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Exercise 1 [Lagrange density of electrodynamics ]:
(i) Consider the Lagrange density

L0[Aµ] = −1

4
FµνF

µν − jµAµ , where Fµν = ∂µAν − ∂νAµ ,

and jµ is some external source field. Show that the Euler-Lagrange equations are the
inhomogenous Maxwell equations. (The homogeneous Maxwell equations ∂λFµν+cykl.=0
are automatically satisfied provided that the fields are expressed in terms of the potentials
Aµ. The usual electromagnetic fields are defined by Ei = −F 0i and εijkBk = −F ij.)

(ii) Construct the energy-momentum tensor for this theory using the general formula

T µν =
∂L

∂(∂µφi)
∂νφi − gµνL , (1)

where φi labels the different fields, and the sum over i is implicit. Assuming that there
are no external charges, jµ = 0, show that the resulting tensor is indeed conserved but
not symmetric. In order to make it symmetric consider

T̂ µν = T µν + ∂λK
λµν , (2)

where Kλµν is anti-symmetric in the first two indices. Show that T̂ µν is conserved provided
that T µν is conserved. By taking

Kλµν = F µλAν (3)

show that the modified stress energy tensor T̂ µν is symmetric, and that it leads to the
standard formulae for the electromagnetic energy and momentum densities

E =
1

2
(E2 + B2) , S = E ∧B . (4)

Exercise 2 [Propagators ]:
(i) The dynamical equations of motion of many field theories are of the form(

ut+m2
)
φ(x) = j(x) , (5)

where j may be a function of the field φ. In many situations it is useful to find standard
solutions that satisfy (5) with j replaced by a delta function,(

utx +m2
)
G(x, y) = δ(4)(x− y) , (6)

and that obey suitable boundary conditions; the corresponding solutions are usually re-
ferred to as Green’s functions. Assuming that the boundary conditions are translation
invariant, G(x, y) ≡ G(x− y), show that the solution of (6) is given by

G(x− y) =
1

(2π)4

∫
d4p e−ip·(x−y) G̃(p) , (7)



provided that G̃(p) satisfies
(−p2 +m2) G̃(p) = 1 . (8)

(ii) In order to actually solve for the Green’s function G(x, y) we have to explain how
the singularity on the mass shell p2 = m2 is treated in the integral. The standard way to
proceed is to deform the integration contour for p0 away from the real axis. Two important
examples are

G̃ret(p) =
−1

(p0 + iε)2 − p2 −m2
, G̃adv(p) =

−1

(p0 − iε)2 − p2 −m2
, (9)

where ε > 0 is taken to zero once the integral in (7) has been performed. Denoting the
corresponding Green’s functions by Gret(x) and Gadv(x), respectively, show that we have
Gret(x) = 0 for x0 < 0, and Gadv(x) = 0 for x0 > 0.

(iii) Show that (up to terms of order ε2), Gret(x) and Gadv(x) are Lorentz invariant, and
hence deduce that Gret(x) = 0 for all x outside the forward light-cone, and Gadv(x) = 0
for all x outside the backward light-cone.

(iv) Evaluate Gret explicitly, and show that it has the form

Gret(x) = i
θ(x0)

(2π)3

∫
d3p

2ωp

{
e−iωpx0+ip·x − eiωpx0+ip·x

}
, (10)

where ωp =
√

p2 +m2. This answer has a direct physical interpretation: it is the difference
of two plane wave solutions of the Klein-Gordon equation; the first has positive frequency
and corresponds to the propagation of particles, while the second has negative frequency
and corresponds to the propagation of anti-particles.

(v) In quantum field theory another propagator plays an important role, the so-called
Feynman propagator

GF (x) = − 1

(2π)4

∫
d4p e−ip·x

1

p2 −m2 + iε
. (11)

Show that GF is symmetric, GF (−x) = GF (x) for ε → 0, and do the p0 integration to
deduce that

GF (x) =
i

(2π)3

∫
d3p

2ωp

{
θ(x0)e−iωpx0+ip·x + θ(−x0)eiωpx0+ip·x

}
. (12)

Does this propagator vanish outside the forward or backward lightcone?


