1. **Regge behaviour and hard scattering limit** (intermediate – hard)

We want to have a look at the features of the Veneziano amplitude

\[A_4 \sim g_s \delta^{26} \left(\sum_i k_i \right) \left(I(s,t) + I(t,u) + I(u,s) \right) \]

where

\[I(s,t) = \frac{\Gamma(-1 - s\kappa^2)\Gamma(-1 - t\kappa^2)}{\Gamma(-2 - s\kappa^2 - t\kappa^2)} \]

obtained on the last problem sheet by taking two interesting limits.

a) The first limit we want to take is \(s \to \infty \) with \(t \) fixed. This is the so called **Regge limit**. Why does this correspond to high energy and small angle scattering? Show that in this limit \(I(s,t) \) reduces to

\[I(s,t) \sim s^{1+\kappa^2/2} \Gamma(-1 - \kappa^2/2) \]

Hint: Use Stirling’s approximation of the \(\Gamma \) function \(\Gamma(1 + x) \approx x^x e^{-x} \sqrt{2\pi x} \).

b) The second limit is the hard scattering limit \(s \to \infty \) with \(t/s \) fixed. Argue that this corresponds to high energy and fixed angle scattering. Show that the amplitude reduces to

\[A_4 \sim \exp(-s \log(\kappa^2 s) - t \log(\kappa^2 t) - u \log(\kappa^2 u)) \]

Hint: It might be easier to take the integral expression of the amplitude and attempt a saddle point approximation, but the limit can also be taken straightforwardly.
2. **Low-energy effective action** (easy – intermediate)

In the string frame the low-energy effective action is given by

\[
S = \frac{1}{2\kappa^2} \int d^{26} X \sqrt{-\det G(X)} \ e^{-2\phi} \left(R - \frac{1}{12} H_{\mu\nu\lambda} H^{\mu\nu\lambda} + 4 \partial_{\mu} \Phi \partial^{\mu} \Phi \right).
\]

Here \(G_{\mu\nu} \) is the metric, \(R \) the associated Ricci scalar, \(H_{\mu\nu\lambda} = 3 \partial_{[\mu} B_{\nu\lambda]} \) is the Kalb-Ramond field strength and \(\Phi \) is a scalar, the dilaton field.

a) Show that the equations of motion of these fields are equivalent to the vanishing of the \(\beta \) functions

\[
\beta_{\mu\nu}(G) = \kappa^2 R_{\mu\nu} + 2\kappa^2 \nabla_{\mu} \nabla_{\nu} \Phi - \frac{\kappa^2}{4} H_{\mu\lambda\sigma} H^{\nu\lambda\sigma},
\]

\[
\beta_{\mu\nu}(B) = -\frac{\kappa^2}{2} \nabla^{\lambda} H_{\lambda\mu\nu} + \kappa^2 \nabla^{\lambda} \Phi H_{\lambda\mu\nu},
\]

\[
\beta(\Phi) = -\frac{\kappa^2}{2} \nabla^{2} \Phi + \kappa^2 \nabla_{\mu} \phi \nabla^{\mu} \Phi - \frac{\kappa^2}{24} H_{\mu\nu\lambda} H^{\mu\nu\lambda}.
\]

b) The kinetic energy term of the dilaton in the action seems to have the wrong sign. Explain why this is not so.