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QCD at hadron colliders
In hadron collisions all phenomena are QCD related but we must 
distinguish between hard and soft processes

x1p1 x2p2

h2h1

Only hard scattering events can be controlled 
via the factorization theorem

Hard subprocess

Soft underlying event
Production of low pt 

hadrons: most 
common events



Hard processes are identified by the presence of a hard scale Q

This can be for example the invariant mass of a lepton pair, the transverse 
momentum of a jet or of a heavy quark...

The corresponding cross section can be written as
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∑
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∫
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Same parton densities 
measured in DIS !
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According to the factorization theorem, the initial state collinear singularities
can be absorbed in the parton distribution functions as in the case of DIS

The partonic cross section can be computed in QCD perturbation theory as

σ̂ij = αk
S

∑

n

(αS

π

)n
σn

ij

Different hard processes will contribute with different leading powers k:

- Vector boson production: 
- Jet production:

k = 0
k = 2
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Note that the 

generally speaking the 
factorization theorem

in hadron collisions does 
not have a solid proof as 
in DIS (where OPE can 

be advocated) !



Variations of μR and μF around Q can give an idea of the size of
uncalculated higher order contributions

If the calculation could be done to all orders, the physical cross section would 
not depend on μR and μF

In particular, the μF dependence of the parton distributions would be exactly 
compensated by that of the partonic cross section

Truncating the perturbative expansion at a given order n, the hadronic cross 
section has a residual scale dependence of order n+1

The factorization scale μF is an arbitrary parameter
As in DIS, it can be thought as the scale that separates long and short distance 
physics

It should be chosen of the order of the hard scale Q
A similar argument works for the renormalization scale μR



Kinematics
The spectrum of the two hadrons provides two beams of incoming partons

The spectrum of longitudinal momenta is determined by the parton 
distributions

The centre of mass of the partonic interaction is normally boosted with 
respect to the laboratory frame

It is useful to classify the final state according to variables that transform
simply under longitudinal boosts

We introduce the rapidity y and the azimuthal angleφ

y =
1

2
ln

E + pz

E − pz

pµ = (E, px, py, pz) = (mT cosh y, pT sin φ, pT cos φ, mT sinh y)

mT =
√

m2 + p2
T

Rapidity differences are boost invariant



Varying Q and y Sensitivity to different x1, x2

x1,2 = Q/
√

S e±yx1x2S = Q2

x1 x2

Q2

y

h2h1

At large rapidities we have two 
competitive effects:
- small x enhancement of gluon 
and sea quark distributions
- large x suppression

The large x suppression always “wins”:  
The bulk of the events is concentrated in the central rapidity 
region (y not too large)
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In practice the rapidity is often replaced by the pseudorapidity

η = − ln tan(θ/2)

It coincides with the rapidity 
in the massless limit 

LHC will probe a kinematical 
region never reached before



The Drell-Yan process
The Drell-Yan mechanism was historically the first process where parton 
model ideas developed for DIS were applied to hadron collisions
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Drell,Yan (1970)

γ∗
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Same parton densities 
measured in DIS !

σ(p1, p2;Q
2) =

∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2 fh1,a(x1, µ
2

F ) fh2,b(x2, µ
2

F )

×σ̂ab(x1p1, x2p2, αS(Q2), µ2

F )

The hard scale is given by the invariant mass Q² of the lepton pair



It lead to the discovery of 
W and Z bosons at CERN !



Proof of factorization:
similar to DIS: absorb initial state collinear divergences into a 
redefinition of parton distributions but....

The proof that soft gluons do not spoil factorization is very difficult: 
soft gluons (large wavelenght) can transfer colour information between 
the two initial state hadrons

Explicit calculations have shown that factorization breaking effects are 
present but are power suppressed in the high energy limit



Intuitive interpretation:
classical potential of an electric charge    moving with velocity    along 
the    axis

Aµ =
e

[(z − vt)2 + (1− v2)(x2 + y2)]1/2
(1, 0, 0, v)

Aµ ∼ e

|z − vt| (1, 0, 0, 1)

z != vt Aµ ∼ ∂

∂xµ
e ln |z − vt|

Fµν z ∼ vt

v → 1But when we have

the charged particle generates a potential extending along all the z axis

But when pure gauge !

The field         is not long-range but is localized on

e v
z



QED limit: σ =
4
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q δ(ŝ−M2) σ0 =
4
3
π

α2

M2

p1 =
√

s

2
(x1, 0, 0, x1)

p2 =
√

s

2
(x2, 0, 0,−x2)

x1 x2

Q2

y

h2h1

y =
1
2

ln
E + pz

E − pz
=

1
2

ln
x1

x2

x1 =
√

τ exp(y)

x2 =
√

τ exp(−y)



In the parton model the parton distributions functions are independent of 
the scale

M4 dσ

dM2
=

4
3
π

α2

N
τ

∫ 1

0
dx1dx2δ(x1x2 − τ)

∑

q

Q2
q(fq(x1)fq̄(x2) + (q ↔ q̄)) =

4
3
π

α2

N
τF(τ)

by constructing an adimensional quantity the Drell-Yan cross section
exhibits scaling in the variable τ = M2/s

This scaling is completely analogous to the Bjorken scaling of DIS 
structure functions and is verified experimentally to a good approximation

Scaling

Note that to test it one has to study                  at fixed τM4 dσ

dM2



d2σ

dM2dy
=

σ0

N s

[
∑

q

Q2
q (fq(x1)fq̄(x2) + (q ↔ q̄))

]

The parton model neglects parton transverse momenta

dx f(x)→ dk2
T dx P (kT, x)

∫
d2kT P (kT, x) = f(x)

Lepton pair has zero transverse momentum in LO QCD

Assume:

with

Consider a simple model in which: P (kT, x) = h(kT)f(x)

1
σ

d2σ

d2pT
=

∫
d2kT1d

2kT2 δ(2)(kT1 + kT2 − pT)h(kT1)h(kT2)

x1 =
√

τ exp(y)

x2 =
√

τ exp(−y)



Historically the relative 
abundance of Drell-Yan lepton 
pairs with large transverse 
momenta provided one of the 
evidences that the parton model 
was incomplete

Transverse momentum is not generated only by 
“intrinsic” motion of the quarks in the hadrons 
but also by hard gluon radiation

h(kT) =
b

π
exp(−b k2

T )

〈kT 〉 =
√

π/4b ∼ 760 MeV

Assuming a Gaussian 
distribution

the data correspond to

d2σ

d2pT
∼ αS(pT )

pn
T

indeed of the order of the
typical hadronic mass scale !

Dilepton spectrum from the
CFS collaboration (1981)



QCD corrections

virtual

real

NLO corrections are at the 30-40% level

NNLO corrections are also known: they are at the few percent level
 R.Hamberg, W.Van Neerven, T.Matsuura (1991)



Comparison with the data

The Drell-Yan cross section has 
been measured by a variety of 
experiments with different 
beams, targets and energies

Several informations can be 
obtained from the Drell-Yan data

Low mass lepton pair production at high energies 
is sensitive to the small x behavior

In pp collisions the cross section is sensitive to the 
sea quark distributions complementary information to DIS



At higher energies the photon 
contribution must be 
supplemented with Z exchange
In practice lepton pair 
production around 
is often analyzed using the 
narrow width approximation

M ∼ mZ

1
(ŝ−mZ)2 + m2

ZΓ2
Z

∼ π

mZΓZ
δ(ŝ−m2

Z)

The normalization is fixed by the  
condition that the two distributions 
have the same integral



W production: jacobian peak

Since in the               decay the neutrino momentum is not reconstructed the W 
invariant mass cannot be measured

W → lν

At LO, however the W has zero transverse momentum

The transverse momentum of the charged lepton carries information on mW

θ∗

e−

ν̄e
1
σ

dσ

dp2
Te

=
3

m2
W

(
1− 4p2

Te

m2
W

)−1/2 (
1− 2p2

Te

m2
W

)

1
σ

dσ

d cos θ∗
=

3
8
(1 + cos2 θ∗) angular distribution of the charged 

lepton in the W rest frame

strong peak at        
(Jacobian peak)

In practice the peak is smeared by 
finite-width effects and QCD radiationpTe = mW /2

cos θ∗ =
(

1− 4p2
Te

m2
W

)1/2



W transverse mass distribution measured 
by the CDF collaboration (1995)

mT =
√

2pl
T pmiss

T (1− cos φ)

W production: transverse mass

At LO                and

azimuthal angle between electron 
and neutrino momenta

φ = π
mT = 2pTe

pTe = pmiss
T

imply         

The transverse mass distribution 
has also a jacobian peak at
mT = mW

The advantage of the transverse mass is that it is less sensitive 
to the W transverse momentum with respect to pTe

NB: If         is small                                     leave the transverse mass invariant 
to first order

pW
T pTe,ν = ±p + pW

T /2

Define now



W charge asymmetry

An important observable in W hadroproduction is the asymmetry in the 
rapidity distributions of the W bosons

In pp collisions the W+ and W- are 
produced with equal rates but
W+ (W-) is produced mainly in the 
proton (antiproton) direction

̄

A(yW ) =
dσ(W+)

dyW
− dσ(W−)

dyW

dσ(W+)
dyW

+ dσ(W−)
dyW

These asymmetries are mainly due to the fact that, on average, the u quark 
carries more proton momentum fraction than the d quark



W charge asymmetry

An important observable in W hadroproduction is the asymmetry in the 
rapidity distributions of the W bosons

In pp collisions the W+ and W- are 
produced with different rates but 
W+ and W- rapidity distributions 
are forward-backward symmetric
W- distribution is central, whereas 
W+ is produced at larger rapidities

These asymmetries are mainly due to the fact that, on average, the u quark 
carries more proton momentum fraction than the d quark

A(yW ) =
dσ(W+)

dyW
− dσ(W−)

dyW

dσ(W+)
dyW

+ dσ(W−)
dyW



W charge asymmetry

u

d̄ = d ū = u

d

W
−

in the proton in the proton

If    in the proton is 
faster than 
(u(x) > d(x))

u

dW
+

W
+(W−)

In      collisions:pp̄

A(y) =

dσ(W+)
dy

−

dσ(W−)
dy

dσ(W+)
dy

+ dσ(W−)
dy

The W asymmetry

is a measure of
u(x1)d(x2) − d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)

probes the relative shape of  u and d quarks

produced mainly in p (pbar) direction

 C.Anastasiou et al. (2003)



measure the charged lepton asymmetryIn practice      W → lν

However the V-A decay of the W boson tends to dilute the effect

u d̄

e+ ν

Angular momentum conservation: the e+ is mainly
produced in the direction of the antiquarkW

The effect is less evident when higher transverse energies are selected



Comparison of recent ATLAS data to QCD predictions at NNLO

W charge asymmetry

plT > 20 GeV

MT > 40 GeV

ETν>25 GeV

arXiv: 1108.5141 

ABKM09 and HERAPDF 1.5
give best agreement with the data DYNNLO

note that a fully exclusive 
calculation is needed to 
take cuts into account



Jets
It is common to discuss QCD at high-energy in terms of partons
But quarks and gluons are never really visible since, immediately 
after being produced they fragment and hadronize

A jet is a collimated spray of energetic hadrons and is one of the 
most typical manifestation of QCD at high energy
By measuring its energy and direction one can get a handle on the 
the original parton



How to define a jet ? A proper jet definition requires:
- a jet algorithm
- a recombination scheme

Jet algorithm: a set of rules for grouping particles into jets
usually involves a set of parameters that specify how close two 
particles must be to belong to the same jet

Recombination scheme: indicates what momentum 
must be assigned to the combination of two particles 
(the simplest is the sum of the 4-momenta)



Several important properties that should be met by a jet definition are:
1. Simple to implement in an experimental analysis;
2. Simple to implement in the theoretical calculation;
3. Defined at any order of perturbation theory;
4. Yields finite cross sections at any order of perturbation theory;
5. Yields a cross section that is relatively insensitive to hadronization.

Snowmass accord (1990): J.Huth et al. (1990)

Are these properties fulfilled in practice ? Not really !

Many jet algorithms at hadron colliders, some old ones have 
been patched, some new have been invented

The situation is further confused by the fact that different 
algorithms sometimes share the same name (e.g. iterative cone)

Those used at hadron colliders are often IR unsafe



Two broad categories: { 1) cone algorithms

2) sequential recombination 
algorithms

1) cone algorithms
they are based on a “top-bottom” approach: rely on the idea that 
QCD branching and hadronization do not change the energy flow

2) sequential recombination algorithms
they are based on a “bottom-up” approach: repeatedly recombine
the closest pair of particles according to some distance measure, 
usually related to the divergent structure of the associated QCD 
matrix element



Cone algorithms

G.Sterman, S.Weinberg (1977)

First cone algorithm dates back to original Sterman-Weinberg 
definition of infrared safety



The cone algorithms used today are “iterative cones” (IC) and are 
mostly used at hadron colliders

A seed particle i sets some initial direction, then one draws a 
circle around the seed of radius R in rapidity (or pseudorapidity) 
and azimuth, taking all j such that

∆R2
ij = (yi − yj)2 + (φi − φj)2 < R2

The direction of the resulting sum is then taken as a new seed 
and the procedure is iterated until a stable cone is found

Questions:

Questions:

- How to choose the seeds ?
- What should be done when cones obtained by iterating two different 
seeds share some particles ?



Overlapping cones:

First solution: progressive removal approach

- Start from the particle with the largest transverse momentum
- Once a stable cone is found, call it a jet
- Remove all the particles contained in the cone 
- Iterate

The use of the hardest particle as seed make these algorithms collinear unsafe

Second solution: split-merge approach

- Find all the stable cones (protojets) starting from ALL the particles as 
seeds (often a threshold in pT is assumed)

- Run a split-merge procedure to merge a pair of cones if more than a 
fraction f of the softer cone’s transverse momentum is shared by the harder 
cone

(often referred to as UA1-type cone algorithms)

The use of seeds make these algorithms infrared unsafe



Infrared and collinear safety
Iterative cone algorithms with progressive removal are collinear unsafe

pT

R R

{
1 jet

{ {
2 jets

In the first configuration the hardest parton is the central one and if the 
cone is large enough we get one jet

In the second configuration the central quark has split in a collinear qg pair
The number of jets should be insensitive to such a collinear splitting 
but now the hardest parton is the left one and we get two jets



   This is a serious problem for a jet-finding algorithm !

Collinear splitting are everywhere in QCD: the formal consequence is 
that both 1 and 2 jet cross sections are divergent in perturbation theory

In practice experimental detectors provide a regularization to the 
collinear unsafety, but how this happens depend on the details of 
tracking, electromagnetic and hadronic calorimeters

A jet cross section should not depend on the details of the detector



Iterative cone algorithms with split-merge are infrared unsafe

a) In an event with 2 hard partons both acts as seeds and give a two jet 
configuration

The contribution (c) where a soft gluon is emitted should 

c) A soft gluon acts as a seed and may give a new stable cone
           a one jet configuration is found after the split-merge procedure

b) A virtual correction does not change the number of jets

The algorithm is infrared unsafe and the jet cross section is divergent !



The midpoint fix:

Additionally search for new stable cones by iterating from midpoints 
between each pair of stable cones found in the initial seeded iteration

often presented as IR safe and widely used in Run II at the Tevatron 
(aka Run II cone algorithm, Improved Legacy cone) but.....

The problem reappears when three hard partons are present !



Seedless cone algorithms
Idea: find all stable cones through some exact procedure

In this way the addition of a soft particle may change the number of stable 
cones, but after the split merge procedure the number of stable cones does 
not change

Strategy: 
- take all subsets of particles and establish for each of them if it 
corresponds to a stable cone
- calculate the total momentum, then draw a cone around it and check if 
all the particles within the cone are the same as in the initial subset

This may work for fixed-order calculations, with a limited number of 
particles but in real high-energy colliders the number of particles is large 
and the number of possible subsets grows like 2N

This may work for fixed-order calculations, with a limited number of 
particles

Recently a practical seedless implementation with polynomial growth has 
been suggested G.Salam, G.Soyez (2007)



Recombination schemes

The most common recombination scheme nowadays is the E-scheme, where 
the merging is simply done by adding the 4-momenta of the particles

A scheme that was widely used in the past is the Et-weighted scheme

ET jet =
∑

i

ETi

ηjet =
1

ET jet

∑

i

ETiηi φjet =
1

ET jet

∑

i

ETiφi

where

Recall that a proper jet definition requires not only a jet algorithm 
but also a recombination scheme



Sequential recombination 
algorithms

   Sequential recombination algorithms find their roots in            experimentse+e−

Go beyond just finding the jets: they assign a sequence to 
the clustering procedure that is somewhat connected to 
the branching at parton level 

   Much simpler to state than cone algorithms

Examples:

- Jade algorithm
- kT algorithm
- Cambridge-Achen algorithm
- anti-kT
 



Jade algorithm
 The first sequential recombination algorithm was introduced by the JADE 
collaboration in the 80’s

1. For each pair ij compute the distance:

yij =
2EiEj(1− cos θij)

Q2

2. Find the minimum            of all ymin

ycut

yij

3. If            is below a threshold            recombine i and j in a single particle 
(pseudojet) and repeat 1.

ymin

4. If not declare all remaining particles as jets and terminate

Q total energy



It depends on a single parameter ycut: reducing  ycut resolves more jets

The JADE algorithm is infrared and collinear safe: soft and collinear 
splitting give very small yij and thus are recombined first

However the presence of EiEj in the distance let two soft particles moving 
in opposite directions to be recombined in the same jet

This is against physical intuition ! 
We expect a jet to be limited in angular reach

Another consequence is a complication in higher order logarithmic 
contributions to y23 that cannot be resummed to all orders

We may define the variable yn(n+1) as the value of ycut at which a n jet event 
becomes n+1-jet like



The kT algorithm in e+e- collisions

The kT algorithm in  e+e+  collisions is identical to the JADE algorithm 
except for the distance measure, which is

yij =
2min(E2

i , E2
j )(1− cos θij)
Q2

In the collinear limit                and the numerator becomesθij ! 1 (min(Ei, Ej)θij)2

It’s nothing but the squared transverse momentum of i relative to j
(i being the softer particle)           that’s why it is called  kT algorithm

In this way the distance between two soft and back to back particles
is larger than that between a soft particle and a hard one close in angle

S.Catani et al. (1991)



dPk→ij

dEidθij
∼ αs

min(Ei, Ej)θij

Another advantage is that the distance measure is directly related to the
splitting probability in the soft and collinear limit

This algorithm has thus a closer relation to the structure of the divergences
in QCD matrix elements, with a few nice consequences:

the clustering sequence retains useful approximate information of the
QCD branching process

contrary to the JADE algorithm, all order resummed calculations
of                are now possibleyn(n+1)



The kT algorithm in hadron collisions
In hadronic collisions there are two difficulties to face:

The total energy Q is not defined

besides the divergences involving outgoing particles, there are divergences
between final state and incoming particles

The first issue can be addressed by defining a dimensionful distance

and a dimensionful jet-resolution

dij = 2min(E2
i , E2

j )(1− cos θij)

dcut

The second issue can be solved by defining an additional particle-beam 
distance

diB = 2E2
i (1− cos θiB)

for small         it is just the squared transverse momentumθiB

S.Catani et al. (1993)
S.D.Ellis and D.Soper (1993)



The algorithm works in the same way except for the fact that if          is
the smallest distance the particle is recombined with the beam

diB

beam jets are also considered

In hadron collisions we prefer to use boost invariant quantities

the distance measure is defined as:

diB = p2
Ti

where

The algorithm defined in this way is the exclusive kT algorithm

Each particle is assigned either to a jet or to a beam jet

If there are two beams one introduces two particle beam distances

dij = min(p2
Ti, p

2
Tj)∆R2

ij

∆R2
ij = (yi − yj)2 + (φi − φj)2



Inclusive kT algorithm:

diB = p2
Tidij = min(p2

Ti, p
2
Tj)

∆R2
ij

D2

∆R2
ij = (yi − yj)2 + (φi − φj)2

the algorithm works as follows:

1. Compute all the distances      and

2. Find the minimum.

3. If it is a      recombine i and j and return to 1.

4. If it is a        declare i to be a final state jet, remove it and return to 1.

dij

diB

dij diB

There are no beam jets: each particle is assigned to a final state jet



Arbitrarily soft particles can become jets in their own

A minimum transverse momentum for jets should be specified

The parameter D determines what it is called a jet:
Suppose i has no particles at a distance smaller than D:

    dij will be larger than diB for any j harder than i

The kT algorithm has been advocated by theorists because of its good 
properties

Experimentalists have questioned the use of the algorithm because of its 
speed limit: the clustering time for N particles naively increases as N³

The issue of speed is crucial in high-multiplicity environments 
like LHC or heavy-ion collisions

Recently the algorithm has been reformulated by using 
techniques borrowed from computational geometry: in this way 
it scales as N lnN

M.Cacciari, G.Salam (2006)



The Cambridge/Achen algorithm
It works like the inclusive kT algorithm but using ΔRij as distance measure

It works by recombining the pair of particles with smallest ΔRij and 
repeating the procedure until all the clusters are separated by  ΔRij > R

The final objects are called jets

The clustering hierarchy is in angle rather than in transverse momentum

makes possible to look at the jet at different angular resolutions

G.Salam et al. (2008)



The anti-kT algorithm
M.Cacciari, G.Salam, G.Soyez (2008)

dij = min(p2p
Ti, p

2p
Tj)

∆R2
ij

D2
diB = p2p

Ti

Define a family of algorithms each characterized by an integer p

p=1  kT algorithm

p=0  Cambridge-Aachen

What about p=-1 ? It seems a rather odd choice but...

A sequential recombination algorithm is the perfect cone algorithm !

Now the default for ATLAS and CMS experiments

It produces regular (circular) jets

Soft particles tend to cluster with hard ones long before they cluster among 
themselves



Jet production at hadron colliders
Two-jet events are produced in QCD when the incoming partons 
produce two high transverse momentum outgoing partons

dσ̂ =
1
2ŝ

∑
|M|2(2π)4δ4(p1 + p2 − p3 − p4)

dp3
3

2E3(2π)3
dp3

4

2E4(2π)3

Some of the diagrams:



Kinematics:

p1 p2

p3

p4

θ∗

p1 =
√

ŝ

2
(1, 0, 0, 1) p2 =

√
ŝ

2
(1, 0, 0,−1)

p3 =
√

ŝ

2
(1, sin θ∗ sinφ, sin θ∗ cos φ, cos θ∗)

p4 =
√

ŝ

2
(1,− sin θ∗ sin φ,− sin θ∗ cos φ,− cos θ∗)In the CM frame

ŝ = (p1 + p2)2

û = (p2 − p3)2 = − ŝ

2
(1 + cos θ∗)

t̂ = (p1 − p3)2 = − ŝ

2
(1− cos θ∗)

A measure of the rapidity difference of the two jets gives the 
scattering angle in the centre-of-mass frame

y∗ = (y3 − y4)/2 cos θ∗ = tanh y∗yCM
3 = −yCM

4 ≡ y∗



x1 = xT cosh y∗eȳ

x2 = xT cosh y∗e−ȳ

Define the rapidity of the two parton system ȳ

where xT = 2pT /
√

ŝ

The invariant mass of the two-jet system can be written as

m2
JJ = ŝ = 4p2

T cosh2 y∗

The partonic inclusive jet cross section can be obtained by integrating over 
the momentum of one of the jets

dσ̂ =
1
2ŝ

∑
|M|2 1

4(2π)2
d3p3

E3E4
δ(E1 + E2 − E3 − E4) =

1
2ŝ

∑
|M|2 1

8π2

d3p3

E3
δ(ŝ + t̂ + û)

dσ

d2pT dy
=

1
16π2s

∫
dx1

x1

dx2

x2
fi(x1, µ

2
F )fj(x2, µ

2
F )

∑

i,j,k,l

∑
|M(ij → kl)|2δ(ŝ + t̂ + û)

The corresponding hadronic cross section is



Comparison with data

Spectacular agreement of
the data with NLO QCD
over nine order of 
magnitude !

hep-ex/9601008

The measurement of the CDF 
collaboration at Run I
at the Tevatron was historically 
very important
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Comparison with data
hep-ex/9601008

The measurement of the CDF 
collaboration at Run I
at the Tevatron was historically 
very important

At high transverse energies
the data disagree with the 
theoretical prediction

Many new physics 
interpretations were proposed

Spectacular agreement of
the data with NLO QCD
over nine order of 
magnitude !



Quark compositeness typically produces four fermion contact interactions 
due to the exchange of some heavy new particle of mass M 

Such interactions however would lead to observable effects in the jet angular 
distributions

Consider the partonic cross section
dσ̂ij

d cos θ∗

The dominant channels in       are                  ,                    ,gg → gggq → gq qq̄ → qq̄pp̄

∆L =
f2

M2
ψ̄γµψ ψ̄γµψ

Data − Theory
Theory

∼ f2 E2
T

M2
should lead to



Due to the exchange of a massless boson in the t channel

The change of variable leads to                               for the QCD predictiondσ̂

dχ
∼ constant

Note that the variable χ in LO QCD is related to the 
rapidity difference of the two jets through χ=exp{y3-y4}

On the contrary, the exchange of a scalar particle leads to

dσ̂

d cos θ∗
∼ constant

dσ̂

dχ
∼ 1

(1 + χ)2and thus

This distribution has been measured by the CDF collaboration

Define the variable χ =
1 + cos θ∗

1− cos θ∗

All these channels have the familiar Rutherford singularity
dσ̂

d cos θ∗
∼ 1

sin4(θ∗/2)



The results do not show significant deviations in the angular distribution 
and exclude that the excess at high ET is due to new contact interactions
arising in compositeness scenarios



Later it was understood that the excess could be reabsorbed by a suitable 
modifications of parton distribution functions

Jet production at large transverse 
energies is in fact unfortunately the only 
constraint on the gluon distribution at 
large x

Strong interplay with new physics effects

MRST 2002 and D0 jet data, !S(MZ)=0.1197 , "2= 85/82 pts
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Inclusive jet cross 
section measured by 
CDF Run II with the
kT  algorithm

hep-ex/0701051

Good agreement with 
NLO QCD

UE corrections similar to 
those found with cone



These studies now continued at the LHC

Good agreement 
with data up to pT 
of order 2 TeV !





Parton distributions

Determined by global fits to different data sets

 Parametrize at input scale 

xf(x, Q2

0) = Axα(1 − x)β(1 + ε
√

x + γx + .....)

Q0 = 1 − 4 GeV

Impose momentum sum rule:
∑

a

∫ 1

0

dxxf(x, Q2

0) = 1

Then fit to data to obtain the parameters

Standard procedure:

Evolve to desired       and compute physical observablesQ2

Main groups: MRST (now MSTW), CTEQ
Now also: Alekhin, Delgado-Reya, HERA, NNPDF..



DIS:

Drell-Yan

Fixed target: valence quark densities
HERA: at small xfg, fsea

quark densities 

Typical processes:

collisions: sensitive to antiquarks and sea 
densities

pp

pp̄ collisions: sensitive to flavour 
asymmetries of valence quarks

q

q̄

V

h1

h2



d̄(x)/ū(x) from FNAL E866/Nusea

800 GeV p + p and p + d → µ+µ−

σ
pp

∼

4

9
u(x1)ū(x2) +

1

9
d(x1)d̄(x2)

σ
pn

∼

4

9
u(x1)d̄(x2) +

1

9
d(x1)ū(x2)

Obtain neutron pdfs from 
isospin symmetry:

σpd

2σpp
∼

1

2

(

1 +
d̄2

ū2

)

x1 ! x2

u ↔ d

ū ↔ d̄

Assuming
d(x) ! 4u(x)and using σ

pd
∼ σ

pp
+ σ

pn

σpd

2σpp

∣

∣

∣

x1!x2

∼

1

2

1 + 1
4

d(x1)
u(x1)

1 + 1
4

d(x1)d̄(x2)
u(x1)ū(x2)

(

1 +
d̄(x2)

ū(x2)

)
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u

d̄ = d ū = u

W asymmetry   in       collisionspp̄

d

W
−

in the proton in the proton

If    in the proton is 
faster than 
(u(x) > d(x))

u

dW
+

produced mainly in           directionW
+(W−) p (p̄)

A(y) =

dσ(W+)
dy

−

dσ(W−)
dy

dσ(W+)
dy

+ dσ(W−)
dy

The W asymmetry

is a measure of

u(x1)d(x2) − d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)

measure the charged 
lepton asymmetry

In practice      W → lν



Jets at Tevatron
fg at large x

MRST 2002 and D0 jet data, !S(MZ)=0.1197 , "2= 85/82 pts
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Note:

Strong interplay between possible 
new physics effects at large
and extraction of the gluon

ET
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Overview of Parton Distribution Functions of the Proton

CTEQ5M
Gluon / 15
dbar
ubar
s
c
uv
dv
(dbar-ubar) * 5

Typical behaviour of 
parton densities in 
the proton

All densities vanish as x → 1

At  x → 0

- Valence quarks vanish  
- Strong rise of the gluon, which becomes dominant
- Also sea quarks increase 

driven by the gluon through g → qq̄


