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Exercise 8.1 Tensor products

In this exercise we want recapitulate the concept of tensor products of Hilbert spacesH1⊗H2⊗. . .
and tensor products of operators A⊗B ⊗ . . . . We want to understand how to define operators
on tensor products of Hilbert spaces and why the tensor product is a reasonable mathematical
framework to describe composite quantum systems.
Let H1 and H2 be Hilbert spaces. For each φ1 ∈ H1, φ2 ∈ H2 we define the “symbol” φ1 ⊗ φ2

as the conjugate bilinear form which acts on the cross-product H1 ×H2 like

(φ1 ⊗ φ2) : H1 ×H2 7→ C; (φ1 ⊗ φ2)〈ψ1, ψ2〉 = (ψ1, φ1)H1(ψ2, φ2)H2 . (1)

Let E denote the set of all finite linear combinations of the forms φ1 ⊗ φ2. The inner products
(·, ·)Hi on Hi naturally induce an inner product (·, ·)E on E through

(φ⊗ ψ, η ⊗ µ)E := (φ, η)H1(ψ, µ)H2 , (2)

which also makes E a metric space. The tensor product H1⊗H2 is defined as the completion of
E1 and thus is itself a Hilbert space.

a) Show that (·, ·)E is positive-definite.

b) Let {φk}, {ψl} be bases for H1, H2. Show that {φk ⊗ ψl} is a basis for H1 ⊗H2.

c) Consider two separable Hilbert spaces L2(M1, dµ1), L2(M2, dµ2). Let {φk(x)} and {ψl(y)}
be the respective bases. Show that {φk(x)ψl(y)} is a basis of L2(M1 ×M2, dµ1dµ2).

d) Prove that L2(M1, dµ1) ⊗ L2(M2, dµ2) ∼= L2(M1 × M2, dµ1dµ2) by giving the explicit
unitary mapping between the two Hilbert spaces. This motivates the tensor product of
Hilbert spaces as a suitable structure for composite quantum systems.

Consider two operators A and B densely defined on D(A) ⊆ H1 and D(B) ⊆ H2 respectively.
The tensor product A⊗B defined on the dense set D(A)⊗D(B) ⊆ H1 ⊗H2 is defined by

(A⊗B)(
∑

i

ciφi ⊗ ψi) :=
∑

i

ci(Aφi ⊗Bψi). (3)

e) Prove that for bounded operators A and B on Hilbert spaces H1 and H2

‖A⊗B‖H1⊗H2 = ‖A‖H1‖B‖H2 . (4)

Exercise 8.2 Spectra of non-commuting unbounded observables

Consider two unbounded self-adjoint operators A,B with [A,B] = −i12. We want to show that
the spectra of A and B necessarily cover the entire real line, but first we have to prove a useful
operator extension theorem.

a) Show that eixABe−ixA = B + ix[A,B]− x2

2! [A, [A,B]] + . . . .

b) Show that B does not have a point spectrum.

c) Use the Weyl-Criterion (lecture notes Appendix C, Satz 5) to show that σ(A) = σ(B) = R.
1All metric spaces can be completed. See e.g. Ph. Blanchard and E.Brüning, “Distributionen und Hilbertrau-

moperatoren”, Springer, 1993.
2We tacitly assume that the domains of A and B are compatible such that the commutator is well-defined.



Exercise 8.3 Spin systems

Consider the Hilbert space C2 with its usual scalar product 〈·, ·〉. The Pauli-matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (5)

together with the identity, form a basis of all 2 × 2 hermitian matrices. Prove the following
statements:

a) [σi, σj ] = 2iεijkσk; [σi, σj ]+ = 2δij1; Tr(σiσj) = 2δij .

b) For ψ ∈ C2 with 〈ψ,ψ〉 = 1, the expectation value 〈ψ,~σψ〉 = ~n ∈ S2 is a unit vector.

c) Every density matrix ρ can be represented as

ρ =
1
2

(1 + ~a~σ) with |~a| ≤ 1. (6)

For |~a| = 1, ρ is a projection.

d) For mixed states |Tr(~σρ)| < 1, for pure states, however, |Tr(~σρ)| = 1.

Let {|↑〉, |↓〉} denote the canonical z-basis, i.e., the basis in which we wrote the Pauli-matrices in
Equation (5). Consider the singlet state |ψ−〉 = 1√

2
(|↑↓〉 − |↓↑〉) on the Hilbert space C2 ⊗ C2.

e) Give the explicit form of |ψ−〉 when written as a 4× 4 density matrix.

f) Let θ, with ~a~ez = cos θ, |~a| = 1, denote the angle between two spins. Calculate the
expectation value 〈ψ−, σz ⊗ (~σ~a)ψ−〉.

Exercise 8.4 Riesz’s lemma

This famous lemma characterizes the dual space H∗, the space of all bounded linear forms on
a Hilbert space. In a nutshell, the lemma states that every Hilbert space is its own dual space.
Prove Riesz’s lemma, i.e., prove that every ` ∈ H∗, l : H 7→ C, can be written as `(φ) = 〈ψ`, φ〉H,
with unique ψ` ∈ H. Show also that ‖ψ`‖H = ‖`‖H∗ .
Hints: We explicitly construct the vector ψ` ∈ H that fulfills the requirement and then prove its
uniqueness. Consider ker(`) ⊆ H. Argue why we can assume that ker(`) is a proper subset of
H, i.e., ker(`) ⊂ H.

i) Argue why ker(`) is a closed subspace3; use that boundedness and linearity imply continuity.

ii) Existence: Show that ψ` = `(φ0)‖φ0‖−2φ0, φ0 ∈ ker(`)⊥, has the right properties on
span{ker(`), φ0}.

iii) Uniqueness: Show that ker(`)⊥ is one-dimensional: take a linear combination of two linear-
independent vectors in ker(`)⊥ and lead this to a contradiction.

Remark: A corollary of Riesz’s lemma is the bra-ket notation.

3It is a special property of Hilbert spaces that the closedness of a subspace implies the existence of non-zero
vectors in the orthogonal complement of this subspace.


