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Exercise 1 [Discrete Symmetries |:
In this question we shall construct the discrete symmetry transformations acting on the
Dirac field, whose mode expansion is of the form

W(r) =) /dl;: (b (k)u @ (k)™= 4 df (k)o@ (k)e*=) )

We shall work in the chiral basis for the v matrices, for which the normalised spinors can
be written as

)= (VETE)  wd )= (L) )

Here € is a two-component spinor normalised to unity (compare Sheet 7, Ex 3).

(i) The parity transformation P acts on the position variables z as x = (2°,x) — T =
(2%, —x). We want to define an action of P on the Fock space so that
Pip(t,x) P~ =U(P)y(t, —x) . (3)

Show that this identity is satisfied with U(P) =~ if we define the action of P on
the modes as

Pbo(k) P~ =bo(k),  Pdi(k) P~ =—di(k), (4)
where k = (k°, —k).
Hint: Note that we have p-x = Z - p and show that

u(p) =7 u(p),  v*(p)=—1"v(p) . (5)

(ii) Similarly, check that the time reversal transformation T, mapping z = (2°,x)

T = (—2Y x), acts as

Tyt x) T =" (%) , (6)
provided that it acts on the modes as
Tho(k)T™" =eapbp(k),  Tdi (k)T =eapdi(k), (7)
where €15 = —€9; = 1 and €;; = €95 = 0.

Hint: Note that T is anti-unitary and reverses the spins, &, — &, = €,3&3. Using
the identities o*0? = —c?0 and &, = —io?E’, prove that

(W’ () = =7"u(p), eV’ (D) = =" (p) (8)



Exercise 2 [LSZ reduction formula for fermions |:
Prove the LSZ reduction formula for fermions

out(- - d(q) - b(gs) | b () - dT (KD - din

= disconnected terms
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where the in-coming particles and anti-particles have momenta labelled by (kq,...) and
(k1,...), respectively, while (g1, ...) and (¢}, .. .) are the momenta of the out-going particles
and anti-particles, respectively. The corresponding space-time variables are denoted by
x, 2,y und 3/, respectively, while n and n’ denote the total number of particles and anti-
particles, respectively.

Hint: Consider, as in the lecture, the recursion step in which bl (k;) and by (q1) (or di (k})
and doyt(q})) are removed. The factor Z, is defined via

02 o, T 2

and we use the mode expansions
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as well as analogous identities for which the roles of in and out are interchanged. Note
that these identities hold for arbitrary times ¢, and use

(lim—lim)/dxF(xt lim / dt—/d3xet

t—o0 t——o0 ty — o0

t; — —o0

to express the space integrals in term of space-time integrals.



