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Exercise 1 [Linear sigma model |:

The interactions of pions at low energy can be described by a phenomenological model,
called the linear sigma model. Essentially, this model consists of N real scalar fields
coupled by a ¢* interaction that is symmetric under rotations of the N fields. More
specifically, let ®‘(z), i =1,..., N be a set of N fields, governed by the Hamiltonian

H= /d% G(H")2 + %(Vcbi)? + V(<1>2)) , (1)
where Y. (9")? = $ - B, and

V(%) = —m?(D- D) +
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is a function symmetric under rotations of ®. For (classical) field configurations of & (z)
that are constant in space and time, this term gives the only contribution to H; hence, V'
is the field potential energy.

(i) Analyse the linear sigma model for m? > 0 by noticing that, for A = 0, the Hamiltonian
given above is exactly N copies of the Klein-Gordon Hamiltonian. We can then calculate
scattering amplitudes in terms of a perturbation series in the parameter A\. Show that the

propagator is
—

' (2)®’ (y) = 6YDp(z —y) (3)

where Dy is the standard Klein-Gordon propagator for mass m, and that there is one
type of vertex given by
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(This is to say, the vertex between two ®’s and two ®?’s has the value (—2i)\); that
between four ®!’s has the value (—6i)).)

Compute, to leading order in A, the differential cross section g—g in the center-of-mass

frame, for the scattering processes
P12 — PlP? P! — PP and olp! — o't (4)

as functions of the center-of-mass energy.



Hint: The formula for the differential cross section in the case where all particles have

the same mass is
do _ M (5)
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where CM indicates the center-of-mass frame. The invariant matrix element M is defined
by

(P, b, - [iT| p1, po) = (2m)*6™ (p1 +p2 — pr> iM(prp2 = py) (6)

where T is the part of the S-matrix due interactions, i.e.

S=1+il=T (e*ifd“xHint(l‘)) . (7)

(i) Now consider the case m? < 0, introducing the parameter m? = —p?. In this case V'

has a local maximum, rather than a minimum, at ®° = 0. Since V is a potential energy,
this implies that the ground state of the theory is not near ® = 0 but rather is obtained
by shifting ®* towards the minimum of V. By rotational invariance, we can consider this
shift to be in the N*® direction. Thus we make the ansatz

P(r)=rm'(x), i=1,....,N—1
N (z) =v+o(2), (8)

where v is a constant chosen so as to minimise V. (The notation 7 is meant to suggest
a relation to the pion field, and should not be confused with the canonical momentum.)
Show that, in these new coordinates (and substituting for v its expression in terms of A
and p), we have a theory of a massive o field and N — 1 massless pion fields, interacting
through cubic and quartic potential energy terms which all become small as A\ — 0.
Construct the Feynman rules by assigning values to the propagators and vertices



(iii) Compute the scattering amplitude for the process

' (p1)m (pa) — 7" (ps)7 (pa) (9)
to leading order in A. There are now four Feynman diagrams that contribute
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Show that, at threshold (p; = 0), these diagrams sum to zero.

Hint: Tt may be easiest to first consider the specific process wlm! — w272, for which only

the first and fourth diagrams are nonzero, before tackling the general case.

Show that, in the special case N = 2 (1 species of pion), the terms at O(p?) also cancel.

(iv) Add to V' a symmetry-breaking term,
AV = —a V| (10)

where a is a (small) constant. (In QCD, a term of this form is produced if the v and d
quarks have the same non-vanishing mass.) Find the new value of v that minimises V/,
and work out the content of the theory about that point. Show that the pion acquires
a mass with m2 ~ a, and show that the pion scattering amplitude at threshold is now
non-vanishing and also proportional to a.



