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Exercise 8.1 Tensor products

a) Suppose λ =
∑M

k=1 dk(ηk ⊗ µk). Then {ηk}Mk=1 and {µk}Mk=1 span subspaces M1 ⊂ H1 and
M2 ⊂ H2 respectively. If we let {φj}N1

j=1 and {ψl}N2
l=1 be orthonormal bases for M1 and

M2, we can express each ηk in terms of the φj ’s and each µk in terms of the ψl’s obtaining

λ =
M1,M2∑
j=1,l=1

cjl(φj ⊗ ψl) (1)

But,

(λ, λ) = (
∑

cjl(φj ⊗ ψl),
∑

cim(φi ⊗ ψm)) (2)

=
∑

cjlcim(φj , φi)(ψl, ψm) (3)

=
∑
jl

|cjl|2 (4)

so if (λ, λ) = 0, then all the cjl = 0 and λ is the zero form. Thus (·, ·) is positive definite.

b) Let {ξr} be an orthonormal basis of an Hilbert space H, and
∑

r |cr|2 < ∞, cr ∈ C, then∑
r crξr converges to an element of H. The set {φk ⊗ ψl} is clearly orthonormal and

therefore we need only to show that E ⊆ S = span{φk ⊗ ψl}, because E is by construction
dense in H1 ⊗H2. Thus if E is contained in the closed set spanned by the φk ⊗ ψl, then
span{φk ⊗ ψl} = H1 ⊗H2. Let φ⊗ ψ ∈ E—it is enough to consider elements of the form
φ ⊗ ψ since all other elements in E can be written as finite linear combinations of these
elements. Then φ =

∑
akφk and ψ =

∑
blψl with

∑
k |ak|2 <∞ and

∑
l |bl|2 <∞. Hence∑

k,l |akbl|2 <∞. Therefore µ =
∑

k,l akblφk⊗ψl ∈ S and ‖φ⊗ψ−
∑

k<K,l<L akblφk⊗ψl‖ 7→
0 as K,L 7→ ∞.

c) Suppose that f(x, y) ∈ L2(M1 ×M2, dµ1dµ2), and∫ ∫
M1×M2

f(x, y)φk(x)ψl(y)dµ1(x)dµ2(y) = 0 (5)

for all k and l. By Fubini’s theorem this can be rewritten∫
M2

(∫
M1

f(x, y)φk(x)dµ1(x)
)
ψl(y)dµ2(y) (6)

=
(∫

M1

f(x, y)φk(x)dµ1(x), ψl

)
L2

= 0 (7)

Since {ψl} is a basis for L2(M2, dµ2), this implies that∫
M1

f(x, y)φk(x)dµ1(x) = (f(x, y), φk)L2 = 0 (8)

exept on a set Sk ⊂ M2 with µ2(Sk) = 0. Thus, for y /∈
⋃
Sk,
∫
M1

f(x, y)φk(x)dµ1(x) = 0
for all k, which implies that f(x, y) = 0 a.e. [µ1]. Thus, f(x, y) = 0 a.e. [µ1µ2]. So,
{φk(x)ψl(y)} is a basis for L2(M1 ×M2, dµ1dµ2)
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d) Define

U : φk ⊗ ψl 7→ φk(x)ψl(y) (9)

Then U takes an orthonormal basis for L2(M1, dµ1) ⊗ L2(M2, dµ2) onto an orthonormal
basis for L2(M1×M2, d u1dµ2) and extends uniquely, via the B.L.T theorem1, to a unitary
mapping of L2(M1, dµ1)⊗ L2(M2, dµ2) onto L2(M1 ×M2, dµ1dµ2).

e) Let {φk} and {ψl} be orthonormal bases for H1 and H2 and suppose
∑
cklφk ⊗ ψl is a

finite sum. Then

‖(A⊗ 1)
∑

ckl(φk ⊗ ψl)‖2 =
∑
l

‖
∑
k

cklAφk‖2 (10)

≤
∑
l

‖A‖2
∑
k

|ckl|2 = ‖A‖2‖
∑

cklφk ⊗ ψl‖2 (11)

Since the set of such finite sums is dense in H1 ⊗ H2, we conclude that ‖A ⊗ 1‖ ≤ ‖A‖.
Thus, with A ⊗ B = (A ⊗ 1)(1 ⊗ B), we have ‖A ⊗ B‖ ≤ ‖A ⊗ 1‖‖1 ⊗ B‖ ≤ ‖A‖‖B‖,
with the first inequality following form the definition of the operator norm.

Conversely, given ε > 0, there exists unit vectors φ ∈ H1, ψ ∈ H2, so that ‖Aφ‖ ≥ ‖A‖− ε
and ‖Bψ‖ ≥ ‖B‖ − ε. Then,

‖(A⊗B)(φ⊗ ψ)‖ = ‖Aφ‖‖Bψ‖ ≥ ‖A‖‖B‖ − ε‖A‖ − ε‖B‖+ ε2. (12)

Since ε > 0 is arbitrary ‖A⊗B‖ ≥ ‖A‖‖B‖ which concludes the proof.

Exercise 8.2 Spectra of non-commuting unbounded observables

a) Define

f(x) = exp(xA)Bexp(−xA) (13)

We expand f(x) as a Taylor series in x about the origin. From the definition

f ′(x) = exp(xA)(AB −BA)exp(−xA) (14)

so that f ′(0) = [A,B].

f ′′(x) = exp(xA)(A[A,B] = [A,B]A)exp(−xA), (15)
f ′′(0) = [A, [A,B]], (16)

etc. We now write the Taylor series for f(x),

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + ... (17)

and substitute for f (n)(0), which immediately leads to the series

exp(xA)Bexp(−xA) = B + x[A,B] +
x2

2!
[A, [A,B]] + . . . . (18)

The statement follows when we replace x with ix. Remark: Though this calculation
appears to be very simple, there is a subtlety we ommited. In principle one has to make
sure that the domains of A and [A,B], A and [A, [A.B]], etc. are compatible.

1The B.L.T (bounded linear transformation) theorem allows to uniquely extend a bounded linear transforma-
tion defined on a dense subset of the Hilbert space to the entire Hilbert space.
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b) With [A,B] = −i1 and part a) it follows that exp(ixA)Bexp(−ixA) = B + x1, i.e.,
exp(ixA) can be interpreted as a displacement operator. Think also of the analogy with
Q and P . We use this to show that the assumption of a point spectrum leads to a
contradiction: Let ψ be an eigenvector of B corresponding to the eigenvalue β. Then
φ := exp(−ixA)ψ is eigenvector of B corresponding to the eigenvalue β + x:

Bφ = exp(−ixA)exp(ixA)Bexp(−ixA)ψ (19)
= exp(−ixA)(B + x1)ψ = exp(−ixA)(β + x)ψ (20)
= (β + x)exp(−ixA)ψ = (β + x)φ (21)

Since x ∈ R is arbitrary, and eigenvectors of different eigenvalues are linear independent,
we have found uncountable many linear independent eigenvectors, which is impossible in
a separable Hilbert space. Hence the spectrum must be continuous.

c) We want to show that, starting from any point E in the continuous spectrum, we can shift
E by any real number and still reach an element of the spectrum. So, let E ∈ σ(A), then
we can write formally, without specifying the series ψn ∈ H,

‖(A+ a− E)ψ‖ = ‖exp(iaA)(A− E)exp(−iaA)ψ‖ = ‖(A− E)exp(−iaA)ψ‖ (22)

The last equality follows because exp(iaA) is unitary and the norm of vector does not
change under unitary transformations.

The Weyl-criterion states: “E is part of the continuous spectrum of Hr ⇔ It exists a
Weyl-sequence {ψn} corresponding to (Hr, E)”. Hence we can find a sequence ψ′n with
‖(H − E)ψ′n‖

n→∞−→ 0. Thus ‖(A + a − E)ψn‖ = ‖(A − E)exp(−iaA)ψn‖
n→∞−→ 0 for

ψn = exp(iaA)ψ′n and immediately, again by the Weyl-criterion, E − a ∈ σ(A) because of
(22). The conjecture is proved, since a ∈ R was arbitrary.

An alternative solution is to use the unitary invariance of the spectrum, i.e., we know that
σ(B) = σ(exp(ixA)Bexp(−ixA)) = σ(B + x1). However, the spectrum of B + x is just
the spectrum of B shifted by an arbitrary x ∈ R, so the spectrum of B is invariant under
aribtrary shifts. Hence σ(B) = R.

Exercise 8.3 Spin systems

a) linear algebra
√

b) We set σ4 := 1. The space of all 2 × 2 hermitian matrices is a reel vector space V .
We introduce the Hilbert-Schmidt inner product 〈A,B〉 = Tr(A∗B) on V . The Pauli-
matrices together with 1 form a basis, so we can take any hermitian matrix, say a density
matrix, and expand it in the basis. From part a) we know that the Pauli-matrices are not
normalized, so we have to add a factor 1√

2
,

ρ =
4∑
i=1

〈ρ, 1√
2
σi〉

1√
2
σi =

4∑
i=1

(
1√
2
ai

)
1√
2
σi, (23)

with ai := 〈ρ, σi〉. For a pure state we know that Tr(ρ2) = Tr(ρ) = 1 and thus, by
calculating 〈ρ, ρ〉 from (23),

∑4
i=1 a

2
i = 2. In particular we have

3∑
i=1

a2
i = 1, (24)

because 〈ρ,1〉 = Tr(ρ1) = 1.
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We rewrite the expression in b) a bit

〈ψ,~σψ〉 =
3∑
i=1

〈ψ,~σiψ〉Hêi =
3∑
i=1

Tr (|ψ〉〈ψ|σi) êi (25)

=
3∑
i=1

〈ρ, σi〉HHS
êi =

3∑
i=1

aiêi (26)

The statement then follows from (24).

c) For pure states, the statement essentially follows b): We can rewrite (23) a bit

4∑
i=1

(
1√
2
ai

)
1√
2
σi =

1
2
1+

3∑
i=1

(
1√
2
ai

)
1√
2
σi (27)

=
1
2
1+

1
2

3∑
i=1

aiσi (28)

with ~a being a unit vector. For mixed states Tr(ρ2) < 1, and the argument right before
(24) tells us that

∑4
i=1 a

2
i < 2 and thus

3∑
i=1

a2
i < 1. (29)

Remark: This little calculation shows that we can parametrize density matrices of two-
level systems by a unit sphere, the so-called Bloch-sphere. Pure states lie on the surface
of the sphere, while mixed states fill the inside of the sphere. The totally mixed state
lies in the center. The concept of the Bloch-sphere can be handy to visualize effects of
quantum operations on two-level systems.

d) The claim is actually just a rephrasing of c): It follows from (24) and (29) together with

|Tr(~σρ)| =

∣∣∣∣∣∣
〈ρ, σ1〉
〈ρ, σ2〉
〈ρ, σ3〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1

a2

a3

∣∣∣∣∣∣ =

√√√√ 3∑
i=1

a2
i (30)

e)

ρ = |ψ−〉〈ψ−|= 1
2


0 0 0 0
0 +1 −1 0
0 −1 +1 0
0 0 0 0

 (31)

f) We use 〈ψ−, σz ⊗ (~σ~a)ψ−〉 = Tr (|ψ−〉〈ψ−|, σz ⊗ (
∑

i aiσi)) to calculate the expecation
value. First

a1σx + a2σy + a3σz =
(

0 a1

a1 0

)
+
(

0 −ia2

ia2 0

)
+
(
a3 0
0 −a3

)
=
(

a3 a1 − ia2

a1 + ia2 −a3

)
(32)

and

σz ⊗ (~σ~a) =
(

1 0
0 −1

)
⊗
(

a3 a1 − ia2

a1 + ia2 −a3

)
=


a3 a1 − ia2 0 0

a1 + ia2 −a3 0 0
0 0 −a3 −a1 + ia2

0 0 −a1 − ia2 a3

(33)
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and

Tr

1
2


0 0 0 0
0 +1 −1 0
0 −1 +1 0
0 0 0 0




a3 a1 − ia2 0 0
a1 + ia2 −a3 0 0

0 0 −a3 −a1 + ia2

0 0 −a1 − ia2 a3


 = −a3 = − cos(θ).(34)

Exercise 8.4 Riesz’s lemma

Boundedness and linearity imply continuity. The preimage of a closed set under a continuous
function is closed, hence ker(`) is closed since {0} is closed. For Hilbert-spaces this immediately
implies the existence of a non-zero vector in the orthogonal complement. The proof of this
statement relies on the completeness of the Hilbert space and the existence of a scalar-product.
It is enough to consider ker(`) ⊂ H for if ker(`) was the full Hilbert space then ` would be zero
on all vectors and thus ~0 does exactly what we want. Hence assume ker(`) ⊂ H and define
ψ` = `(φ0)‖φ0‖−2φ0, φ0 ∈ ker(`)⊥. Let φ be in ker(`). Then

`(φ) = 0 = 〈ψ`, φ〉. (35)

Now let φ = αφ0, then

`(φ) = `(αφ0) = α`(φ0) = 〈`(φ0)‖φ0‖−2φ0, αφ0〉 = 〈ψ`, αφ0〉 (36)

`(·) and 〈ψ`, ·〉 are linear and agree on span{ker(`), φ0}.
To prove uniquness we assume that there exist two linear independent vectors in ker(`)⊥, ψ1, ψ2,
with `(ψ1), `(ψ2) 6= 0. Define

ψ = ψ1 −
`(ψ1)
`(ψ2)

ψ2 (37)

Then, as can readily be checked, `(ψ) = 0, which contradicts linear independence. Therefore
dim(ker(`)⊥) = 1.
To prove that ‖`‖H∗ = ‖ψ`‖H we observe that

‖`‖ = sup
‖φ‖≤1

|`(φ)| = sup
‖φ‖≤1

|(ψ`, φ)| ≤ sup
‖φ‖≤1

‖ψ`‖‖φ‖ = ‖ψ`‖. (38)

and

‖`‖ = sup
‖φ‖≤1

|`(φ)| ≥
∣∣∣∣`( ψ`
‖ψ`‖

)∣∣∣∣ =
(
ψ`,

ψ`
‖ψ`‖

)
= ‖ψ`‖. (39)
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