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Exercise 1 [Lagrange density of electrodynamics |:
(i) Consider the Lagrange density

1
LolA,] = _ZF‘“’FW —jrA, where F),, =0,A, —0,A, ,

and j* is some external source field. Show that the Euler-Lagrange equations are the
inhomogenous Maxwell equations. (The homogeneous Maxwell equations 0y F),,+cykl.=0

are automatically satisfied provided that the fields are expressed in terms of the potentials
A,,. The usual electromagnetic fields are defined by F = —F% and €9 B" = —F%)

(ii) Construct the energy-momentum tensor for this theory using the general formula
w oL

a(au(bi)

where ¢; labels the different fields, and the sum over ¢ is implicit. Assuming that there

are no external charges, j# = 0, show that the resulting tensor is indeed conserved but
not symmetric. In order to make it symmetric consider

: (2)

where K™ is anti-symmetric in the first two indices. Show that 7" is conserved provided
that T is conserved. By taking

&6 — gL (1)

T = T | g, K

K)\;w — FM)\AV (3)
show that the modified stress energy tensor T is symmetric, and that it leads to the
standard formulae for the electromagnetic energy and momentum densities

1

5:?W+B%, S=EAB. (4)

Exercise 2 [Propagators |:
(i) The dynamical equations of motion of many field theories are of the form

@+ m?) é(x) = (), (5)

where j may be a function of the field ¢. In many situations it is useful to find standard
solutions that satisfy (5) with j replaced by a delta function,

(DI + m2) G(.I, y) = (5(4)(l’ - y) ) (6)

and that obey suitable boundary conditions; the corresponding solutions are usually re-
ferred to as Green’s functions. Assuming that the boundary conditions are translation
invariant, G(x,y) = G(x — y), show that the solution of (6) is given by

(2;)4 /d4p6_ip($_y) G(p) , (7)

Gx—y) =



provided that G(p) satisfies .
(=p* +m*) G(p) = 1. (8)

(ii) In order to actually solve for the Green’s function G(z,y) we have to explain how
the singularity on the mass shell p> = m? is treated in the integral. The standard way to
proceed is to deform the integration contour for p® away from the real axis. Two important
examples are

-1
po +i€)*> —p? —m?’

~1
po — i€)> —p? —m?’

éret(p> = ( éadv(]?) - ( (9)

where € > 0 is taken to zero once the integral in (7) has been performed. Denoting the
corresponding Green’s functions by Gy () and Gaqy (), respectively, show that we have
Gret(r) = 0 for 2° < 0, and Gq,(x) = 0 for 2° > 0.

(iii) Show that (up to terms of order €?), Gye(7) and G,qy(7) are Lorentz invariant, and
hence deduce that Gye(z) = 0 for all z outside the forward light-cone, and Gaqy(z) = 0
for all = outside the backward light-cone.

(iv) Evaluate G, explicitly, and show that it has the form

,9(]30) d3p w01 iwo x0+i
Ghet(x) = i / P f et qtiiexd (10)
‘ 2r)3 | 2w,

where w, = \/p? + m?2. This answer has a direct physical interpretation: it is the difference
of two plane wave solutions of the Klein-Gordon equation; the first has positive frequency
and corresponds to the propagation of particles, while the second has negative frequency
and corresponds to the propagation of anti-particles.

(v) In quantum field theory another propagator plays an important role, the so-called
Feynman propagator

1 X 1
Grla) =~ /d4p6_”’“—. (11)

p? —m? + e

Show that G is symmetric, Gp(—x) = Gp(x) for ¢ — 0, and do the p° integration to
deduce that

_ Z d3p 0\ —iw 10+ip~x 0\ iw x0+ip~x
Grle) = oz [ 5 {01)e Fo(-atet el (1

Does this propagator vanish outside the forward or backward lightcone?



