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Exercise 9.1 Minimum uncertainty wavefunction

Assuming 〈x〉 = 〈p〉 = 0, the uncertainties come

δp =
√

(ψ, p2ψ) = ||pψ||,

δx =
√

(ψ, x2ψ) = ||xψ||.

The Heisenberg uncertainty relation comes from

|(ψ, [x, p]ψ)| = |(ψ, xpψ)− (ψ, pxψ)|
= |(xψ, pψ)− (pψ, xψ)|
= |(xψ, pψ)− (xψ, pψ)∗|
= |2i=(xψ, pψ)|
≤ 2|(ψ, xpψ)|

≤ 2||xψ||||pψ|| ⇒ ~
2
≤ δxδp

where = stands for the imaginary part. To calculate the wave function that minimises δxδp, we need
these two inequalities to become equalities.
For the first one,

|2i=(xψ, pψ)| = 2|(ψ, xpψ)⇒ <(xψ, pψ) = 0

In the second case, the Schwarz inequality becomes an equality if and only if the terms xψ and pψ are
linearly dependent, ie pψ = λxψ.
From the first condition we get

<(xψ, pψ) = (xψ, pψ) + (xψ, pψ)∗

= (xψ, pψ) + (pψ, xψ)⇔
⇔ 0 = (ψ, (xp+ px)ψ)

= λ(xψ, xψ) + λ∗(xψ, xψ)⇒
⇒ 0 = λ+ λ∗

= <(λ),

ie, λ = iα for some real α. We then have

pψ(x) = iαxψ(x)⇔

⇔ −i~ ∂

∂x
ψ(x) = iαxψ(x)⇔

⇔ ∂

∂x
ψ(x) = −α

~
xψ(x),

which results in the Gaussian wave function

ψ = A exp
(
−αx

2

2~

)
.
We set α > 0 so that the integral of ψ∗ψ is finite.

Exercise 9.2 Symmetry and projective representations – time translations

Time translations are represented by unitary operators U(t).

a) Using the associativity of the matrix product,

[U(x)U(y)] U(z) = U(x) [U(y)U(z)]⇔
⇔ w(x, y)U(x+ y)U(z) = U(x)w(y, z)U(y + z)⇔

⇔ w(x, y)w(x+ y, z)U(x+ y + z) = w(y, z)w(x, y + z)U(x+ y + z)⇒
⇒ w(x, y)w(x+ y, z) = w(y, z)w(x, y + z)
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Setting y = 0 we get

w(x, 0)w(x, z) = w(0, z)w(x, z)⇒
⇒ w(x, 0) = w(0, z)

b) We want w̃(t1, t2) = 1.

Ũ(t1)Ũ(t2) = φ(t1)U(t1)φ(t2)U(t2)

w̃(t1, t2)Ũ(t1 + t2) = φ(t1)φ(t2)U(t1)U(t2)
w̃(t1, t2)φ(t1 + t2)U(t1 + t2) = φ(t1)φ(t2)w(t1, t2)U(t1 + t2)

w̃(t1, t2) =
φ(t1)φ(t2)
φ(t1 + t2)

w(t1, t2) = 1.

c) To show that w(t, 0) = 1⇒ φ(0) = 1 we do

w(t1, t2) =
φ(t1 + t2)
φ(t1)φ(t2)

w(t, 0) =
φ(t+ 0)
φ(t)φ(0)

1 =
1

φ(0)
.

Let’s now assume that φ(t) satisfies the condition given and test φ(t)eiαt,

φ(t1)eiαt1φ(t2)eiαt2

φ(t1 + t2)eiα(t1+t2)
w(t1, t2) =

φ(t1)φ(t2)eiα(t1+t2)

φ(t1 + t2)eiα(t1+t2)
w(t1, t2) =

φ(t1)φ(t2)
φ(t1 + t2)

w(t1, t2) = 1

d) w differentiable, φ′(0) = 0, φ(0) = 1.

∂

∂y
w(x, y)

∣∣∣∣
y=0

=
∂

∂y

φ(x+ y)
φ(x)φ(y)

∣∣∣∣
y=0

=
1

φ(x)
∂

∂y

φ(x+ y)
φ(y)

∣∣∣∣
y=0

=
1

φ(x)

[
∂
∂y φ(x+ y)

]
φ(y)−

[
∂
∂y φ(y)

]
φ(x+ y)

φ(y)2

∣∣∣∣∣∣
y=0

=
1

φ(x)

[
∂
∂xφ(x)

]
1− 0φ(x+ y)
12

=
∂
∂xφ(x)
φ(x)

=
∂

∂x
lnφ(x).

e) We will see that the system {
∂
∂yw(x, y)

∣∣∣
y=0

= ∂
∂x lnφ(x),

φ(0) = 1.

always has a solution when w verifies the cocycle condition. We start by applying a derivative in
order to z to both sides of that equation, when z = 0,
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w(x, y)w(x+ y, z) = w(y, z)w(x, y + z)

∂

∂z
w(x, y)w(x+ y, z)

∣∣∣∣
z=0

=
∂

∂z
w(y, z)w(x, y + z)

∣∣∣∣
z=0

w(x, y)
∂

∂z
w(x+ y, z)

∣∣∣∣
z=0

= w(y, 0)
∂

∂z
w(x, y + z)

∣∣∣∣
z=0

+ w(x, y + 0)
∂

∂z
w(y, z)

∣∣∣∣
z=0

w(x, y)
∂

∂y
lnφ(x+ y) = 1

∂

∂y
w(x, y) + w(x, y)

∂

∂y
lnφ(y)

w(x, y)
[
∂

∂y
lnφ(x+ y)− ∂

∂y
lnφ(y)

]
=

∂

∂y
w(x, y)

∂

∂y
[lnφ(x+ y)− lnφ(y)] =

∂
∂yw(x, y)

w(x, y)
∂

∂y
ln
φ(x+ y)
φ(y)

=
∂

∂y
lnw(x, y)

∂

∂y
ln
φ(x+ y)
φ(x)φ(y)

=
∂

∂y
lnw(x, y),

which recovers the result from d) at y = 0.

Exercise 9.3 Space translations in the plane

a) We have A = iaP1 and B = ibP2, which gives us the commutator

[A,B] = [iaP1, ibP2] = (ia)(ib)[P1, P2] = (ia)(ib)(iα1) = −iαab1.

Since the commutator between these two operators is given by a constant times the identity,
all commutators of higher order in the Baker-Campbell-Hausdorff formula vanish. For instance,
[A[A,B]] = −iαab[A,1] = 0. We have therefore

eAeB = exp(A+B +
1
2

[A,B] +
1
12

[A, [A,B]]− 1
12

[B, [A,B]] + . . . )

eiaP1eibP2 = exp(iaP1 + ibP2 +
1
2

(−iαab1) +
1
12

0− 1
12

0 + 0)

= ei(aP1+bP2)e
−iαab

2 .

b) In this more general case we have A = i(aP1 + bP2), B = i(a′P1 + b′P2), and the commutator is
given by

[A,B] = [i(aP1 + bP2), i(a′P1 + b′P2)]
= −aa′[P1, P1]− ab′[P1, P2]− ba′[P2, P1]− bb′[P2, P2]
= iα(a′b− ab′)1.

Applying two translations consecutively we obtain

T (~r)T (~r′) = ei~r·
~P ei~r

′·~P

= ei(~r+~r
′)·~P e

iα(a′b−ab′)
2

= T (~r + ~r′)e
−iα~r×~r′

2 ,

where we defined ~r × ~r′ = ab′ − a′b (just the z component of the vector product, with no direction
assigned).

We would like to define a gauge transformation T̃ = eiθ(~r)ei~r·
~P such that T̃ (~r + ~r′) = T̃ (~r)T̃ (~r′).

This would imply

eiθ(~r+~r
′)T (~r + ~r′) = eiθ(~r)T (~r)eiθ(~r

′)(~r′)

eiθ(~r+~r
′)T (~r + ~r′) = eiθ(~r)eiθ(~r

′)T (~r + ~r′)e
−iα~r×~r′

2

θ(~r + ~r′) = θ(~r) + θ(~r′)− α

2
(~r × ~r′),

3



but it is impossible to define a function of the sum of two vectors that takes into account the vector
product between (for instance, the sum is commutative while the vector product is anticommuta-
tive).

Exercise 9.4 Unitary and antiunitary symmetries

a unitary operator U will act on the scalar product as (Uφ,Uψ) = (φ, ψ). On the other hand, an
antiunitary operator A will act as (Aφ,Aψ) = (φ, ψ)∗ = (ψ, φ).

a) In the exercise sheet, we have T 2 = 1 because we were considering our new favourite framework:
dealing with bosons. I won’t use that here, so I’d cut it from the exercise sheet. I’ll check with JF
this morning anyway.

The time evolution of a state of a system ruled by the Hamiltonian H is given by

ψ(t1) = e−i(t1−t0)H/~ψ(t0)

. When the time interval δt = t1 − t0 is very small we can write (for simplicity let’s say t0 = 0 and
ψ(0) = ψ)

ψ(δt) =
(
1− iH

~
δt

)
ψ.

The time reversal operator acts as

Te−iHδtψ = e−iH(−δt)ψ,

which for small δt becomes

T

(
1− iH

~
δt

)
ψ =

(
1− iH

~
(−δt)

)
Tψ, ∀ψ ⇒

⇒ − iδt
~
HTψ = T

iδt

~
Hψ, ∀ψ ⇒

⇒ −iHTψ = TiHψ, ∀ψ

sol. 1

An useful characteristic of unitary and antiunitary operators that follows from the way they act on
the inner product is how they act complex numbers,

Uz = zU, U unitary;
Az = z∗A, A antiunitary.

Suppose that T were unitary. In that case we would have

−iHTψ = iTHψ, ∀ψ ⇔
⇔ HTψ = −THψ, ∀ψ.

Consider now ψn to be an eigenstate of H of energy En. The correspondent time-reversed state is
Tψn, which would have energy

HTψn = −THψn = −EnTψn.

This would imply that the energy spectrum of a time-reversed system would be the symmetric of
that of the original system. This does not make sense physically – the energy of the states should
remain constant under time reversal. Consider for instance the case of a free particle. Its energy
spectrum ranges from 0 to +∞, and negative energies make no sense here (good old emotional
argument)). If we want to say that a system presents time-reversal symmetry, then the spectrum
of H should remain constant under that transformation, which is achieved if T is antiunitary,

−iHTψ = TiHψ, ∀ψ ⇔
⇔ −iHTψ = −iTHψ, ∀ψ ⇔
⇔ HTψ = THψ, ∀ψ.
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OR sol. 2

We may also say we have HTψ = iT iHψ and that one requirement for time symmetry is that the
expectation value of H is invariant under time reversal,

(ψ,Hψ) = (Tψ,HTψ)
= (Tψ, iT iHψ)
= i(Tψ, T iHψ)

=
{
i(ψ, iHψ), T unitary
i(ψ, iHψ)∗, T antiunitary

=
{
−(ψ,Hψ), T unitary
i[i(ψ,Hψ)]∗, T antiunitary

=
{
−(ψ,Hψ), T unitary
i(−i)(Hψ,ψ), T antiunitary

=
{
−(ψ,Hψ), T unitary
(ψ,Hψ), T antiunitary ,

so T has to be antiunitary.

b) In the exercise sheet, ~x = (X,Y, Z) is the operator that measures the position.

The parity or space-inversion operator acts as

P~xψ = −~xPψ.

A reasonable requirement for parity is that the expectation value of ~x of a space-inverted state must
be symmetric to the one of the original state,

(Pψ, ~xPψ) = −(ψ, ~xψ),∀ψ ⇔
⇔ −(Pψ, P~xψ) = −(ψ, ~xψ),

which implies that P is unitary.
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