(~y)

)
. (3.4)

1At the moment, the fields are defined on a common time slice t, e.g. t = 0. Later we discuss
unequal times.

2The delta-function is a distribution, also the fields should be considered distributions. Distri-
butions are linear maps from test functions to numbers (or operators in this case). In physics, we
write them as integrals with a distributional kernel (e.g. the delta-function). Sometimes we also
perform illegal operations (e.g. evaluate delta-function δ(x) at x = 0).
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Momentum Space. The classical field is a bunch of coupled HO’s, let us
diagonalise them and use creation and annihilation operators.

Go to momentum space, and pick a and a† appropriately, same transformation as
above

a(~p) =

∫
dd~x exp (i~p·~x)

(
e(~p)φ(~x) + iπ(~x)

)
,

φ(~x) =

∫
dd~p

(2π)d 2e(~p)
a(~p) exp(−i~p·~x)

+

∫
dd~p

(2π)d 2e(~p)
a†(~p) exp(+i~p·~x),

π(~x) = − i

2

∫
dd~p

(2π)d
a(~p) exp(−i~p·~x)

+
i

2

∫
dd~p

(2π)d
a†(~p) exp(+i~p·~x). (3.5)

Commutation relations in momentum space

[a(~p), a†(~q)] = 2e(~p) (2π)dδd(~p− ~q). (3.6)

Substitute fields into Hamiltonian paying attention to ordering

H =
1

4

∫
dd~p

(2π)d
(
a†(~p)a(~p) + a(~p)a†(~p)

)
=

1

4

∫
dd~p

(2π)d
(
2a†(~p)a(~p) + [a(~p), a†(~p)]

)
=

1

2

∫
dd~p

(2π)d
a†(~p)a(~p) +

1

2

∫
dd~p e(~p) δd(~p− ~p). (3.7)

Vacuum Energy. Introduce a vacuum state |0〉 annihilated by all a(~p). Two
problems with vacuum energy H|0〉 = E0|0〉

E0 =
1

2

∫
dd~p e(~p) δd(~p− ~p) : (3.8)

• delta-function is δd(~p− ~p) = δd(0) is ill-defined,
• integral 1

2

∫
dd~p e(~p) diverges.

These are self-made problems:

• We considered an infinite volume. Not reasonable to expect a finite energy. IR
problem! The delta-function has units of volume. It measures the volume of the
system δd(~p− ~p) ∼ V →∞. Consider energy density instead!

• Integral 1
2

∫ P
0
dd~p e(~p) represents vacuum energy density. Infinitely many

oscillators per volume element, not reasonable to expect finite energy density.
UV problem! Introduce cutoff |~p| < P to obtain 1

2

∫ P
0
dd~p e(~p) ∼ P d+1.

Finite lattice has similar effect to regularise IR and UV.

To avoid IR infinities in QFT:
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• Put the system in a finite box. Possible but inconvenient. Rather work with
infinite system and cope with IR divergences. E.g. consider energy density.

To avoid UV infinities in QFT:

• By definition we want a field theory, not a discrete model. Physics: Should be
able to approximate by discrete model.
• Regularisation: impose momentum cut-off, consider a lattice, other tricks

without physical motivation, . . .
• Renormalisation: remove terms which would diverge.
• Remove regularisation: obtain finite results.

Here: simply drop E0.

• There is no meaning to an absolute vacuum energy.
• May add any constant to Hamiltonian (to compensate E0).
• Makes no observable difference in any physical process.
• Vacuum energy only a philosophical or religious question.
• Later on, infinities lead to interesting effects.

Renormalised Hamiltonian Hren

Hren := H − E0 =
1

2

∫
dd~p

(2π)d
a†(~p)a(~p). (3.9)

Nice, vacuum has zero energy.

Normal Ordering. The ordering of variables in classical H plays no role. In
quantum theory it does! It is responsible for vacuum energy E0.

How to map some classical observable O to a quantum operator?

A possible map is normal ordering N(O):

• Express O in terms of a and a∗ → a†.
• Write all a†’s to the left of all a’s.

Here, renormalised Hamiltonian is the normal ordering of H

Hren = N(H). (3.10)

There are other ordering prescriptions for operators:

• Normal ordering depends on the choice of vacuum state. There may be other
normal-ordering prescriptions associated to different “vacuum” states.
• There are other useful ordering prescriptions which we will encounter, e.g. time

ordering.

3.2 Fock Space

We have:

• a collection of HO’s labelled by momentum ~p,
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• a vacuum state |0〉 with energy E = 0.

Discuss other related states.

Single-Particle States. Can now excite vacuum

|~p〉 := a†(~p)|0〉. (3.11)

Energy eigenstate with energy
E = +e(~p). (3.12)

Energy of a particle with momentum ~p and mass m.

Negative-Energy Solutions. Note:

• Energy is positive E > 0.
• State a(~p)|0〉 would have negative energy. Does not exist by construction.

Problem of negative-energy particles solved!

• a†(~p) creates a particle of momentum ~p a positive energy +e(~p) from the
vacuum. a†(~p) is particle creation operator.
• a(~p) removes a particle of momentum ~p and thus removes the positive energy

+e(~p) from the state.

a(~p)|~q〉 = a(~p)a†(~q)|0〉 = [a(~p), a†(~q)]|0〉
= 2e(~p) (2π)d δd(~p− ~q) |0〉. (3.13)

a(~p) is particle annihilation operator.3

(3.14)

Interpretation of position space operators not as straight:
φ(~x) = φ†(~x) as well as π(~x) = π†(~x) create or annihilate a particle at position ~x.
Result is typically superposition.

3a(~p) is not an anti-particle (although this is sometimes claimed). It has negative energy while
anti-particles (like particles) have positive energy. For the real scalar, the particle is its own
anti-particle.
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Normalisation. Let us define proper normalisation for the vacuum

〈0|0〉 = 1. (3.15)

Normalisation of a single-particle state:

〈~p|~p〉 = 2e(~p) (2π)d δd(~p− ~p) =∞. (3.16)

Known problem from QM: Plane-wave states have infinite extent, smeared over all
space, unphysical. Recall δd(~p− ~p) represents volume of space.

Consider peaked wave packet state |f〉 (test function) instead

|f〉 :=

∫
ddp f(~p)

(2π)d 2e(~p)
|~p〉. (3.17)

For suitable f(~p) this state has a finite normalisation

〈f |f〉 =

∫
ddp |f(~p)|2

(2π)d 2e(~p)
. (3.18)

Multi-Particle States and Fock Space. Now excite more than one harmonic
oscillator

|~p1, ~p2, . . . , ~pn〉 := a†(~p1) a
†(~p2) · · · a†(~pn) |0〉. (3.19)

The energy is given by the sum of particle energies4

E =
n∑
k=1

e(~pk). (3.20)

All particles are freely interchangeable

|. . . , ~p, ~q, . . .〉 = |. . . , ~q, ~p, . . .〉 (3.21)

because creation operators commute

[a†(~p), a†(~q)] = 0. (3.22)

Bose statistics for indistinguishable particles: Wave function automatically totally
symmetric in QFT.

A generic QFT state (based on the vacuum |0〉) is a linear combination of
k-particle states with k not fixed. This vector space is called Fock space. It is the
direct sum

VFock = V0 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ . . . , Vn = (V1)
⊗sn (3.23)

of n-particle spaces Vn where

• V0 = C merely contains the vacuum state |0〉.
4Use [H, a†(~p)] = e(~p)a†(~p) to show H|n〉 = Ha†1 . . . a

†
n|0〉 = [H, a†1]a†2 . . . a

†
n|0〉 + . . . +

a†1 . . . a
†
n−1[H, a†n]|0〉 = E|n〉.
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• V1 = Vparticle is the space of single particle states |~p〉 with positive energy.
• Vn is the symmetric tensor product of n copies of V1.

Consider non-relativistic physics:

• The available energy is bounded from above. Much smaller than particle rest
masses m = e(0).
• Relevant part of Fock space with n bounded. For example: V1, V2 or V1 ⊕ V2.
• Multiple-particle QM is a low-energy limit of QFT. Becomes QFT when number

of particles is unbounded.

Conservation Laws. The Hamiltonian H measures the total energy E.

There is also a set of operators to measure total momentum ~P

~P :=

∫
dd~p

(2π)d 2e(~p)
~p a†(~p)a(~p). (3.24)

with eigenvalue ~P =
∑n

k=1 ~pk on state |~p1, . . . ~pn〉. Vacuum carries no momentum.

Combine into relativistic vector Pµ = (H, ~P ) of operators

Pµ :=

∫
dd~p

(2π)d 2e(~p)
pµ(~p) a†(~p)a(~p), pµ(~p) := (e(~p), ~p). (3.25)

Another useful operator is the particle number operator n

N :=

∫
dd~p

(2π)d 2e(~p)
a†(~p)a(~p). (3.26)

It measures the number of particles n in a state |~p1, . . . ~pn〉

NVn = nVn. (3.27)

The relativistic momentum vector and the number operator are conserved

[H,Pµ] = [H,N ] = 0. (3.28)

Moreover, they carry no momentum

[Pµ, Pν ] = [Pµ, N ] = 0. (3.29)

In fact, there are many conservation laws. Any two operators made from number
density operators commute

n(~p) := a†(~p)a(~p), [n(~p), n(~q)] = 0. (3.30)

Hence such operators are conserved, carry no momentum and no particle number:

[H,n(~p)] = [Pµ, n(~p)] = [N, n(~p)] = 0. (3.31)

In a free theory there are infinitely many conservation laws.5

5Should not say this: Free theory is trivial.
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3.3 Complex Scalar Field

Let us discuss a slightly more elaborate case of the scalar field, the complex scalar,
where we first encounter anti-particles.

The complex scalar field φ(x) has the Lagrangian6 7

L = −∂µφ∗ ∂µφ−m2φ∗φ = −|∂φ|2 −m2|φ|2. (3.32)

For the conjugate momentum we obtain8

π =
∂L
∂φ̇

= φ̇∗, π∗ =
∂L
∂φ̇∗

= φ̇. (3.33)

In the quantum theory we then impose the canonical commutators

[φ(~x), π(~y)] = [φ(~x)†, π(~y)†] = iδ(~x− ~y). (3.34)

The equation of motion associated to the above Lagrangian is the very same
Klein–Gordon equation. However, now complex solutions φ(x) are allowed. Field
operators (with time dependence, see below) now read:

φ(x) =

∫
dd~p

(2π)d 2e(~p)
b(~p) exp(−ip·x)

+

∫
dd~p

(2π)d 2e(~p)
a†(~p) exp(+ip·x),

φ†(x) =

∫
dd~p

(2π)d 2e(~p)
a(~p) exp(−ip·x)

+

∫
dd~p

(2π)d 2e(~p)
b†(~p) exp(+ip·x), (3.35)

Note the strange appearance of a and b. For a 6= b we have φ 6= φ† while a = b
implies a real field φ = φ†. Non-trivial commutation relations:

[a(~p), a†(~q)] = [b(~p), b†(~q)] = 2e(~p) (2π)dδd(~p− ~q). (3.36)

and quantum Hamiltonian

Hren :=
1

2

∫
dd~p

(2π)d
(
a†(~p)a(~p) + b†(~p)b(~p)

)
. (3.37)

The complex scalar carries a charge, +1 for φ and −1 for φ†.

6The prefactor 1
2 of the real scalar field (φ2) is now absent. It is a convenient symmetry factor.

Here the appropriate symmetry factor is 1 because φ∗ 6= φ. More on symmetry factors later.
7One can also set φ(x) = (φ1+iφ2)/

√
2 and φ∗(x) = (φ1−iφ2)/

√
2 and obtain two independent

scalar fields with equal mass.
8One may just as well define π = ∂L/∂φ̇∗ = φ̇. It is a matter of convention, and makes no

difference if applied consistently.
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• The operator a† creates a particle with charge +1.
• The operator b has negative energy, it should remove a particle. The operator

carries the same charge as a†, hence the corresponding particle should have
charge −1.

Two types of particles: particle and anti-particle. Opposite charges, but equal
mass and positive energies. Conclusion:

• a† creates a particle,
• b annihilates an anti-particle,
• b† creates an anti-particle,
• a annihilates a particle,
• vacuum annihilated by a’s and b’s.

(3.38)

3.4 Correlators

Have quantised field. States have an adjustable number of indistinguishable
particle with definite momentum. Now what? Consider particle propagation in
space and time.

Schrödinger Picture. Steps:

• create a particle at xµ = (t, ~x),
• let the state evolve for some time s− t,
• measure the particle at yµ = (s, ~y).

Could use φ(~x) or π(~x) to create particle from vacuum.9 Use φ because π = φ̇ can
be obtained from time derivative.

In Schrödinger picture the states evolve in time

i
d

dt
|Ψ, t〉 = H |Ψ, t〉 (3.39)

9The operators also annihilate particles, but not from the vacuum.
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We solve this as10

|Ψ, s〉 = exp
(
−iH(s− t)

)
|Ψ, t〉 (3.40)

Altogether the correlator reads

∆+(y, x) = 〈0|φ(~y) exp
(
−i(s− t)H

)
φ(~x)|0〉.

=

∫
dd~p

(2π)d 2e(~p)
exp
(
−ip·(y − x)

)
. (3.41)

Space and time take different roles. Nevertheless, final answer is perfectly
relativistic.

Heisenberg Picture. Heisenberg picture makes relativistic properties more
manifest. Translate time-dependence of state to time-dependence of operators

FH(t) := exp
(
+iH(t− t0)

)
FS(t) exp

(
−iH(t− t0)

)
, (3.42)

where t0 is the reference time slice on which quantum states are defined, say
t0 = 0. States are therefore time-independent in Heisenberg picture

FS(t)|Ψ, t〉 = FS(t) exp
(
−iH(t− t0)

)
|Ψ, t0〉

= exp
(
−iH(t− t0)

)
FH(t)|Ψ, t0〉. (3.43)

Field φ in Heisenberg picture

φ(x) = φ(~x, t) = exp
(
+iHt

)
φ(~x) exp

(
−iHt

)
=

∫
dd~p

(2π)d 2e(~p)

(
e−ip·xa(~p) + e+ip·xa†(~p)

)
(3.44)

• has complete spacetime dependence,
• is manifestly relativistic,
• no need to consider π = φ̇,
• obeys Klein–Gordon equation (∂2 −m2)∆+ = 0,
• same form as solution of Euler–Lagrange equations.

Correlator from Heisenberg picture (vacuum always the same)

∆+(y, x) = 〈0|φ(y)φ(x)|0〉. (3.45)

Same result, but more immediate and relativistic derivation.

Correlator. Let us discuss the correlation function

∆+(y, x) =

∫
dd~p

(2π)d 2e(~p)
exp
(
−ip·(y − x)

)
. (3.46)

10H is time-independent, hence time-translation is governed simply by exp(−iH∆t). Later we
shall encounter a more difficult situation.
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We know it in momentum space

∆+(y, x) =

∫
dd+1p

(2π)d+1
∆+(p) exp

(
−ip·(y − x)

)
.

∆+(p) = 2πδ(p2 +m2)θ(p0) (3.47)

How about position space?

• Due to translation symmetry: ∆+(y − x) = ∆+(y, x).
• Due to Lorentz rotations ∆+(x) = md−1F (m2x2).
• Distinguish three regions: future, past, elsewhere.

Klein–Gordon equation for F becomes

4rF ′′(r) + 2(d+ 1)F ′(r)− F (r) = 0 (3.48)

This is DG for Bessel functions Jα(z).11 Two solutions:

F±(r) = r−(d−1)/4J±(d−1)/2(i
√
r). (3.49)

First, consider future with x = (t, 0) where t = ±
√
−x2.12 Substitute in above

momentum space expression

∆+(x) =

∫
dd~p

(2π)d 2e(~p)
exp
(
−ite(~p)

)
.

=
Vol(Sd−1)

2(2π)d

∫ ∞
0

dp pd−1√
p2 +m2

exp
(
−it
√
p2 +m2

)
.

=
Vol(Sd−1)

2(2π)d

∫ ∞
m

de(e2 −m2)(d−2)/2 exp(−ite)

∼ e−imt for t→ ±∞. (3.50)

Oscillation with positive frequency m. Same for past. Fixes linear combination of
F± (Hankel Hα) 13

∆+(y − x) ∼ m(d−1)/2

(y − x)(d−1)/2
H(d−1)/2

(
m
√
−(y − x)2

)
. (3.51)

For space-like separation

∆+(x) ∼ e−mr for r =
√
x2 →∞. (3.52)

Non-zero, but exponentially decaying (range m). Fixes linear combination of F±
(modified Bessel Kα)

∆+(y − x) ∼ m(d−1)/2

(y − x)(d−1)/2
K(d−1)/2

(
m
√

(y − x)2
)
. (3.53)

11Bessel functions are well-known solutions for spherical waves.
12Can go to such a frame with x = (t, 0).
13The asymptotic behaviour e−imt determines which of the two Hankel functions H(1) and H(2)

applies to past and future.
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Same as in relativistic QM. Causality?

Before we discuss causality, let us summarise in this figure:

(3.54)

Note that there are also delta-function contributions for light-like separation.

Unequal-Time Commutator. Okay to violate causality as long as not
measured.

Correct question: Can one measurement at x influence the other at y? Consider
commutator

∆(y − x) := [φ(y), φ(x)]. (3.55)

We can relate to above correlators by inserting between vacua

∆(y − x) = 〈0|[φ(y), φ(x)]|0〉 = ∆+(y − x)−∆+(x− y). (3.56)

Observation:

• ∆+ is symmetric for space-like separations,
• φ(x) and φ(y) commute for space-like separations,
• follows also from invariance and equal-time commutator,
• causality preserved.

Note: two contributions cancel for space-like separations:

• Particle created at x and annihilated at y cancels against
• particle created at y and annihilated at x.

However, commutator non-trivial for time-like separations

∆(y − x) ∼ m(d−1)/2

(y − x)(d−1)/2
J(d−1)/2

(
m
√
−(y − x)2

)
. (3.57)

Time-like separated measurements can influence each other.

Finally we can recover equal-time commutators. For two fields φ the commutator
follows from symmetry of the integral

∆(0, ~y − ~x) =

∫
dd~p

(2π)d 2e(~p)

(
e−i~p·(~y−~x) − ei~p·(~y−~x)

)
= 0. (3.58)
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The commutator between a field φ and its conjugate π yields

∂

∂x0
∆(0, ~y − ~x) =

i

2

∫
dd~p

(2π)d
(
e−i~p·(~y−~x) + ei~p·(~y−~x)

)
= iδd(~x− ~y) (3.59)

in agreement with the fundamental commutator [φ(~y), π(~x)].

3.5 Sources

We have a free field, we have discussed correlators of two fields, but there is not
much else we can do besides adding interactions (later).

As a first step towards interactions, let us discuss driving the field by an external
source ρ(x)

− ∂2φ(x) +m2φ(x) = ρ(x). (3.60)

The source is non-zero only for some finite interval of time.

Question: Given an initial field φi(x) obeying the homogeneous Klein–Gordon
equation, how to determine the solution φ(x) of inhomogeneous Klein–Gordon
equation such that φ(x) = φi(x) for all t < t0 before activation of the source at t0?
In particular, what is the final field φf(x) which must also obey the homogeneous
Klein–Gordon equation.

(3.61)

Due to linearity we make the ansatz14

φ(x) = φi(x) +∆φ(x), ∆φ(x) =

∫
dd+1y GR(x− y) ρ(y) (3.62)

where GR is the retarded propagator or Green(’s) function

− ∂2GR(x) +m2GR(x) = δd+1(x), GR(x) = 0 for x0 < 0. (3.63)

The first equation is conveniently solved in momentum space

G(x) =

∫
dd+1p

(2π)d+1
e−ip·xG(p) (3.64)

with Klein–Gordon equation and solution15

p2G(p) +m2GR(p) = 1, G(p) =
1

p2 +m2
. (3.65)

14Admittedly, this is a perfectly classical problem already encountered in electrodynamics.
15As such, this solution is in fact slightly ill-defined, second condition resolves the ambiguities

as we shall see.
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Let us see how to incorporate the second relation. Write as

G(x) =

∫
dd~p

(2π)d
e−i~p·~x

∫
de

2π
e−iet

−1

e2 − e(~p)2

=

∫
dd~p

(2π)d
e−i~p·~x

∫
de

2π

−1

2e(~p)

(
e−iet

e− e(~p)
− e−iet

e+ e(~p)

)
. (3.66)

Solve Fourier integrals by residue theorem in complex plane. The integral over e
runs from −∞ to +∞; close contour! This is done by a semi-circle in the complex
plane with very large radius. Contribution must vanish, consider exponent:

exp(−iet) = exp(−itRe e) exp(t Im e). (3.67)

Only second term suppresses contribution:

• For t > 0 we need Im e < 0: Close contour in lower half.
• For t < 0 we need Im e > 0: Close contour in upper half.

(3.68)
We have two poles at e = ±e(~p) on the real axis = contour. Need to decide how
they contribute to residues.

For retarded propagator, we want GR(x) = 0 for t < 0. Achieved by shifting poles
slightly into lower half plane16

GR(p) =
1

p2 +m2 − ip0ε
. (3.69)

(3.70)

No poles in upper half plane, hence GR(x) for t < 0. For t > 0, however, both

16Alternatively, deform contour to close above points.
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poles contribute a residue, we obtain

GR(x) = iθ(t)

∫
dd~p

(2π)d 2e(~p)

(
e−ip·x − e+ip·x

)
= iθ(t)

(
∆+(x)−∆+(−x)

)
= iθ(t)∆(x). (3.71)

Nice: relation between correlation functions and propagators. Yields position
space form for propagator.

Confirm that it satisfies defining relation:17

(−∂2 +m2)GR(x) = iθ(t) (−∂2 +m2)∆(x) +
∂

∂t

(
iδ(t)∆(x)

)
+ iδ(t) ∆̇(x) = δd+1(x). (3.72)

• First term vanishes because ∆ is on shell.
• Second term vanishes because [φ(~x), φ(~y)] = 0.
• Third term uses [φ(~x), φ(~y)] = iδd(~x− ~y).

We can now determine the contribution to φ from the source. Let us focus on the
future after the source is switched off18

∆φ(x) = i

∫
dd+1y ∆(x− y) ρ(y). (3.73)

Transform this to momentum space with

ρ(x) =

∫
dd+1p

(2π)d+1
e−ip·x ρ(p), ρ(p)∗ = ρ(−p) (3.74)

yields

∆φ(x) =

∫
dd~p

(2π)d 2e(~p)

(
ie−ip·x ρ(p)− ie+ip·x ρ∗(p)

)
. (3.75)

As we know the homogeneous Klein–Gordon equation is solved by

φi(x) =

∫
dd~p

(2π)d 2e(~p)

(
a(~p)e−ip·x + a†(~p)eip·x

)
. (3.76)

Let this represent the solution in the distant past. Then the solution φf in the
distant future is obtained by replacing

a(~p) 7→ a(~p) + iρ(e(~p), ~p). (3.77)

We notice that only the Fourier modes of the source ρ on the mass shell can
actually drive the field φ.

We can now ask how much energy, momentum or particle number the source ρ
transfers to the field, e.g.

∆E = 〈0|H(t > t1)|0〉 − 〈0|H(t < t0)|0〉. (3.78)

17Distribute the derivatives in a suitable way between θ and ∆.
18Can therefore set θ(y0 − x0) = 1.
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The contributions from the quantum modes a, a† drop out. What remains is
manifestly positive for E = P0 and N 19

∆Pµ =

∫
dd~p

(2π)d 2e(~p)
pµ(~p) |ρ(~p)|2,

∆N =

∫
dd~p

(2π)d 2e(~p)
|ρ(~p)|2. (3.79)

19∆N is not manifestly integer for an external field. However, if ρ is quantum, ρ†(~p)ρ(~p) should
again lead to an integer ∆N .
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