
Chapter 3

The quantum one-body problem

3.1 The time-independent 1D Schrödinger equation

We start the numerical solution of quantum problems with the time-indepent one-
dimensional Schrödinger equation for a particle with mass m in a Potential V (x). In
one dimension the Schrödinger equation is just an ordinary differential equation

− ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x) = Eψ(x). (3.1)

We start with simple finite-difference schemes and discretize space into intervals of
length ∆x and denote the space points by

xn = n∆x (3.2)

and the wave function at these points by

ψn = ψ(xn). (3.3)

3.1.1 The Numerov algorithm

After rewriting the second order differential equation to a coupled system of two first
order differential equations, any ODE solver such as the Runge-Kutta method could be
applied, but there exist better methods. For the special form

ψ′′(x) + k(x)ψ(x) = 0, (3.4)

of the Schrödinger equation, with k(x) = 2m(E−V (x))/~2 we can derive the Numerov
algorithm by starting from the Taylor expansion of ψn:

ψn±1 = ψn ±∆xψ′n +
∆x2

2
ψ′′n ±

∆x3

6
ψ(3)
n +

∆x4

24
ψ(4)
n ±

∆x5

120
ψ(5)
n +O(∆x6) (3.5)

Adding ψn+1 and ψn−1 we obtain

ψn+1 + ψn−1 = 2ψn + (∆x)2ψ′′n +
(∆x)4

12
ψ(4)
n . (3.6)
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Replacing the fourth derivatives by a finite difference second derivative of the second
derivatives

ψ(4)
n =

ψ′′n+1 + ψ′′n−1 − 2ψ′′n
∆x2

(3.7)

and substituting −k(x)ψ(x) for ψ′′(x) we obtain the Numerov algorithm

(

1 +
(∆x)2

12
kn+1

)

ψn+1 = 2

(

1− 5(∆x)2

12
kn

)

ψn

−
(

1 +
(∆x)2

12
kn−1

)

ψn−1 +O(∆x6), (3.8)

which is locally of sixth order!

Initial values

To start the Numerov algorithm we need the wave function not just at one but at two
initial values and will now present several ways to obtain these.

For potentials V (x) with reflection symmetry V (x) = V (−x) the wave functions
need to be either even ψ(x) = ψ(−x) or odd ψ(x) = −ψ(−x) under reflection, which
can be used to find initial values:

• For the even solution we use a half-integer mesh with mesh points xn+1/2 =
(n+ 1/2)∆x and pick initial values ψ(x−1/2) = ψ(x1/2) = 1.

• For the odd solution we know that ψ(0) = −ψ(0) and hence ψ(0) = 0, specifying
the first starting value. Using an integer mesh with mesh points xn = n∆x we
pick ψ(x1) = 1 as the second starting value.

In general potentials we need to use other approaches. If the potentials vanishes for
large distances: V (x) = 0 for |x| ≥ a we can use the exact solution of the Schrödinger
equation at large distances to define starting points, e.g.

ψ(−a) = 1 (3.9)

ψ(−a−∆x) = exp(−∆x
√

2mE/~). (3.10)

Finally, if the potential never vanishes we need to begin with a single starting value
ψ(x0) and obtain the second starting value ψ(x1) by performing an integration over the
first time step ∆τ with an Euler or Runge-Kutta algorithm.

3.1.2 The one-dimensional scattering problem

The scattering problem is the numerically easiest quantum problem since solutions
exist for all energies E > 0, if the potential vanishes at large distances (V (x) → 0 for
|x| → ∞). The solution becomes particularly simple if the potential is nonzero only
on a finite interval [0, a]. For a particle approaching the potential barrier from the left
(x < 0) we can make the following ansatz for the free propagation when x < 0:

ψL(x) = A exp(−iqx) + B exp(iqx) (3.11)
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where A is the amplitude of the incoming wave and B the amplitude of the reflected
wave. On the right hand side, once the particle has left the region of finite potential
(x > a), we can again make a free propagation ansatz,

ψR(x) = C exp(−iqx) (3.12)

The coefficients A, B and C have to be determined self-consistently by matching to a
numerical solution of the Schrödinger equation in the interval [0, a]. This is best done
in the following way:

• Set C = 1 and use the two points a and a+∆x as starting points for a Numerov
integration.

• Integrate the Schrödinger equation numerically – backwards in space, from a to
0 – using the Numerov algorithm.

• Match the numerical solution of the Schrödinger equation for x < 0 to the free
propagation ansatz (3.11) to determine A and B.

Once A and B have been determined the reflection and transmission probabilities R
and T are given by

R = |B|2/|A|2 (3.13)

T = 1/|A|2 (3.14)

3.1.3 Bound states and solution of the eigenvalue problem

While there exist scattering states for all energies E > 0, bound states solutions of the
Schrödinger equation with E < 0 exist only for discrete energy eigenvalues. Integrating
the Schrödinger equation from −∞ to +∞ the solution will diverge to ±∞ as x→∞
for almost all values. These functions cannot be normalized and thus do not constitute
solutions to the Schrödinger equation. Only for some special eigenvalues E, will the
solution go to zero as x→∞.

A simple eigensolver can be implemented using the following shooting method, where
we again will assume that the potential is zero outside an interval [0, a]:

• Start with an initial guess E

• Integrate the Schrödinger equation for ψE(x) from x = 0 to xf ≫ a and determine
the value ψE(xf )

• use a root solver, such as a bisection method (see appendix A.1), to look for an
energy E with ψE(xf ) ≈ 0

This algorithm is not ideal since the divergence of the wave function for x ± ∞ will
cause roundoff error to proliferate.

A better solution is to integrate the Schrödinger equation from both sides towards
the center:

• We pick a starting point b and choose as energy E = V (b)
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• Starting from x = 0 we integrate the left hand side solution ψL(x) to a chosen point
b and obtain ψL(b) and a numerical estimate for ψ′L(b) = (ψL(b)−ψL(b−∆x))/∆x.

• Starting from x = a we integrate the right hand solution ψR(x) down to the same
point b and obtain ψR(b) and a numerical estimate for ψ′R(b) = (ψR(b + ∆x) −
ψR(b))/∆x.

• At the point b the wave functions and their first two derivatives have to match,
since solutions to the Schrödinger equation have to be twice continuously differen-
tiable. Keeping in mind that we can multiply the wave functions by an arbitrary
factor we obtain the conditions

ψL(b) = αψR(b) (3.15)

ψ′L(b) = αψ′R(b) (3.16)

ψ′′L(b) = αψ′′R(b) (3.17)

The last condition is automatically fulfilled since by the choice V (b) = E the
Schrödinger equation at b reduces to ψ′′(b) = 0. The first two conditions can be
combined to the condition that the logarithmic derivatives vanish:

d logψL

dx
|x=b =

ψ′L(b)

ψL(b)
=
ψ′R(b)

ψR(b)
=
d logψR

dx
|x=b (3.18)

• This last equation has to be solved for in a shooting method, e.g. using a bisection
algorithm

Finally, at the end of the calculation, normalize the wave function.

3.2 The time-independent Schrödinger equation in

higher dimensions

The time independent Schrödinger equation in more than one dimension is a partial
differential equation and cannot, in general, be solved by a simple ODE solver such as
the Numerov algorithm. Before employing a PDE solver we should thus always first try
to reduce the problem to a one-dimensional problem. This can be done if the problem
factorizes.

3.2.1 Factorization along coordinate axis

A first example is a three-dimensional Schrödinger equation in a cubic box with potential
V (~r) = V (x)V (y)V (z) with ~r = (x, y, z). Using the product ansatz

ψ(~r) = ψx(x)ψy(y)ψz(z) (3.19)

the PDE factorizes into three ODEs which can be solved as above.
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3.2.2 Potential with spherical symmetry

Another famous trick is possible for spherically symmetric potentials with V (~r) = V (|~r|)
where an ansatz using spherical harmonics

ψl,m(~r) = ψl,m(r, θ, φ) =
u(r)

r
Ylm(θ, φ) (3.20)

can be used to reduce the three-dimensional Schrödinger equation to a one-dimensional
one for the radial wave function u(r):

[

− ~2

2m

d2

dr2
+

~2l(l + 1)

2mr2
+ V (r)

]

u(r) = Eu(r) (3.21)

in the interval [0,∞[. Given the singular character of the potential for r → 0, a
numerical integration should start at large distances r and integrate towards r = 0, so
that the largest errors are accumulated only at the last steps of the integration.

In the exercises we will solve a three-dimensional scattering problem and calculate
the scattering length for two atoms.

3.2.3 Finite difference methods

The simplest solvers for partial differential equations, the finite difference solvers can
also be used for the Schrödinger equation. Replacing differentials by differences we
convert the Schrödinger equation to a system of coupled inear equations. Starting from
the three-dimensional Schrödinger equation (we set ~ = 1 from now on)

∇2ψ(~x) + 2m(V −E(~x))ψ(~x) = 0, (3.22)

we discretize space and obtain the system of linear equations

1

∆x2
[ψ(xn+1, yn, zn) + ψ(xn−1, yn, zn)

+ψ(xn, yn+1, zn) + ψ(xn, yn−1, zn) (3.23)

+ψ(xn, yn, zn+1) + ψ(xn, yn, zn−1)]

+

[

2m(V (~x)−E)− 6

∆x2

]

ψ(xn, yn, zn) = 0.

For the scattering problem a linear equation solver can now be used to solve the
system of equations. For small linear problems Mathematica can be used, or the dsysv
function of the LAPACK library. For larger problems it is essential to realize that the
matrices produced by the discretization of the Schrödinger equation are usually very
sparse, meaning that only O(N) of the N2 matrix elements are nonzero. For these
sparse systems of equations, optimized iterative numerical algorithms exist1 and are
implemented in numerical libraries such as in the ITL library.2

1R. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods (SIAM, 1993)

2J.G. Siek, A. Lumsdaine and Lie-Quan Lee, Generic Programming for High Performance Numerical
Linear Algebra in Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing (OO’98) (SIAM, 1998); the library is availavle on the web at:
http://www.osl.iu.edu/research/itl/
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To calculate bound states, an eigenvalue problem has to be solved. For small prob-
lems, where the full matrix can be stored in memory, Mathematica or the dsyev eigen-
solver in the LAPACK library can be used. For bigger systems, sparse solvers such as
the Lanczos algorithm (see appendix A.2) are best. Again there exist efficient imple-
mentations3 of iterative algorithms for sparse matrices.4

3.2.4 Variational solutions using a finite basis set

In the case of general potentials, or for more than two particles, it will not be possible to
reduce the Schrödinger equation to a one-dimensional problem and we need to employ
a PDE solver. One approach will again be to discretize the Schrödinger equation on a
discrete mesh using a finite difference approximation. A better solution is to expand
the wave functions in terms of a finite set of basis functions

|φ〉 =
N
∑

i=1

ai|ui〉. (3.24)

To estimate the ground state energy we want to minimize the energy of the varia-
tional wave function

E∗ =
〈φ|H|φ〉
〈φ|φ〉 . (3.25)

Keep in mind that, since we only chose a finite basis set {|ui〉} the variational estimate
E∗ will always be larger than the true ground state energy E0, but will converge towards
E0 as the size of the basis set is increased, e.g. by reducing the mesh size in a finite
element basis.

To perform the minimization we denote by

Hij = 〈ui|H|uj〉 =
∫

d~rui(~r)
∗
(

− ~2

2m
∇2 + V

)

uj(~r) (3.26)

the matrix elements of the Hamilton operator H and by

Sij = 〈ui|uj〉 =
∫

d~rui(~r)
∗uj(~r) (3.27)

the overlap matrix. Note that for an orthogonal basis set, Sij is the identity matrix δij.
Minimizing equation (3.25) we obtain a generalized eigenvalue problem

∑

j

Hijaj = E
∑

k

Sikak. (3.28)

or in a compact notation with ~a = (a1, . . . , aN )

H~a = ES~a. (3.29)

3http://www.comp-phys.org/software/ietl/
4Z. Bai, J. Demmel and J. Dongarra (Eds.), Templates for the Solution of Algebraic Eigenvalue

Problems: A Practical Guide (SIAM, 2000).
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If the basis set is orthogonal this reduces to an ordinary eigenvalue problem and we can
use the Lanczos algorithm.

In the general case we have to find orthogonal matrices U such that UTSU is the
identity matrix. Introducing a new vector~b = U−1~a. we can then rearrange the problem
into

H~a = ES~a

HU~b = ESU~b

UTHU~b = EUTSU~b = E~b (3.30)

and we end up with a standard eigenvalue problem for UTHU . Mathematica and
LAPACK both contain eigensolvers for such generalized eigenvalue problems.

Example: the anharmonic oscillator

The final issue is the choice of basis functions. It is advantageous to make use of known
solutions to a similar problem as we will illustrate in the case of an anharmonic oscillator
with Hamilton operator

H = H0 + λq4

H0 =
1

2
(p2 + q2), (3.31)

where the harmonic oscillator H0 was already discussed in section 2.4.1. It makes sense
to use the N lowest harmonic oscillator eigenvectors |n〉 as basis states of a finite basis
and write the Hamiltonian as

H =
1

2
+ n̂ + λq̂4 =

1

2
+ n̂+

λ

4
(a† + a)4 (3.32)

Since the operators a and a† are nonzero only in the first sub or superdiagonal, the
resulting matrix is a banded matrix of bandwidth 9. A sparse eigensolver such as the
Lanczos algorithm can again be used to calculate the spectrum. Note that since we use
the orthonormal eigenstates of H0 as basis elements, the overlap matrix S here is the
identity matrix and we have to deal only with a standard eigenvalue problem.

The finite element method

In cases where we have irregular geometries or want higher precision than the lowest
order finite difference method, and do not know a suitable set of basis function, the
finite element method (FEM) should be chosen over the finite difference method. Since
explaining the FEM can take a full semester in itself, we refer interested students to
classes on solving partial differential equations.

3.3 The time-dependent Schrödinger equation

Finally we will reintroduce the time dependence to study dynamics in non-stationary
quantum systems.
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3.3.1 Spectral methods

By introducing a basis and solving for the complete spectrum of energy eigenstates we
can directly solve the time-dependent problem in the case of a stationary Hamiltonian.
This is a consequence of the linearity of the Schrödinger equation.

To calculate the time evolution of a state |ψ(t0)〉 from time t0 to t we first solve
the stationary eigenvalue problem H|φ〉 = E|φ〉 and calculate the eigenvectors |φn〉 and
eigenvalues ǫn. Next we represent the initial wave function |ψ〉 by a spectral decompo-
sition

|ψ(t0)〉 =
∑

n

cn|φn〉. (3.33)

Since each of the |φn〉 is an eigenvector of H , the time evolution e−i~H(t−t0) is trivial
and we obtain at time t:

|ψ(t)〉 =
∑

n

cne
−i~ǫn(t−t0)|φn〉. (3.34)

3.3.2 Direct numerical integration

If the number of basis states is too large to perform a complete diagonalization of
the Hamiltonian, or if the Hamiltonian changes over time we need to perform a direct
integration of the Schrödinger equation. Like other initial value problems of partial
differential equations the Schrödinger equation can be solved by the method of lines.
After choosing a set of basis functions or discretizing the spatial derivatives we obtain a
set of coupled ordinary differential equations which can be evolved for each point along
the time line (hence the name) by standard ODE solvers.

In the remainder of this chapter we use the symbol H to refer the representation of
the Hamiltonian in the chosen finite basis set. A forward Euler scheme

|ψ(tn+1)〉 = |ψ(tn)〉 − i~∆tH|ψ(tn)〉 (3.35)

is not only numerically unstable. It also violates the conservation of the norm of the
wave function 〈ψ|ψ〉 = 1. Since the exact quantum evolution

ψ(x, t+∆t) = e−i~H∆tψ(x, t). (3.36)

is unitary and thus conserves the norm, we want to look for a unitary approximant as
integrator. Instead of using the forward Euler method (3.35) which is just a first order
Taylor expansion of the exact time evolution

e−i~H∆t = 1− i~H∆t +O(∆2
t ), (3.37)

we reformulate the time evolution operator as

e−i~H∆t =
(

ei~H∆t/2
)−1

e−i~H∆t/2 =

(

1 + i~H
∆t

2

)−1(

1− i~H∆t

2

)

+O(∆3
t ), (3.38)

which is unitary!
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This gives the simplest stable and unitary integrator algorithm

ψ(x, t+∆t) =

(

1 + i~H
∆t

2

)−1(

1− i~H∆t

2

)

ψ(x, t) (3.39)

or equivalently

(

1 + i~H
∆t

2

)

ψ(x, t +∆t) =

(

1− i~H∆t

2

)

ψ(x, t). (3.40)

Unfortunately this is an implicit integrator. At each time step, after evaluating the
right hand side a linear system of equations needs to be solved. For one-dimensional
problems the matrix representation of H is often tridiagonal and a tridiagonal solver
can be used. In higher dimensions the matrix H will no longer be simply tridiagonal
but still very sparse and we can use iterative algorithms, similar to the Lanczos algo-
rithm for the eigenvalue problem. For details about these algorithms we refer to the
nice summary at http://mathworld.wolfram.com/topics/Templates.html and es-
pecially the biconjugate gradient (BiCG) algorithm. Implementations of this algorithm
are available, e.g. in the Iterative Template Library (ITL).

3.3.3 The split operator method

A simpler and explicit method is possible for a quantum particle in the real space picture
with the “standard” Schrödinger equation (2.52). Writing the Hamilton operator as

H = T̂ + V̂ (3.41)

with

T̂ =
1

2m
p̂2 (3.42)

V̂ = V (~x) (3.43)

it is easy to see that V̂ is diagonal in position space while T̂ is diagonal in momentum
space. If we split the time evolution as

e−i~∆tH = e−i~∆tV̂ /2e−i~∆tT̂ e−i~∆tV̂ /2 +O(∆3
t ) (3.44)

we can perform the individual time evolutions e−i~∆tV̂ /2 and e−i~∆tT̂ exactly:

[

e−i~∆tV̂ /2|ψ〉
]

(~x) = e−i~∆tV (~x)/2ψ(~x) (3.45)
[

e−i~∆tT̂ /2|ψ〉
]

(~k) = e−i~∆t||~k||2/2mψ(~k) (3.46)

in real space for the first term and momentum space for the second term. This requires
a basis change from real to momentum space, which is efficiently performed using a Fast
Fourier Transform (FFT) algorithm. Propagating for a time t = N∆t, two consecutive
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applications of e−i~∆tV̂ /2 can easily be combined into a propagation by a full time step
e−i~∆tV̂ , resulting in the propagation:

e−i~∆tH =
(

e−i~∆tV̂ /2e−i~∆tT̂ e−i~∆tV̂ /2
)N

+O(∆2
t )

= e−i~∆tV̂ /2
[

e−i~∆tT̂ e−i~∆tV̂
]N−1

e−i~∆tT̂ e−i~∆tV̂ /2 (3.47)

and the discretized algorithm starts as

ψ1(~x) = e−i~∆tV (~x)/2ψ0(~x) (3.48)

ψ1(~k) = Fψ1(~x) (3.49)

where F denotes the Fourier transform and F−1 will denote the inverse Fourier trans-
form. Next we propagate in time using full time steps:

ψ2n(~k) = e−i~∆t||~k||2/2mψ2n−1(~k) (3.50)

ψ2n(~x) = F−1ψ2n(~k) (3.51)

ψ2n+1(~x) = e−i~∆tV (~x)ψ2n(~x) (3.52)

ψ2n+1(~k) = Fψ2n+1(~x) (3.53)

except that in the last step we finish with another half time step in real space:

ψ2N+1(~x) = e−i~∆tV (~x)/2ψ2N (~x) (3.54)

This is a fast and unitary integrator for the Schrödinger equation in real space. It could
be improved by replacing the locally third order splitting (3.44) by a fifth-order version
involving five instead of three terms.
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