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Exercise 8.1 Tensor products

In this exercise we want recapitulate the concept of tensor products of Hilbert spaces H1@Ho®. . .
and tensor products of operators A® B® ... . We want to understand how to define operators
on tensor products of Hilbert spaces and why the tensor product is a reasonable mathematical
framework to describe composite quantum systems.

Let H; and Ho be Hilbert spaces. For each ¢1 € Hi, ¢2 € Ho we define the “symbol” ¢ ® ¢o
as the conjugate bilinear form which acts on the cross-product H; x Ho like

(1@ P2) : Hy x Ha = € (¢1 @ 02) (Y1, 2) = (V1, ¢1) 1, (2, P2)m,- (1)

Let £ denote the set of all finite linear combinations of the forms ¢; ® ¢o. The inner products
(+,)#, on H; naturally induce an inner product (-,-)g on & through

(¢®”¢777®N)5 = (¢777)H1 (wau)Hza (2)

which also makes £ a metric space. The tensor product H; ® Hs is defined as the completion of
& and thus is itself a Hilbert space.

a) Show that (-,-)¢ is positive-definite.
b) Let {¢r}, {¢1} be bases for Hj, Ha. Show that {¢r ® ¢y} is a basis for H; ® Ha.

c¢) Consider two separable Hilbert spaces L?(My, du1), L?(Ma, dus). Let {¢x(x)} and {¢;(y)}
be the respective bases. Show that {¢(z)v;(y)} is a basis of L?(My x Ma, duydpus).

d) Prove that L?(My,dp1) @ L*(Ms,dus) = L*(My x Mo, duidus) by giving the explicit
unitary mapping between the two Hilbert spaces. This motivates the tensor product of
Hilbert spaces as a suitable structure for composite quantum systems.

Consider two operators A and B densely defined on D(A) C H; and D(B) C Hs respectively.
The tensor product A ® B defined on the dense set D(A) ® D(B) C ‘H; ® Hs is defined by

(A B)() adi @) = ci(Ad; ® Byy). (3)
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e) Prove that for bounded operators A and B on Hilbert spaces H; and Ha
A @ Bllrer, = 1Al 1 Blime- (4)

Exercise 8.2 Spectra of non-commuting unbounded observables

Consider two unbounded self-adjoint operators A, B with [A, B] = —i12. We want to show that
the spectra of A and B necessarily cover the entire real line, but first we have to prove a useful
operator extension theorem.

a) Show that ¢4 Be~i#4 — B 4 iz[A, B] — LA, [A, B]| + ... .
b) Show that B does not have a point spectrum.

c) Use the Weyl-Criterion (lecture notes Appendix C, Satz 5) to show that 0(A4) = o(B) = R.

! All metric spaces can be completed. See e.g. Ph. Blanchard and E.Briining, “Distributionen und Hilbertrau-
moperatoren”, Springer, 1993.
2We tacitly assume that the domains of A and B are compatible such that the commutator is well-defined.



Exercise 8.3 Spin systems

Consider the Hilbert space C? with its usual scalar product (-,-). The Pauli-matrices

S P P

together with the identity, form a basis of all 2 x 2 hermitian matrices. Prove the following
statements:

a) [0i,04] = 2iej 05 (04, 04]4 = 20;;1;  Tr(oio5) = 26;;.
b) For ¢ € C? with (1,1) = 1, the expectation value (1, 79) = @i € S? is a unit vector.
c) Every density matrix p can be represented as

1
p= 5(1 + ac) with |a| < 1. (6)

For |d@| =1, p is a projection.
d) For mixed states |Tr(c'p)| < 1, for pure states, however, |Tr(dp)| = 1.

Let {|1),|l)} denote the canonical z-basis, i.e., the basis in which we wrote the Pauli-matrices in
Equation (5). Consider the singlet state [¢p~) = % (I71) = |4T)) on the Hilbert space C? @ C2.

e) Give the explicit form of |¢)~) when written as a 4 X 4 density matrix.

f) Let 0, with @é, = cos#, || = 1, denote the angle between two spins. Calculate the
expectation value (¢~ 0, ® (6a@)y ™).

Exercise 8.4 Riesz’s lemma

This famous lemma characterizes the dual space H*, the space of all bounded linear forms on
a Hilbert space. In a nutshell, the lemma states that every Hilbert space is its own dual space.
Prove Riesz’s lemma, i.e., prove that every ¢ € H*, | : H — C, can be written as £(¢) = (¢, ¢)n,
with unique ¥, € H. Show also that |[1¢]|x = ||€]|3*-

Hints: We explicitly construct the vector 1y € H that fulfills the requirement and then prove its
uniqueness. Consider ker(¢) C H. Argue why we can assume that ker(¢) is a proper subset of

H, i.e., ker() C H.
i) Argue why ker(£) is a closed subspace®; use that boundedness and linearity imply continuity.

ii) Buxistence: Show that vy = £(¢o)||¢oll 20, ¢o € ker(£)*, has the right properties on
span{ker(?), ¢o}.

i) Uniqueness: Show that ker(€)L is one-dimensional: take a linear combination of two linear-
independent vectors in ker(£)* and lead this to a contradiction.

Remark: A corollary of Riesz’s lemma is the bra-ket notation.

31t is a special property of Hilbert spaces that the closedness of a subspace implies the existence of non-zero
vectors in the orthogonal complement of this subspace.



