
Theorie der Wärme
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Aufgabe 8.1 Ice Skating

The small friction of skates on ice is usually explained by a small film of water that
forms between the blade and the ice’s surface. In this exercise we would like to investigate
whether the formation of this film can be explained by the pressure exerted by the skater
on the ice. From the phase diagram of water, we know that applying pressure decreases
the melting temperature, thus allowing the ice to melt below 0 ◦C.

1. Assuming a skater of 80 kg with blades of 100 mm2, what is the resulting pressure?

2. By how many K is the melting temperature decreased by this pressure? From the
lecture (script: eq. 7.40) we know that:

dp

dT
= −138 atm/K ≈ −138 · 105 N

m2K

3. Skating ice typically has a temperature of Tice ≈ −5 ◦C. Can this effect of lowering
the melting point be used to (solely) explain the melting of the ice?

Aufgabe 8.2 Osmotic pressure

Consider the following experimental arrangement for the measurement of the osmotic
pressure ∆p at constant temperature T :

Solution Solvent

p0p0 + ∆p

h
so

lu
ti

o
n

h
so

lv
e
n
t

n(1)
w + n(1)

s n(2)
w

Two sections are separated by a semipermeable wall, through which only the solvent (i.e.

water) can pass. In addition section (1) contains n
(1)
s moles of solute (i.e. sugar). This

causes a difference in the chemical potential of the two sides, which in turn would cause
the solvent to flow from (2) to (1). In this exercise we want to calculate the additional
pressure ∆p (osmotic pressure) required to prevent this flow.

1. Express the Gibb energy for both sides as a function of pressure p, temperature
T and moles of solvent nw and solute ns in the respective section. Use gi(p, T ) to
represent the Gibbs energy per mole of each substance i (script: eq. 8.10).

2. Use the equilibrium requirement for the chemical potentials to relate the Gibbs
potentials of the two sides. You may assume that n

(1)
s � n

(1)
w . From the resulting

equation, you can find the osmotic pressure ∆p (script: chapter 8.2).

3. What would happen if the additional pressure ∆p was removed?



Aufgabe 8.3 Nucleation *

Consider a d-dimensional elastic membrane (elasticity C) in d + 1 dimensions, which
can be deformed along the d + 1th “transversal” direction (see figure). This transversal
deformation can be described with u(~x), where ~x ∈ Rd. The deformation energy is∝ (∇u)2

and the potential for the deformation is made up of a periodic part and of a coupling to
a constant external force F :

V (u) = V0 (1− cos(k0u))− Fu .

Then the free energy for the membrane is given by

H[u] =

∫
ddx

[
C

2
(∇u)2 + V (u)

]
1. Draw the potential for different values of the external force F? Which possibilities

exist for the mobility of the membrane along the transverse direction? Define and
determine a critical external force Fc.

2. Let’s consider now F � Fc and d ≥ 2. Calculate the approximate energy U(R)
of a nucleus with radius R. This is a local deformation of the membrane, which
disappears outside R and has the constant value u = u0 = 2π

k0
inside the hypersphere

of radius R. Make the assumption that the elastic and potential energy are of the
same size for F = 0 and the deformation increases from 0 to u0 in a small area of
width w. Determine the critical radius R, above which the nucleus begins to grow.
Why does U(Rc) correspond to an activation energy, and how does it vary with F?

3. With V0 = 0 the membrane moves according to v = F/η, with a speed v and a
friction coefficient η. Determine for our case with periodic potential and temperature
T > 0, the drift velocity v as a function of the force F ; consider, in particular, the
cases F → 0 and F � Fc.

4. In one dimension (elastic line) ukink(x) = 4
k0

arctan(ex/w) with a constant w is a
minimum of the above energy function (free energy equation) for F = 0 which can
represent a flank of the nucleus. The energy for a nucleus with radius R and with
such two flanks is then

U(R) ≈ 2Ekink(1− e−R/w)− Fu0R .

Calculate the critical radius Rc and the activation energy. What is different if F → 0
and what are the consequences for the speed of the line?



More background on the task in: G. Blatter et al., Rev. Mod. Phys. 66 1125, (1994).


