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Exercise 9.1 Minimum uncertainty wavefunction

Assuming (z) = (p) = 0, the uncertainties come

(¥, p?9) = [Ipyl],
=V (@, 2%Y) = ||zy]].

The Heisenberg uncertainty relation comes from

(Y, [, plY)| = (¥, xpp) — (¥, pr1))]
= [(z¢, py) — (py, 29)|
= [(z, py) — (22, p)”|

= [2iS(zy, py)|
< 2[(h, zpap)|

h
< 2llaplllpvll = 5 < dudp

where & stands for the imaginary part. To calculate the wave function that minimises dxdp, we need

these two inequalities to become equalities.
For the first one,

|2iS (21, pY)| = 2|(¢, zpy) = R(zy, pyp) =0
In the second case, the Schwarz inequality becomes an equality if and only if the terms zv and piy are
linearly dependent, ie pip) = Az2.
From the first condition we get

R(zy, pY) = (29, p¥) + (z¢, pp)*
= (z,p¥) + (P, 2) &
& 0= (¢, (zp + pa)P)
= May, x¢) + X (xp, x9p) =
=0=A+X"
=R(),
ie, A = i« for some real a. We then have

py(x) = ioxp(z) <
& —ih%zﬁ(m) = jaxp(z) &

which results in the Gaussian wave function

We set a > 0 so that the integral of ¥ *v is finite.

Exercise 9.2 Symmetry and projective representations — time translations
Time translations are represented by unitary operators U (t).
a) Using the associativity of the matrix product,
U(x)Uy)] Uz
< w(z,y)U(x + y)U(z
e wzy)w(+y,2)U(x+y+2
= w(z,y)w(z +y,2

=U(x) [UWU(?)] =
fv)w(y 2)U(y + 2)
w(z,y + 2)U(

54
r+y+z)=



Setting y = 0 we get

b) We want w(t1,t2) = 1.

w(ty, ta

w(ty,ta)d(t1 + t2

)
)

Let’s now assume that ¢(t) satisfies the condition given and test ¢(t)e’?,

D(t1)p(tg)el (1 Ht2) B(t1)o(t2)
(f)(h + tQ)eia(t1+t2) ¢(t1 + tz)

(b(tl)eiatl ¢(t2)eiat2
¢(tl +t2)6i04(t1+t2)

w(tl, tz) =

’lU(tl,tQ) = w(tl,tz) = ].

d) w differentiable, ¢'(0) =0, ¢(0) = 1.

_ 0 ¢(x+y)
y=0 oy ¢($)¢(y) y=0
1 9 ¢(x+y)

T @y o) |y
1 [Zotw+w)] ew) - [Zow)] o +y)

0
@’U}(I, y)

e) We will see that the system

y=0

$(0) = 1.

always has a solution when w verifies the cocycle condition. We start by applying a derivative in
order to z to both sides of that equation, when z = 0,

{ (%w(:v,y)‘ =2 Ing¢(x),



w(z,y)w(r+y,z) = wy,z)w(r,y+2)

we gty = w2y + )

& z2=0 0z z=0
9 B 00 00
w(x,y) 5 o w(z +y, 2 )Z: = w(y, )afzw(x,yw%) Z:0+ w(z,y + )a w(y, z )Z:O
w(z, >8 gz ty) = 1§yw<m,y>+w<x,y>§—yln¢<y>
W) [ molaty) — gL ol)| = Gul)
El - B 52, w(@,y)
9 dlx+y) _ Q nwle
W ey oy vy
0. d+y 0
o " o@ey) | oy ey

which recovers the result from d) at y = 0.

Exercise 9.3 Space translations in the plane

a) We have A = iaP; and B = ibP,, which gives us the commutator
[A, B] = [taPy,ibPs] = (ia)(ib)[ Py, P2] = (ia)(ib)(ial) = —icabl.

Since the commutator between these two operators is given by a constant times the identity,
all commutators of higher order in the Baker-Campbell-Hausdorff formula vanish. For instance,
[A[A, B]] = —iaab[A, 1] = 0. We have therefore

1 1
ete” = exp(A+ B+ [A Bl + 1514, [A, B]] - 12[ A B +...)
. ) 1
iaP; ibPs _ . . “(_s 00— —
e e exp(iaPy + ibPy + 2( iaabl) + 120 120 +0)

. —iaab
el(apl +bP2)eT .

b) In this more general case we have A = i(aP) + bP,), B = i(a’P; + b'P,), and the commutator is
given by
[A,B] [(aP1+bP2) (aP1+bP2)]
= —aa [Pl, Pﬂ — ab [Pl,PQ] — ba'[Pg, Pl] — bbl[PQ, PQ]
=ia(a’b— ab’)1.

Applying two translations consecutively we obtain

T(’I_")T(F,) _ eiF‘ﬁeiF"P‘
N

—iarx i

= T+ )5

where we defined ¥ x 7 = ab’ — a’b (just the z component of the vector product, with no direction
assigned).

We would like to define a gauge transformation 7' = (M ei™ P such that T(F+ 7:7) = T(F)T(r_;)
This would imply
62 O (747" )T(’F+ ) z T)T(,Ff)eze(r ( )
eie(?+77’)T( +r ) _ ez@('r) i0(7 )T( 47 )

O(r + 1) = 0(F) + 6(") — 2( X ),

71047‘><7
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but it is impossible to define a function of the sum of two vectors that takes into account the vector
product between (for instance, the sum is commutative while the vector product is anticommuta-
tive).

Exercise 9.4 Unitary and antiunitary symmetries

a unitary operator U will act on the scalar product as (U¢,U) = (¢,%). On the other hand, an
antiunitary operator A will act as (A¢, AY) = (6, ¥)* = (¥, ¢).

a) In the exercise sheet, we have T? = 1 because we were considering our new favourite framework:
dealing with bosons. I won’t use that here, so I’d cut it from the exercise sheet. I'll check with JF
this morning anyway.

The time evolution of a state of a system ruled by the Hamiltonian H is given by

w(tl) — e*i(tlfto)H/h,L/)(tO)

. When the time interval §t = ¢; — t( is very small we can write (for simplicity let’s say to = 0 and

$(0) =)
i H
W(6t) = (11 - Zh§t> b
The time reversal operator acts as
Te_iH6t¢ _ e—iH(—6t)¢7

which for small §¢ becomes

T <]1 - ifét) P = (IL - Z'f(—éto Y, V=
= —%HT@& = T%H@b, VY =

= —iHTy = TiHyp, Y

sol. 1

An useful characteristic of unitary and antiunitary operators that follows from the way they act on
the inner product is how they act complex numbers,

Uz =2U, U unitary;
Az =2z"A, A antiunitary.

Suppose that T" were unitary. In that case we would have

—iHTY = iTHY), Y <
o HTy = ~THy, V.

Consider now 1, to be an eigenstate of H of energy F,,. The correspondent time-reversed state is
Ty, which would have energy

HTwn = _THwn = _EnTwn

This would imply that the energy spectrum of a time-reversed system would be the symmetric of
that of the original system. This does not make sense physically — the energy of the states should
remain constant under time reversal. Consider for instance the case of a free particle. Its energy
spectrum ranges from 0 to 400, and negative energies make no sense here (good old emotional
argument)). If we want to say that a system presents time-reversal symmetry, then the spectrum
of H should remain constant under that transformation, which is achieved if T is antiunitary,

—iHTY = TiHp, W &
& —iHTY = —iTHp, Y <
& HTy = THY, Vi



OR sol. 2

We may also say we have HTW = iTiH and that one requirement for time symmetry is that the
expectation value of H is invariant under time reversal,

(v, Hy) = (T, HT))

(T, iTiHY)

i(Te, TiHY)

_ [ i(¢,iHv), T unitary

| (v, iHv)*, T antiunitary
— (4, Hy), T unitary
i[i(y, HY)])*, T antiunitary
— (¢, Hy), T unitary
i(—1)(H,v), T antiunitary

[ —(®¥,Hy), T unitary
| (,Hv), T antiunitary ’

so T has to be antiunitary.

b) In the exercise sheet, ¥ = (X, Y, Z) is the operator that measures the position.

The parity or space-inversion operator acts as
Py = —ZPy.

A reasonable requirement for parity is that the expectation value of & of a space-inverted state must
be symmetric to the one of the original state,

(PY,TPY) = —(v, 7¢), VY &

which implies that P is unitary.



