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Introduction

Solid state physics (or condensed matter physics) is one of the most active and versatile branches
of modern physics that have developed in the wake of the discovery of quantum mechanics. It
deals with problems concerning the properties of materials and, more generally, systems with
many degrees of freedom, ranging from fundamental questions to technological applications. This
richness of topics has turned solid state physics into the largest subfield of physics; furthermore,
it has arguably contributed most to technological development in industrialized countries.

Figure 1: Atom cores and the surrounding electrons.

Condensed matter (solid bodies) consists of atomic nuclei (ions), usually arranged in a regular
(elastic) lattice, and of electrons (see Figure 1). As the macroscopic behavior of a solid is
determined by the dynamics of these constituents, the description of the system requires the use
of quantum mechanics. Thus, we introduce the Hamiltonian describing nuclei and electrons,

Ĥ = Ĥe + Ĥn + Ĥn−e, (1)

with

Ĥe =
∑

i

p̂2
i

2m
+

1
2

∑
i6=i′

e2

|ri − ri′ |
,

Ĥn =
∑

j

P̂
2

j

2Mj
+

1
2

∑
j 6=j′

ZjZj′e
2

|Rj −Rj′ |
, (2)

Ĥn−e = −
∑
i,j

Zje
2

|ri −Rj |
,

where Ĥe (Ĥn) describes the dynamics of the electrons (nuclei) and their mutual interaction and
Ĥn−e includes the interaction between ions and electrons. The parameters appearing are

m free electron mass 9.1094× 10−31kg
e elementary charge 1.6022× 10−19As
Mj mass of j-th nucleus ∼ 103 − 104×m
Zj atomic (charge) number of j-th nucleus

The characteristic scales known from atomic and molecular systems are
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Length: Bohr radius aB = ~2/me2 ≈ 0.5× 10−10m
Energy: Hartree e2/aB = me4/~2 = mc2α2 ≈ 27eV = 2Ry

with the fine structure constant α = e2/~c = 1/137. The energy scale of one Hartree is much
less than the (relativistic) rest mass of an electron (∼ 0.5MeV), which in turn is considered small
in particle physics. In fact, in high-energy physics even physics at the Planck scale is considered,
at least theoretically. The Planck scale is an energy scale so large that even gravity is thought
to be affected by quantum effects, as

EPlanck = c2
√

~c
G
∼ 1019GeV, lPlanck =

√
~G
c3

∼ 1.6× 10−35m, (3)

where G = 6.673× 10−11m3kg−1s−2 is the gravitational constant. This is the realm of the GUT
(grand unified theory) and string theory. The goal is not to provide a better description of
electrons or atomic cores, but to find the most fundamental theory of physics.

string theory

10 meV 10 eV 1 MeV

electrons, cores

atom

phenomenological

standard model

GUT

M-theory

high-energy physics

astrophysics and cosmology
solid state physics

known and established

effective

models
theory

most fundamental

semiconductors
magnets
superconductors
ferroelectrics
......

metals

particle physics

Figure 2: Energy scales in physics.

In contrast, in solid state physics we are dealing with phenomena occurring at room temperature
(T ∼ 300K) or below, i.e., at characteristic energies of about E ∼ kBT ∼ 0.03eV = 30meV,
which is even much smaller than the energy scale of one Hartree. Correspondingly, the impor-
tant length scales are given by the extension of the system or of the electronic wave functions.
The focus is thus quite different from the one of high-energy physics.
There, a highly successful phenomenological theory for low energies, the so-called standard
model, exists, whereas the underlying theory for higher energies is unknown. In solid state
physics, the situation is reversed. The Hamiltonian (1, 3) describes the known ’high-energy’
physics (on the energy scale of Hartree), and one aims at describing the low-energy properties
using reduced (effective, phenomenological) theories. Both tasks are far from trivial.
Among the various states of condensed matter that solid state theory seeks to describe are
metals, semiconductors, and insulators. Furthermore, there are phenomena such as magnetism,
superconductivity, ferroelectricity, charge ordering, and the quantum Hall effect. All of these
states share a common origin: Electrons interacting among themselves and with the ions through
the Coulomb interaction. More often than not, the microscopic formulation in (1) is too compli-
cated to allow an understanding of the low-energy behavior from first principles. Consequently,
the formulation of effective (reduced) theories is an important step in condensed matter theory.
On the one hand, characterizing the ground state of a system is an important goal in itself. How-
ever, measurable quantities are determined by excited states, so that the concept of ’elementary
excitations’ takes on a central role. Some celebrated examples are Landau’s quasiparticles for
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Fermi liquids, the phonons connected to lattice vibrations, and magnons in ferromagnets. The
idea is to treat the ground state as an effective vacuum in the sense of second quantization,
with the elementary excitations as particles on that vacuum. Depending on the system, the
vacuum may be the Fermi sea or some state with a broken symmetry, like a ferromagnet, a
superconductor, or the crystal lattice itself.
According to P. W. Anderson,1 the description of the properties of materials rests on two princi-
ples: The principle of adiabatic continuity and the principle of spontaneously broken symmetry.
By adiabatic continuity we mean that complicated systems may be replaced by simpler systems
that have the same essential properties in the sense that the two systems may be adiabatically
deformed into each other without changing qualitative properties. Arguably the most impres-
sive example is Landau’s Fermi liquid theory mentioned above. The low-energy properties of
strongly interacting electrons are the same as those of non-interacting fermions with renormal-
ized parameters. On the other hand, phase transitions into states with qualitatively different
properties can often be characterized by broken symmetries. In magnetically ordered states the
rotational symmetry and the time-reversal invariance are broken, whereas in the superconduct-
ing state the global gauge symmetry is. In many cases the violation of a symmetry is a guiding
principle which helps to simplify the theoretical description considerably. Moreover, in recent
years some systems have been recognized as having topological order which may be considered
as a further principle to characterize low-energy states of matter. A famous example for this is
found in the context of the Quantum Hall effect.
The goal of these lectures is to introduce these basic concepts on which virtually all more elab-
orate methods are building up. In the course of this, we will cover a wide range of frequently
encountered ground states, starting with the theory of metals and semiconductors, proceeding
with magnets, Mott insulators, and finally superconductors.

1P.W. Anderson: Basic Notions of Condensed Matter Physics, Frontiers in Physics Lecture Notes Series,
Addison-Wesley (1984).
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Chapter 1

Electrons in the periodic crystal

In this chapter we discuss the properties of extended electron states in a regular lattice of
ions. The presence of the lattice modifies the spectrum of the electrons as compared to that
of free particles, leading to separate energy bands, which determine the qualitative properties
of a solid. In particular, the structure of the electron bands allows a basic distinction between
metals, insulators, and semiconductors.
In the initial considerations we neglect the interactions among the electrons as well as the
dynamics of the ions. This simplification leads to a single particle description, to which Bloch’s
theorem can be applied.

1.1 Bloch states

1.1.1 Crystal symmetry

Many solid bodies can be described by a periodic array of positively charged ions forming a
perfect crystal (kept together by electrons either forming chemical bonds or mobile conduction
electrons). By definition, a crystal is characterized by the so-called space group R, a group
of operations (translations, rotations, the inversion or combinations) under which the crystal
is left invariant. In three dimensions, there are 230 different space groups1 (cf. Table 1.1).
Translations are represented by a basic set of primitive translation vectors {ai}, which leave
the lattice invariant. A translation by one of these vectors shifts a unit cell of the lattice to a
neighboring cell. Any translation that maps the lattice onto itself is a linear combination of the
{ai} with integer coefficients,

a = n1a1 + n2a2 + n3a3. (1.1)

A general symmetry transformation including the other elements of the space group may be
written in the notation due to Wigner,

r′ = gr + a = {g|a}r, (1.2)

where g represents a rotation, reflection or inversion. The elements g form the so-called gen-
erating point group P. In three dimensions there are 32 point groups. The different types of
symmetry operations involve

basic translations {E|a},

rotations, reflections, inversions {g|0},

screw axes, glide planes {g|a},
1A short guide to group theory is given in the textbook

- Peter Y. Yu and Manuel Cardona: Fundamentals of Semiconductors, Springer.
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where E is the unit element of P. A screw axis is a symmetry operation of a rotation followed
by a translation along the rotation axis. A glide plane is a symmetry operation with reflection at
the plane followed by a translation along the plane. The symmetry operations {g|a}, together
with the associative multiplication

{g|a}{g′|a′} = {gg′|ga′ + a} (1.3)

form a group with unit element {E|0}. In general, these groups are non-Abelian, i.e., the group
elements do not commute with each other. However, there is always an Abelian subgroup of
R, the group of translations {E|a}. The elements g ∈ P do not necessarily form a subgroup,
because some of these elements (e.g., screw axes or glide planes) leave the lattice invariant only
in combination with a translation. Nevertheless,

{g|a}{E|a′}{g|a}−1 = {E|ga′} (1.4)

{g|a}−1{E|a′}{g|a} = {E|g−1a′} (1.5)

always holds. If P is a subgroup of R, then R is said to be symmorphic. In this case, the space
group contains only primitive translations {E|a} and neither screw axes nor glide planes. The
14 Bravais lattices2 are symmorphic. Among the 230 space groups 73 are symmorphic and 157
are non-symmorphic.

crystal system point groups space group numbers
(# point groups, # space groups) Schönflies symbols international tables

triclinic (2,2) C1, C1̄ 1-2

monoclinic (3,13) C2, Cs, C2h 3-15

orthorhombic (3,59) D2, C2v, D2h 16-74

tetragonal (7,68) C4, S4, C4h, D4, C4v, D2d, D4h 75-142

trigonal (5,25) C3, S6, D3, C3v, D3d 143-167

hexagonal (7,27) C6, C3h, C6h, D6, C6v, D3h, D6h 168-194

cubic (5, 36) T, Th, O, Td, Oh 195-230

Table 1.1: List of the point and space groups for each crystal system.

1.1.2 Bloch’s theorem

We consider a Hamiltonian H which is invariant under a discrete set of lattice translations
{{E|a}}. This discrete translational invariance can be induced by the periodic ionic potential
and implies, that the corresponding translation operator T̂a on the Hilbert space commutes with
the Hamiltonian H = He +Hie (purely electronic Hamiltonian He, interaction between electrons
and ions Hie),

[T̂a,H] = 0. (1.6)

2Crystal systems, crystals, Bravais lattices are discussed in more detail in

- Czycholl, Theoretische Festkörperphysik, Springer
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Neglecting the interactions between the electrons, which in general is contained in He, we are
left with a single particle problem

H → H0 =
p̂2

2m
+ V (r̂). (1.7)

where r̂ and p̂ are position and momentum operators, while

V (r) =
∑

j

Vion(r −Rj), (1.8)

describes the potential landscape of the single particle in the ionic background. With Rj the
position of the j-th ion, the potential V (r) is by construction translation invariant, or equiva-
lently V (r + a) = V (r) for all lattice translations a. Therefore, H0 commutes with T̂a. For a
Hamiltonian H0 commuting with the translation operator T̂a, the extended eigenstates of H0

are simultaneous eigenstates of T̂a. Bloch’s theorem states that the eigenvalues of T̂a lie on
the unit circle of the complex plane. In other words, the wave function can be expressed as a
product of a plane wave eik·r and a periodic Bloch-factor uk(r)

ψn,k(r) =
1√
Ω
eik·run,k(r), (1.9)

with

T̂aun,k(r) = un,k(r − a) = un,k(r), (1.10)

T̂aψn,k(r) = ψn,k(r − a) = e−ik·aψn,k(r), (1.11)

H0ψn,k(r) = εn,kψn,k(r). (1.12)

The integer n is a quantum number called band index, k is the pseudo-momentum (wave vector)
and Ω represents the volume of the system. Note that the eigenvalue of ψn,k(r) with respect
to T̂a, e−ik·a, implies periodicity in k-space. The vectors G which satisfy ei(k+G)·a = eik·a are
termed reciprocal lattice vectors and they form a vector space. A basis of the reciprocal lattice
vector space is found from the relation

eiGj ·ai = 1 (1.13)

or

Gj · ai = 2πδij . (1.14)

The primitive basis set of the reciprocal space is given by

Gi = 2π
aj × ak

(a1 × a2) · a3
(1.15)

where i, j, and k are cyclic permutations of the indices 1, 2, and 3. These reciprocal basis
vectors allow the definition of the first Brillouin zone: One draws lines joining k = 0 and all
neighboring reciprocal lattice points spanned by {Gi}. The Brillouin zone is the smallest cell
bounded by the planes that intersect these lines in their middle and which are orthogonal to
them. This particular choice of a unit cell possesses all symmetry properties of the crystal. In the
one dimensional simple periodic lattice of lattice spacing a, the interval [−π/a, π/a] represents
the first Brillouin zone in k-space.
Bloch’s theorem simplifies the initial problem to the so-called Bloch equation for the periodic
function uk, (

(p̂ + ~k)2

2m
+ V (r)

)
uk(r) = εkuk(r), (1.16)

10



where we suppressed the band index to simplify the notation. This equation follows from the
relation

p̂eik·r = eik·r(p̂ + ~k), (1.17)

which can be used for more complex forms of the Hamiltonian as well.3

1.2 Nearly free electron approximation

Various numerical methods allow to compute rather efficiently the band energies εn,k for a given
Hamiltonian H. In order to understand some of the most essential aspects of the band structure
of electrons in a crystal, we start with a simple analytical approach, the so-called nearly free
electron approximation. We start by noting that the periodic potential can be expanded as

V (r) =
∑
G

VGe
iG·r, (1.22)

VG =
1

ΩUC

∫
UC

d3r V (r)e−iG·r, (1.23)

where we sum over all reciprocal lattice vectors and the domain of integration is the unit cell
(UC) with volume ΩUC. We assume that the lattice is real and invariant under inversion (V (r) =
V (−r)), so that VG = V ∗

−G = V−G. Note that the uniform component V0 corresponds to an
irrelevant energy shift and may be set to zero. Because of its periodicity, the Bloch function
uk(r) can be expanded in the same way,

uk(r) =
∑
G

cGe
iG·r, (1.24)

where the coefficients cG = cG(k) are functions of k. Inserting this Ansatz and the expansion
(1.23) into the Bloch equation, (1.16), we obtain a linear eigenvalue problem for the band energies
εk, (

~2

2m
(k + G)2 − εk

)
cG +

∑
G′

VG−G′cG′ = 0. (1.25)

The solution cG(k) of equation (1.25) requires the determination of the eigenvalues of an in-
finite dimensional matrix. The resulting band energies εk include corrections to the parabolic
dispersion ε(0)k = ~2k2/2m due to the potential V (r). It is straightforward to see that parabolic

3H0 may also contain the spin-orbit coupling, a relativistic correction which leads to an additional term

H0 =
bp2

2m
+ V (br) +

~
4m2c2

{σ ×∇V (br)} · bp, (1.18)

where σ = (σx, σy, σz) is the vector of the Pauli matrices

σx =

„
0 1
1 0

«
, σy =

„
0 −i
i 0

«
, σz =

„
1 0
0 −1

«
. (1.19)

The Bloch equation in this case is given by
(bp + ~k)2

2m
+ V (r) +

~
4m2c2

(σ ×∇V (r)) · (bp + ~k)

ff
uk(r) = εkuk(r). (1.20)

The energy eigenstates are no longer spin eigenstates. Instead, they are of pseudo spinor form

uk,±(r) = χk,±↑(r)|↑〉+ χk,±↓(r)|↓〉, (1.21)

where σz|↑〉 = +|↑〉 und σz|↓〉 = −|↓〉. Upon adiabatically switching off spin-orbit coupling, the states with index
+/− turn into the usual spin eigenfunctions |↑〉 and |↓〉.

11



dispersion ε(0)k is the correct energy spectrum in absence of the potential V (r).
Under the assumption that the periodic modulation of the potential is weak, i.e., |VG| �
~2G2/2m, the problem (1.25) can be simplified. Here, we consider two limits for the wave
vector k which are typically of interest. First, we choose k small, i.e., near the center of the
Brillouin zone. The approximate solution of the equation (1.25) is then given by

cG ≈


1 for G = 0

− 2mVG

~2{(k + G)2 − k2}
� 1 for G 6= 0

(1.26)

leading to the energy eigenvalue εk ≈ ~2k2/2m corresponding to the original parabolic band.
Note that this form of cG6=0 resembles the lowest order correction in the Rayleigh-Schrödinger
perturbation theory. This example corresponds to the lowest branch of the band structure within
this approach.
Next, we consider the case when the denominator of the expression in equation (1.26) is small,
i.e., k is in a range of the Brillouin zone where k2 ≈ (k + G)2 for some reciprocal G. This
means that the parabolas centered around 0 and −G cross at k = −G/2. Choosing for G a
primitive vector of the reciprocal lattice, the crossing point lies on the Brillouin zone boundary
and represents a point of high symmetry within the Brillouin zone. This situation requires to
take into account c0 and cG on an equal footing, while other coefficients are still negligible.
Then, the problem reduces to the coupled equations for these two coefficients, ~2k2

2m
− εk V−G

VG
~2

2m(k + G)2 − εk

 c0

cG

 = 0 (1.27)

Remember that VG = V ∗
G = V−G. From equation (1.27), the secular equation

det

 ~2k2

2m
− εk V ∗

G

VG
~2(k + G)2

2m
− εk

 = 0 (1.28)

follows, which allows us to determine

εk =
1
2

(
~2

2m
(k2 + (k + G)2)±

√
[
~2

2m
(k2 − (k + G)2)]2 + 4|VG|2

)
. (1.29)

For the symmetry point k = −G/2 and for VG < 0 we obtain

ε−G/2,± =
~2

2m

(
G

2

)2

± |VG| (1.30)

and

uk(r) = ei
G·r
2


sin G·r

2 , + anti-bonding,

cos G·r
2 , − bonding.

(1.31)

This result is equivalent to the splitting of a degenerate level through a symmetry breaking
interaction (hybridization). Note that the scheme applied here is quite analogous to Rayleigh-
Schrödinger perturbation theory for (nearly) degenerate energy levels.
The band structure can thus be constructed by the superposition of parabolic energy spectra
centered around all reciprocal lattice points. At the crossing points of the parabolas we find a
“band splitting” due to the periodically modulated potential. This leads to energy ranges where
no Bloch states exist, so-called band gaps. An illustrative and simple band structure of this kind
can straightforwardly be calculated in a one-dimensional regular lattice with a weak potential
V (x) as shown in Fig. 1.1.
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Figure 1.1: Band structure obtained by the nearly free electron approximation for a regular
one-dimensional lattice.

1.3 Symmetry properties of the band structure

The symmetry properties of crystals are a helpful tool for the analysis of their band structure.
They emerge from the symmetry group (space and point group) of the crystal lattice. Consider
the action Ŝ{g|a} of an element {g|a} of the space group on a Bloch wave function ψk(r)

Ŝ{g|a}ψk(r) = ψk({g|a}−1r) = ψk(g−1r − g−1a). (1.32)

Because {g|a} belongs to the space group of the crystal, we have [Ŝ{g|a},H0] = 0. Applying a
pure translation T̂a′ = Ŝ{E|a′} to this new wave function

T̂a′Ŝ{g|a}ψk(r) = Ŝ{g|a}T̂g−1a′ψk(r) = Ŝ{g|a}e
−ik·(g−1a′)ψk(r)

= Ŝ{g|a}e
−i(gk)·a′ψk(r)

= e−i(gk)·a′Ŝ{g|a}ψk(r), (1.33)

latter is found to be an eigenfunction of T̂a′ with eigenvalue e−i(gk)·a′ . Remember, that, according
to the Bloch theorem, we chose a basis {ψk} diagonalizing both T̂a and H0. Thus, apart from a
phase factor the action of a symmetry transformation {g|a} on the wave function4 corresponds
to a rotation from k to g−1k.

Ŝ{g|a}ψk(r) = λ{g|a}ψgk(r), (1.35)

4Symmetry behavior of the wave function.

bS{g|a}ψk(r) =
1√
Ω
bS{g|a}e

ik·r
X
G

cG(k) eiG·r =
1√
Ω
eik·(g−1r−g−1a)

X
G

cG(k) eiG·(g−1r−g−1a)

=
1√
Ω
e−i(gk)·aei(gk)·r

X
G

cG(k) ei(gG)·r = e−i(gk)·a 1√
Ω
ei(gk)·r

X
G

cg−1G(k) eiG·r

= e−i(gk)·a 1√
Ω
ei(gk)·r

X
G

cG(gk) eiG·r = λg|aψgk(r),

(1.34)

where we use the fact that cG = cG(k) is a function of k with the property cg−1G(k) = cG(gk) i.e. bS{g|a}uk(r) =
ugk(r).
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with |λ{g|a}|2 = 1, or

Ŝ{g|a}|k〉 = λ{g|a}|gk〉. (1.36)

in Dirac notation.5 Then it is easy to see that

εgk = 〈gk|H0|gk〉 = 〈k|Ŝ−1
{g|a}H0Ŝ{g|a}|k〉 = 〈k|H0|k〉 = εk. (1.40)

Consequently, there is a starlike structure of equivalent points gk with the same band energy
(→ degeneracy) for each k in the Brillouin zone (cf. Fig. 1.2).

Figure 1.2: Star of k-points in the Brillouin zone with degenerate band energy.

For a general point k the number of equivalent points in the star equals the number of point
group elements for this k (without inversion). If k lies on points or lines of higher symmetry, it
is left invariant under a subgroup of the point group. Consequently, the number of beams of the
star is smaller. The subgroup of the point group leaving k unchanged is called little group of k.
If inversion is part of the point group, −k is always contained in the star of k. In summary, we
have the simple relations

εnk = εn,gk, εnk = εn,−k, εnk = εn,k+G. (1.41)

Simple cubic lattice

Next, we will consider the energy bands εnk on points and along lines of high symmetry in a
simple cubic (sc) lattice (point group Oh) with lattice constant a, using the nearly free electron
method. The reciprocal lattice is again sc with lattice constant G = 2π/a. Without periodic
potential, the energy spectrum ε

(0)
k = ~2k2/2m is parabolic in k.

5In Dirac notation we write for the Bloch state with pseudo-momentum k

ψk(r) = 〈r|ψk〉. (1.37)

The action of the operator bS{g|a} on the state |r〉 is given by

bS{g|a}|r〉 = |gr + a〉 and 〈r|bS{g|a} = 〈g−1r − g−1a|, (1.38)

such that

〈r|bS{g|a}|ψk〉 = ψk(g−1r − g−1a). (1.39)

The same holds for pure translations.

14



ky

M

Z

R

Λ

Γ

Σ

S∆

X

T

kx

kz

Figure 1.3: Points and lines of high symmetry within the first Brillouin zone (cube) of a simple
cubic lattice.

Γ-point

First, we consider the center of the Brillouin zone, usually called the Γ-point (cf. Figure 1.3).
The lowest band at the Γ-point with energy E0 = ε0k=0 = 0 belongs to the parabola around
the center of the first Brillouin zone (ε0k ≈ ~2k2/2m) and is non-degenerate. The next higher
energy level for free electrons in a cubic crystal of lattice constant a is

E1 =
~2G2

2m
(1.42)

where G = 2π/a is the reciprocal unit vector and originates from the crossing of the parabolas
centered around the six nearest neighbor points of the reciprocal lattice

G1 = G(1, 0, 0), G2 = G(−1, 0, 0),
G3 = G(0, 1, 0), G4 = G(0,−1, 0), (1.43)
G5 = G(0, 0, 1), G6 = G(0, 0,−1).

The relevant basis functions for the expansion of the Bloch function are given by eir·Gn with
n = 1, . . . , 6 and we find

uk=0(r) =
6∑

n=1

cne
ir·Gn . (1.44)

where cn = cGn . Assuming that all other contributions (cG6=Gn ≈ 0) to be irrelevant, the secular
equation from (1.25) reads

det



E1 − E v u u u u
v E1 − E u u u u
u u E1 − E v u u
u u v E1 − E u u
u u u u E1 − E v
u u u u v E1 − E

 = 0 (1.45)

with v = V2Gn and u = VGn+Gn′ (n 6= n′). Solving this secular equation, we find, that there are
three eigenvalues with corresponding eigenvectors (listed in Table 1.2). The six-fold degeneracy
of the energy at the Γ-point of a free electron gas is partially lifted due to the potential compo-
nents v and u. Every energy eigenspace corresponds to an irreducible representations (Γ) with
dimension dΓ of the point group at the Γ-point (→ degeneracy). The Γ-point shares the sym-
metry of the point group6 of the crystal, which in this case is the cubic group Oh. A set of even

6Literature on point groups:
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E = ε1k=0 (c1, c2, c3, c4, c5, c6) uk=0(r) Γ dΓ

E1 + v + 4u (1, 1, 1, 1, 1, 1)/
√

(6) φ0 = cosGx+ cosGy + cosGz Γ+
1 1

E1 + v − 2u (−1,−1,−1,−1, 2, 2)/2
√

3 φ3z2−r2 = 2 cosGz − cosGx− cosGy , Γ+
3 2

(1, 1,−1,−1, 0, 0)/2 φ√3(x2−y2) =
√

3(cosGx− cosGy)
E1 − v (1,−1, 0, 0, 0, 0)/

√
2 φx = sinGx Γ−4 3

(0, 0, 1,−1, 0, 0)/
√

2 φy = sinGy
(0, 0, 0, 0, 1,−1)/

√
2 φz = sinGz

Table 1.2: Table of the eigenenergies, eigenvectors and corresponding Bloch functions at the
Γ-point.

and odd irreducible representations belongs to this group. An irreducible representation can be
specified by a vector space of functions of the vector (x, y, z) or the pseudo-vector (sx, sy, sz)
that are left invariant by symmetry operations of the group (see Table 1.3).
Note that each eigenvalue of the above secular equation can be attributed to one of the irre-

even basis function odd basis function
Γ+

1 1, x2 + y2 + z2 Γ−1 xyz(x2 − y2)(y2 − z2)(z2 − x2)
Γ+

2 (x2 − y2)(y2 − z2)(z2 − x2) Γ−2 xyz

Γ+
3 {2z2 − x2 − y2,

√
3(x2 − y2)} Γ−3 xyz{2z2 − x2 − y2,

√
3(x2 − y2)}

Γ+
4 {sx, sy, sx} Γ−4 {x, y, z}

Γ+
5 {yz, zx, xy} Γ−5 xyz(x2 − y2)(y2 − z2)(z2 − x2){yz, zx, xy}

Table 1.3: Irreducible representations and representative basis functions of the corresponding
vector spaces for the point group Oh.

ducible representations. The corresponding wave functions of the eigenstates form a vector space
and transform according to the properties of the representation under symmetry operations.

∆-line

Now we investigate the evolution of the band energies when k moves away from the Γ-point along
the (0, 0, 1) direction in k-space. This line is called the ∆-line. There, some of the degeneracies
present at the Γ-point will be lifted (cf. Table 1.5) because the symmetry operations leaving
k unchanged are now restricted to a subgroup of Oh. In the case at hand, this so-called little
group of k is isomorphic to C4v, which is part of the tetragonal crystal system. Note that the
inversion, acting as k → −k, is not an element of the little group. The group C4v has four
one-dimensional and one two-dimensional representations. We denote these representations by
∆1, . . . ,∆5 (cf. Table 1.4). It follows that five bands emanate from the three energy levels at
the Γ-point, one of which is two-fold degenerate (Figure 1.4 of).

X-point

Once we reach the Brillouin zone boundary at the X-point, the symmetry is again larger than on
the ∆-line, namely D4h, the full tetragonal point group which for each parity has five irreducible
representations, four of them are one-dimensional while the remaining one is two-dimensional (cf.

- Landau & Lifschitz: Vol. III Chapt. XII;

- Dresselhaus & Jorio, Group Theory - Applications to the Physics of Condensed Matter, Springer;

- Koster et al., Properties of the thirty-two point groups, MIT Press (Table book)
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Figure 1.4: The band structure of the simple cubic lattice.

∆ basis function d∆

∆1 1, z 1
∆2 xy(x2 − y2) 1
∆3 x2 − y2 1
∆4 xy 1
∆5 {x, y} 2

Table 1.4: Irreducible representations of C4v and their basis functions.

Oh C4v

Γ+
1 ∆1

Γ+
3 ∆1 ⊕∆3

Γ−4 ∆1 ⊕∆5

Table 1.5: Partial lifting of degeneracy leaving the Γ-point along the ∆-line.

Table 1.6). Note that C4v is a subgroup of D4h as well as D4h is a subgroup of Oh. Furthermore,
the inversion is an element ofD4h, as for the X-point k is equivalent to −k because k−(−k) = 2k
is a reciprocal lattice vector.

The set of states with the lowest energy is equivalent to the problem discussed above in

even basis function dX odd basis function dX

X+
1 1 1 X−

1 xyz(x2 − y2) 1
X+

2 xy(x2 − y2) 1 X−
2 z 1

X+
3 x2 − y2 1 X−

3 xyz 1
X+

4 xy 1 X−
4 z(x2 − y2) 1

X+
5 {zx, zy} 2 X−

5 {x, y} 2

Table 1.6: Irreducible representations of D4h and their basis functions.

equations (1.27), (1.28) and (1.31). We consider G1 = 0 and G2 = G(0, 0, 1) (remember that
G = 2π/a) with energy (~2/2m(G/2)2) at the X-point. The levels are split into an (even)
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bonding state and an (odd) anti-bonding state

X+
1 : E =

~2

2m

(
G

2

)2

− |VG2 |, eiGz/2 cos
(
Gz

2

)
, (1.46)

X−
2 : E =

~2

2m

(
G

2

)2

+ |VG2 |, eiGz/2 sin
(
Gz

2

)
. (1.47)

The next higher energy states are centered around E = (~2/2m)(
√

5G/2)2 and belong to the
next-to-nearest neighbors of the X-point in the reciprocal lattice. There are eight such points,
namely

G1 = G(1, 0, 0), G2 = G(1, 0, 1), G3 = G(−1, 0, 0), G4 = G(−1, 0, 1),
(1.48)

G5 = G(0, 1, 0), G6 = G(0, 1, 1), G7 = G(0,−1, 0), G8 = G(0,−1, 1).

To find the splitting of the energy levels, we project the base functions in (1.48) onto those of
the irreducible representations and find the results displayed in Table 1.7.
This analysis shows that there are six energy levels where two of them are two-fold degenerate.

X uk=(G/2)(0,0,1)(r) dX

X+
1 (cos(Gx) + cos(Gy))eiGz/2 cos(Gz/2) 1

X+
3 (cos(Gx)− cos(Gy))eiGz/2 cos(Gz/2) 1

X+
5 {sin(Gx)e−iGz/2 sin(Gz/2), sin(Gy)eiGz/2 sin(Gz/2)} 2

X−
2 (cos(Gx) + cos(Gy))eiGz/2 sin(Gz/2) 1

X−
4 (cos(Gx)− cos(Gy))eiGz/2 sin(Gz/2) 1

X−
5 {sin(Gx)eiGz/2 cos(Gz/2), sin(Gy)eiGz/2 cos(Gz/2)} 2

Table 1.7: Projections of the base functions 1.48 onto the ones of the irreducible representations
at the X-point (G = 2π/a).

This kind of analysis can be applied to all symmetry lines, so that a good qualitative picture of
the symmetries of the bands can be obtained. For more quantitative information, knowledge of
the specific form of the periodic potential is necessary and also more advanced techniques beyond
the nearly free electron approach are required. Nevertheless, the nearly free electron method can
give important qualitative insights into the symmetry related properties of the band structure
(see Figure 1.4 for a full band structure).

1.4 k · p - expansion

Near points of high symmetry in the Brillouin zone (such as the Γ-point), energy bands can
be approximated by considering a perturbative formulation. For illustration, we expand the
Hamiltonian (1.20) around the Γ-point k = 0 up to second order in k and split it into the three
parts

H0 =
p̂2

2m
+ V̂ , (1.49)

H1 =
~
m

π̂ · k, (1.50)

H2 =
~2k2

2m
, (1.51)

18



where π̂ = p̂ in this example. In a more general context (for example considering spin-orbit
coupling (1.18)) the operator π̂ in equation (1.50) may differ from p̂. We assume that the
Hamiltonian H0 can be solved exactly such that

H0|n0〉 = εn|n0〉, (1.52)

where |n0〉 are states at k = 0 with the band index (quantum number) n. Compared to H0,
H1 and H2 are small perturbations (small k). Note that H2 is not an operator, but simply
a k-dependent contribution to the energy. For simplicity, we assume the states |n0〉 to be
non-degenerate, so that Rayleigh-Schrödinger perturbation theory yields the perturbed energy

εk ≈ Ek = εn +
~2k2

2m
+

~2

m2

∑
n′ 6=n

∑
µ,ν

〈n0, |π̂µ|n′0〉〈n′0|π̂ν |n0〉
εn − εn′

kµkν , (1.53)

= εn +
~2

2m

∑
µ,ν

( m
m∗

)
µν
kµkν (1.54)

where we introduced a mass-tensor of the form( m
m∗

)
µν

= δµν +
2
m

∑
n′ 6=n

〈n0|π̂µ|n′0〉〈n′0|π̂ν |n0〉
εn − εn′

. (1.55)

Similarly, the eigenstates |nk〉 can be approximated using the Rayleigh-Schrödinger method,
resulting in

|nk〉 = eik·r

|n0〉+
~
m

∑
n′ 6=n

|n′0〉〈n
′0|π̂ · k|n0〉
εn − εn′

 . (1.56)

Thus, the electronic band structure in the vicinity of the Γ-point can be expressed by a mass-
tensor. If the latter is diagonal and isotropic, we recover a free dispersion relation but with an
modified mass m∗ instead of m. Expressing the mass tensor as( m

m∗

)
µν

=
2m
~2

∂2εk
∂kµ∂kν

, (1.57)

it gives a measure of the curvature of the energy band around a symmetry point. The resulting
effective mass m∗ can strongly deviate from the bare electron mass m and may even become
negative. The k·p-approximation is valid for other symmetry points, too. Later, we will find this
approximation very convenient when dealing with problems for which states around the upper
or lower band edges are important which are often, but not always, high-symmetry points.
Note that, at the band edges, all eigenvalues of the mass tensor have the same sign. There are
other symmetry points (usually located at the boundary of the Brillouin zone) where the mass
tensor has both positive and negative eigenvalues. These are called saddle points, which play
an important role in connection with van Hove singularities in the density of states.
In the derivation we used the property that at symmetry points, the energy shift is only quadratic
in H1, as

〈n0|π̂|n0〉 = 0. (1.58)

This is because of parity and π̂ being a rank one tensor operator, as can be easily verified by
noting that π̂ · k should be a scalar in equation (1.51).7

7In this case, P̂ bπP̂ = −bπ holds for the parity operator P̂ . But P̂ |n0〉 = ±|n0〉 (|n0〉 is a parity eigenstate
whenever the system has inversion symmetry, which carries over to the little group of k = 0). Then,

〈n0|bπ|n0〉 = −〈n0|P̂ bπP̂ |n0〉 = −〈n0|bπ|n0〉, (1.59)

so that the matrix element vanishes.
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Degenerate bands

If an energy level (say at the Γ-point) is degenerate a special treatment is needed because the
previous Rayleigh-Schrödinger approximation assumed non-degenerate levels. As an example,
we consider a three-fold degenerate level corresponding to the irreducible representation Γ−4 with
|nµ0〉 (µ = x, y, z) in a cubic crystal with the generating point group Oh.
Then, the Rayleigh-Schrödinger perturbation theory leads to the problem of diagonalizing the
3× 3-matrix

Hµν =
~2

m2

∑
n′ 6=n

〈nµ0|π̂ · k|n′0〉〈n′0|π̂ · k|nν0〉
εn − εn′

, (1.60)

where the sum runs over all intermediate states |n′0〉 not degenerate with |nµ0〉. The cubic
symmetry of the Γ-point leads to the following structure of the matrix:

Hµν = (Ak2 +Bk2
µ)δµν + Ckµkν (1.61)

and the correction to the electronic spectrum can be obtained from the secular equation

det(Hµν − Eδµν) = 0 . (1.62)

This equation is difficult to solve in general. Nevertheless, for special directions in the Brillouin
zone, we obtain simple spectra. First we consider the ∆-line, k = (0, 0, kz). We find two
eigenvalues, leading to

εk = ε0 +
(

~2

2m
+A

)
k2

z +


0 two-fold degenerate

(B + C) k2
z non-degenerate

(1.63)

where the non-degenerate band belong to ∆1 and the two-fold degenerate branch to ∆5 of C4v.
Small deviations from the ∆-line can be treated under certain conditions exactly. For example,
for k = (kx, 0, kz) we find,

εk = ε0 +
(

~2

2m
+A

)
k2 +



(B + C)k2 −
√

(B + C)2k4 − 4B(B + 2C)k2
xk

2
z

0

(B + C)k2 +
√

(B + C)2k4 − 4B(B + 2C)k2
xk

2
z

(1.64)

which correspond to three non-degenerate branches of the electron bands.

1.5 Approximate band calculations

While the approximation of nearly free electrons gives a qualitatively reasonable picture of the
band structure, it rests on the assumption that the periodic potential is weak, and thus may be
treated as a small perturbation. However, in reality the ionic potential is strong compared to
the electrons’ kinetic energy. This leads to strong modulations of the wave function around the
ions, which is not well described by slightly perturbed plane waves.

1.5.1 Pseudo-potential

In order to overcome this weakness of the plane wave solution, we would have to superpose a
very large number of plane waves, which is not an easy task to put into practice. Alternatively,
we can divide the electronic states into the ones corresponding to filled low-lying energy states,
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which are concentrated around the ionic core (core states), and into extended (and more weakly
modulated) states, which form the valence and conduction bands. The core electron states
may be approximated by atomic orbitals of isolated atoms. For a metal such as aluminum (Al:
1s22s22p63s23p) the core electrons correspond to the 1s-, 2s-, and 2p-orbitals, whereas the 3s-
and 3p-orbitals contribute dominantly to the extended states of the valence- and conduction
bands. We will focus on the latter, as they determine the low-energy physics of the electrons.
The core electrons are deeply bound and can be considered inert.
We introduce the core electron states as |φj〉, with H|φj〉 = Ej |φj〉 where H is the Hamiltonian
of the single atom. The remaining states have to be orthogonal to these core states, so that we
make the Ansatz

|φn,k〉 = |χnk〉 −
∑

j

|φj〉〈φj |χn,k〉, (1.65)

with |χn,k〉 an orthonormal set of states. Then, 〈φn,k|φj〉 = 0 holds for all j. If we choose plane
waves for the |χnk〉, the resulting |φn,k〉 are so-called orthogonalized plane waves (OPW). The
Bloch functions are superpositions of these OPW,

|ψn,k〉 =
∑
G

bk+G|φn,k+G〉, (1.66)

where the coefficients bk+G converge rapidly, such that, hopefully, only a small number of OPWs
is needed for a good description.
First, we again consider an arbitrary |χnk〉 and insert it into the eigenvalue equation H|φnk〉 =
Enk|φnk〉,

H|χnk〉 −
∑

j

H|φj〉〈φj |χn,k〉 = Enk

(
|χnk〉 −

∑
j

|φj〉〈φj |χn,k〉
)

(1.67)

or

H|χnk〉+
∑

j

(Enk − Ej) |φj〉〈φj |χn,k〉 = Enk|χnk〉. (1.68)

We introduce the integral operator in real space V̂ ′ =
∑

j(Enk − Ej)|φj〉〈φj |, describing a non-
local and energy-dependent potential. With this operator we can rewrite the eigenvalue equation
in the form

(H+ V̂ ′)|χn,k〉 = (H0 + V̂ + V̂ ′)|χn,k〉 = (H+ V̂ps)|χn,k〉 = Enk|χnk〉. (1.69)

This is an eigenvalue equation for the so-called pseudo-wave function (or pseudo-state) |χnk〉,
instead of the Bloch state |ψnk〉, where the modified potential V̂ps = V̂ + V̂ ′ is called pseudo-
potential. The attractive core potential V̂ = V (r̂) is always negative. On the other hand,
Enk > Ej , such that V̂ ′ is positive. It follows that V̂ps is weaker than both V̂ and V̂ ′.
An arbitrary number of core states

∑
j aj |ψj〉 may be added to |χnk〉 without violating the

orthogonality condition (1.65). Consequently, neither the pseudo-potential nor the pseudo-states
are uniquely determined and may be optimized variationally with respect to the set {aj} in order
to optimally reduce the spatial modulation of either the pseudo-potential or the wave-function.

If we are only interested in states inside a small energy window, the energy dependence of the
pseudo-potential can be neglected, and Vps may be approximated by a standard potential (see
Figure 1.5). Such a simple Ansatz is exemplified by the atomic pseudo-potential, proposed by
Ashcroft, Heine and Abarenkov (AHA). The potential of a single ion is assumed to be of the
form

vps(r) =

{
V0 r < Rc,

−Zione2

r r > Rc,
(1.70)
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Figure 1.5: Illustration of the pseudo-potential.

where Zion is the charge of the ionic core and Rc its effective radius (determined by the core
electrons). The constants Rc and V0 are chosen such that the energy levels of the outermost
electrons are reproduced correctly for the single-atom calculations. For example, the 1s-, 2s-,
and 2p-electrons of Na form the ionic core. Rc and V0 are adjusted such that the one-particle
problem p2/2m+ vps(r) leads to the correct ionization energy of the 3s-electron. More flexible
approaches allow for the incorporation of more experimental input into the pseudo-potential.
The full pseudo-potential of the lattice can be constructed from the contribution of the individual
atoms,

Vps(r) =
∑

n

vps(|r −Rn|), (1.71)

where Rn is the lattice vector. For the method of nearly free electrons we need the Fourier
transform of the potential evaluated at the reciprocal lattice vectors,

Vps,G =
1
Ω

∫
d3r Vps(r)e−iG·r =

N

Ω

∫
d3r vps(r)e−iG·r. (1.72)

For the AHA form (1.70), this is given by

Vps,G = −4πZione
2

G2

(
cos(GRc)

+
V0

Zione2G

(
(R2

cG
2 − 2) cos(GRc) + 2− 2RcG sin(GRc)

))
. (1.73)

For small reciprocal lattice vectors, the zeroes of the trigonometric functions on the right-hand
side of (1.73) reduce the strength of the potential. For large G, the pseudo-potential decays
∝ 1/G2. It is thus clear that the pseudo-potential is always weaker than the original potential.
Extending this theory for complex unit cells containing more than one atom, the pseudo-potential
may be written as

Vps(r) =
∑
n,α

vα
ps(|r − (Rn + Rα)|), (1.74)

where Rα denotes the position of the α-th base atom in the unit cell. Here, vα
ps is the pseudo-

potential of the α-th ion. In reciprocal space,

Vps,G =
N

Ω

∑
α

e−iG·Rα

∫
d3r vα

ps(|r|)e−iG·r (1.75)

=
∑
α

e−iG·RαFα,G. (1.76)

The form factor Fα,G contains the information of the base atoms and may be calculated or
obtained by fitting experimental data.
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1.5.2 Augmented plane wave

We now consider a method introduced by Slater in 1937. It is an extension of the so-called
Wigner-Seitz cell method (1933) and consists of approximating the crystal potential by a so-
called muffin-tin potential. Latter is a periodic potential, which is taken to be spherically
symmetric and position dependent around each atom up to a distance rs, and constant for
larger distances. The spheres of radius rs are taken to be non-overlapping and are contained
completely in the Wigner-Seitz cell8 (Figure 1.6).

Figure 1.6: Muffin-tin potential.

The advantage of this decomposition is that the problem can be solved using a divide-and-
conquer strategy. Inside the muffin-tin radius we solve the spherically symmetric problem, while
the solutions on the outside are given by plane waves; the remaining task is to match the
solutions at the boundaries.
The spherically symmetric problem for |r| < rs is solved with the standard Ansatz

ϕ(r) =
ul(r)
r

Ylm(θ, φ), (1.77)

where (r, θ, φ) are the spherical coordinates or r and the radial part ul(r) of the wave function
obeys the differential equation[

− ~2

2m
d2

dr2
+

~2l(l + 1)
2mr2

+ V (r)− E

]
ul(r, E) = 0. (1.78)

We define an augmented plane wave (APW) A(k, r, E), which is a pure plane wave with wave
vector k outside the Muffin-tin sphere. For this, we employ the representation of plane waves
by spherical harmonics,

eik·r = 4π
∞∑
l=0

l∑
m=−l

iljl(kr)Y
∗
lm(k̂)Ylm(r̂), (1.79)

8The Wigner-Seitz cell is the analogue of the Brillouin zone in real space. One draws planes cutting each
line joining two atoms in the middle, and orthogonal to them. The smallest cell bounded by these planes is the
Wigner-Seitz cell.
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where jl(x) is the l-th spherical Bessel function. We parametrize

A(k, r, E) =



4π√
Ω

UC

∑
l,m

iljl(krs)
rsul(r, E)
rul(rs, E)

Y ∗
lm(k̂)Ylm(r̂), r < rs,

4π√
Ω

UC

∑
l,m

iljl(kr)Y
∗
lm(k̂)Ylm(r̂), r > rs,

(1.80)

where Ω
UC

is the volume of the unit cell. Note that the wave function is always continuous at
r = rs, but that its derivatives are in general not continuous. We can use an expansion of the
wave function ψk(r) similar to the one in the nearly free electron approximation (see equations
(1.9) and (1.24)),

ψk(r) =
∑
G

cG(k)A(k + G, r, E), (1.81)

where the G are reciprocal lattice vectors. The unknown coefficients can be determined varia-
tionally by solving the system of equations∑

G

〈Ak(E)|H − E|Ak+G(E)〉cG(k) = 0, (1.82)

where

〈Ak(E)|H − E|Ak′(E)〉 =
(

~2k · k′

2m
− E

)
Ω

UC
δk,k′ + Vk,k′ (1.83)

with

Vk,k′ = 4πr2s

[
−
(

~2k · k′

2m
− E

)
j1(|k − k′|rs)
|k − k′|

+
∞∑
l=0

~2

2m
(2l + 1)Pl(k̂ · k̂

′
)jl(krs)jl(k

′rs)
u′l(rs, E)
ul(rs, E)

]
. (1.84)

Here, Pl(z) is the l-th Legendre polynomial and u′ = du/dr. The solution of (1.82) yields the
energy bands. The most difficult parts are the approximation of the crystal potential by the
muffin-tin potential and the computation of the matrix elements in (1.82). The rapid convergence
of the method is its big advantage: just a few dozens of G-vectors are needed and the largest
angular momentum needed is about l = 5. Another positive aspect is the fact that the APW-
method allows the interpolation between the two extremes of extended, weakly bound electronic
states and tightly bound states.

1.6 Tightly bound electrons

If the electrons in the valence and conduction bands are strongly bound to the ions, another
very efficient approximation to the band structure exists. In this case, it is easier to approach
the problem in real space instead of reciprocal space. This leads to the so-called tight-binding
model. We introduce the Wannier functions as ’Fourier transforms’ of the Bloch functions,

ψk(r) =
1√
N

∑
j

eik·Rjw(r −Rj), (1.85)
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where w(r −Rj) is the Wannier function centered around the j-th atom. There is a Wannier
function for each atomic orbital. For the sake of simplicity, we restrict ourselves to the case of
one orbital per atom. The Wannier function obeys the orthogonality relation∫

d3r w∗(r −Rj)w(r −Rl) = δjl. (1.86)

We assume the one-particle Hamiltonian to be of the form H = −~2∇2/2m + V (r), with a
periodic potential V (r). Then, εk can be expressed through

εk =
∫
d3r ψ∗k(r)Hψk(r) =

1
N

∑
j,l

e−ik·(Rj−Rl)

∫
d3r w∗(r −Rj)Hw(r −Rl). (1.87)

With the definitions

ε0 =
∫
d3r w∗(r −Rj)Hw(r −Rj), (1.88)

tjl =
∫
d3r w∗(r −Rj)Hw(r −Rl) for j 6= l (1.89)

we immediately find, that the band energy can be written as a discrete sum,

εk = ε0 +
1
N

∑
j,l

tjle
−ik·(Rj−Rl) = ε0 +

∑
l

t0le
ik·Rl , (1.90)

where R0 = 0 is assumed without loss of generality. It is straightforward to show that εk+G = εk.
The quantities tjl are called hopping matrix elements. It is possible to construct an effective
Hamiltonian based on the above findings, which describes the band structure of independent
electrons, as

H =
∑
i,j

∑
s

tijc
†
iscjs, (1.91)

where cis (c†is) annihilates (creates) an electron with spin s at the lattice point i. The Hamiltonian
describes the hopping of electrons from site j to site i. This formulation is advantageous, if the
hopping matrix elements fall off rapidly with the distance between the lattice points. This should
be the case for electronic states which are tightly bound to the ions.
Consider a simple cubic lattice, assuming that tjl = −t for nearest neighbors and zero otherwise.
The band energy follows from a Fourier transform and is given by

εk = ε0 − 2t
(
cos(kxa) + cos(kya) + cos(kza)

)
, (1.92)

where a is the lattice constant. The same can be applied to more complicated lattices and
systems with several relevant orbitals per atom.

1.7 Semi-classical description of band electrons

In quantum mechanics, the Ehrenfest theorem shows that the expectation values of the position
and momentum operators obey equations similar to the equation of motion in Newtonian me-
chanics. An analogous formulation holds for electrons in a periodic potential, where we assume
that the electron may be described as a wave packet of the form

ψk(r, t) =
∑
k′

gk(k′)eik
′·r−iεk′ t, (1.93)
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where gk(k′) is centered around k in reciprocal space and has a width of ∆k. ∆k should be
much smaller than the size of the Brillouin zone for this Ansatz to make sense, i.e., ∆k � 2π/a.
Therefore, the wave packet is spread over many unit cells of the lattice since Heisenberg’s
uncertainty principle (∆k)(∆x) > 1 implies ∆x� a/2π. In this way, the pseudo-momentum k
of the wave packet remains well defined. Furthermore, the applied electric and magnetic fields
have to be small enough not to induce transitions between different bands. The latter condition
is not very restrictive in practice.

1.7.1 Semi-classical equations of motion

We introduce the rules of the semi-classical motion of electrons with applied electric and magnetic
fields without proof:

• The band index of an electron is conserved, i.e., there are no transitions between the bands.

• The equations of motion read9

ṙ = vn(k) =
∂εnk

∂~k
, (1.96)

~k̇ = −eE(r, t)− e

c
vn(k)×H(r, t). (1.97)

• All electronic states have a wave vector that lies in the first Brillouin zone, as k and k+G
label the same state for all reciprocal lattice vectors G.

• In thermal equilibrium, the electron density per spin in the n-th band in the volume
element d3k/(2π)3 around k is given by

n
F
[εn(k)] =

1
e[εn(k)−µ]/kBT + 1

, (1.98)

Each state of given k and spin can be occupied only once (Pauli principle).

Note that ~k is not the momentum of the electron, but the so-called lattice momentum or pseudo
momentum in the Bloch theory of bands. It is connected with the eigenvalue of the translation
operator on the state. Consequently, the right-hand side of the equation (1.97) is not the force
that acts on the electron, as the forces exerted by the periodic lattice potential is not included.
The latter effect is contained implicitly through the form of the band energy ε(k), which governs
the first equation.

Bloch oscillations

The fact that the band energy is a periodic function of k leads to a strange oscillatory behavior of
the electron motion in a static electric field. For illustration, consider a one-dimensional system

9A plausibility argument concerning the conservation of energy leading to the equation (1.97) is given here.
The time derivative of the energy (kinetic and potential)

E = εn(k(t))− eφ(r(t)) (1.94)

has to vanish, i.e.,

0 =
dE

dt
=
∂εn(k)

∂k
· k̇ − e∇φ · ṙ = vn(k) ·

“
~k̇ − e∇φ

”
. (1.95)

From this, equation (1.97) follows directly for the electric field E = ∇φ and the Lorentz force is allowed because
the force is always perpendicular to the velocity vn.
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where the band energy εk = −2 cos ka leads to the solution of the semi-classical equations
(1.96,1.97)

~k̇ = −eE (1.99)

⇒ k = −eEt
~

(1.100)

⇒ ẋ = −2a
~

sin
(
eEat

~

)
, (1.101)

in the presence of a homogenous electric field E. It follows immediately, that the position x of
the electron oscillates like

x(t) =
1
eE

cos
(
eEat

~

)
. (1.102)

This behavior is called Bloch oscillation and means that the electron oscillates around its initial
position rather than moving in one direction when subjected to a static electric field. This effect
can only be observed under very special conditions where the probe is absolutely clean. The
effect is easily destroyed by damping or scattering.

1.7.2 Current densities

We will see in chapter 6 that homogenous steady current carrying states of electron systems can
be described by the momentum distribution n(k). Assuming this property, the current density
follows from

j = −2e
∫
BZ

d3k

(2π)3
v(k)n(k) = −2e

∫
BZ

d3k

(2π)3
n(k)

∂ε(k)
∂~k

, (1.103)

where the integral extends over all k in the Brillouin zone (BZ) and the factor 2 originates
from the two possible spin states of the electrons. Note that for a finite current density j, the
momentum distribution n(k) has to deviate from the equilibrium Fermi-Dirac distribution in
equation (1.98). It is straight forward to show that the current density vanishes for an empty
band. The same holds true for a completely filled band (n(k) = 1) where equation (1.96) implies

j = −2e
∫
BZ

d3k

(2π)3
1
~
∂ε(k)
∂k

= 0 (1.104)

because ε(k) is periodic in the Brillouin zone, i.e., ε(k+G) = ε(k) when G is a reciprocal lattice
vector. Thus, neither empty nor completely filled bands can carry currents.
An interesting aspect of band theory is the picture of holes. We compute the current density
for a partially filled band in the framework of the semi-classical approximation,

j = −e
∫
BZ

d3k

4π3
n(k)vn(k) (1.105)

= −e
[ ∫

BZ

d3k

4π3
v(k)−

∫
BZ

d3k

4π3
[1− n(k)]v(k)

]
(1.106)

= +e
∫
BZ

d3k

4π3
[1− n(k)]v(k). (1.107)

This suggests that the current density comes either from electrons in filled states with charge
−e or from ’holes’, missing electrons carrying positive charge and sitting in the unoccupied
electronic states. In band theory, both descriptions are equivalent. However, it is usually easier
to work with holes if a band is almost filled, and with electrons if the filling of an energy band
is small.
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1.8 Metals and semiconductors

Each state |ψn,k〉 can be occupied by two electrons, one with spin state | ↑〉 and | ↓〉. In the
ground state, all lowest states up to a Fermi energy E

F
are filled. The nature of the ground

state of electrons in a solid depends on the number of electrons per atom. Usually, this number
is an integer, so that in the simplest cases we distinguish only two different situations: First,
the bands can be either completely filled or empty when the number of electrons per atom is
even. In this case, the Fermi energy lies in a band gap (cf. Figure 1.7), and a finite energy is
needed to add, to remove or to excite electrons. If the band gap Eg is much smaller than the
bandwidth, we call the material a semiconductor. for Eg of the order of the bandwidth, it is an
(band) insulator. In both cases, for temperatures T � Eg/kB

the application of a small electric
voltage will not produce an electric transport. The highest filled band is called valence band,
whereas the lowest empty band is termed conduction band. Note that we will encounter another
form of an insulator, the Mott insulator, whose insulating behavior is not governed by a band
structure effect, but by a correlation effect through strong Coulomb interaction.
Secondly, if the number of electrons per atom is odd, the uppermost non-empty band is half
filled (see Figure 1.7). Then the system is a metal, as charges can move without overcoming
a band gap and electrons can be excited with arbitrarily small energy. The electrons remain
mobile down to arbitrarily low temperatures. The standard example of a metal are the Alkali
metals in the first column of the periodic table (Li, Na, K, Rb, Cs), as all of them have the
configuration [noble gas] (ns)1, i.e., one mobile electron per ion.

semiconductor

insulator

EF

EF

EF

E EE

k kk

filled filled filled

metal semimetal

metal

Figure 1.7: Material classes according to band filling: left panel: insulator or semiconductor
(Fermi level in band gap); center panel: metal (Fermi level inside band); right panel: metal or
semimetal (Fermi level inside two overlapping bands).

In general, band structures are more complex. Different bands need not to be separated by energy
gaps, but can overlap instead. In particular, this happens if different orbitals are involved in the
structure of the bands. In these systems, bands can have any fractional filling (not just filled
or half-filled). The earth alkaline metals are an example for this (second column of the periodic
table, Be, Mg, Ca, Sr, Ba), which are metallic despite having two (n, s)-electrons per unit cell.
Systems, where two bands overlap at the Fermi energy but the overlap is small, are termed
semi-metals. The extreme case, where valence and conduction band touch in isolated points
so that there are no electrons at the Fermi energy and still the band gap is zero, is realized in
graphite.
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Chapter 2

Semiconductors

The technological relevance of semiconductors can hardly be overstated. In this chapter, we
review some of their basic properties. Regarding the electric conductivity, semiconductors are
placed in between metals and insulators. Normal metals are good conductors at all temperatures,
and the conductivity usually increases with decreasing temperature. On the other hand, for
semiconductors and insulators the conductivity decreases upon cooling (see Figure 2.1).

σ

0 0
TT

semiconductor/isolator metal

σ

Figure 2.1: Schematic temperature dependence of the electric conductivity for semiconductors
and metals.

We will see that the conductivity may be written as

σ =
ne2τ

m
, (2.1)

where n is the density of mobile electrons, τ is the average time between two scattering events
of the electrons, and m and e are the electronic mass and charge, respectively. In metals, n is
independent of temperature, whereas the scattering time τ decreases with increasing tempera-
ture. Thus, τ determines majorly the temperature dependence of the conductivity in metals.
On the other hand, insulators and semiconductors have no mobile charges at T = 0. At finite
temperature, charges are induced by thermal excitations which have to overcome the band gap1

Eg between the valence and the conduction band, yielding

n ∼ n0

(
T

T0

)3/2

e−Eg/2kBT , (2.3)

1Actually, one has to count both the excited electrons in the conduction band and the resulting holes in the
valence band, as both contribute to the current,

j = (σ+ + σ−)E, with σ± =
n±e

2τ±
m±

, (2.2)

where + and − stand for holes and electrons, respectively, and n+ = n− holds for thermal excitation. Note that,
in general, the effective masses and scattering times are not the same for the valence and conduction bands.
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where T0 = 300K and the electron density in the material n0 is typically 1020 cm−3. For
insulators, the energy gap is huge, e.g., 5.5 eV for diamond. Consequently, the charge carrier
density at room temperature T = 300K is around n ∼ 10−27cm−3. For a higher charge carrier
density n ∼ 103 − 1011cm−3, smaller gaps Eg ∼ 0.5 − 1eV are necessary. Materials with
a band gap in this regime are not fully isolating and therefore are termed semiconductors.
However, the carrier densities of both insulators and semiconductors are dwarfed by the electron
density in metals contributing to current transport (nmetal ∼ 1023− 1024cm−3). Adding a small
amount of impurities in semiconductors, a process called doping with acceptors or donators,
their conductivity can be engineered in various ways, rendering them useful as components in
innumerable applications.

2.1 The band structure of the elements in group IV

2.1.1 Crystal and band structure

The most important semiconductor for technological applications is silicon (Si) that – like carbon
(C), germanium (Ge) and tin (Sn) – belongs to the group IV of the periodic table. These
elements have four electrons in their outermost shell in the configuration (ns)2(np)2 (n=2 for
C, n=3 for Si, n=4 for Ge, and n=5 for Sn). All four elements form crystals with a diamond
structure (cf. Figure 2.2), i.e., a face-centered cubic lattice with a unit cell containing two atoms
located at (0, 0, 0) and (1

4 ,
1
4 ,

1
4) (for Sn this is called α-Sn). The crystal structure is stabilized

by hybridization of the four valence electrons, leading to covalent bonding of oriented orbitals,

|ψ1〉 = |ns〉+ |npx〉+ |npy〉+ |npz〉, |ψ2〉 = |ns〉+ |npx〉 − |npy〉 − |npz〉,
|ψ3〉 = |ns〉 − |npx〉+ |npy〉 − |npz〉, |ψ4〉 = |ns〉 − |npx〉 − |npy〉+ |npz〉. (2.4)

Locally, the nearest neighbors of each atom form a tetrahedron around it, which leads to the
diamond structure of the lattice.

Figure 2.2: The crystal structure of diamond corresponds to two face-centered cubic latices
shifted by a quarter of lattice spacing along the (1,1,1) direction.

The band structure of these materials can be found around the Γ-point by applying the free-
electron approximation discussed in the previous chapter. Γ1 is the corresponding representation
to the parabolic band centered around the center of the Brillouin zone (0, 0, 0). Note that the
reciprocal lattice of a face-centered cubic (fcc) lattice is body-centered cubic (bcc). The Brillouin
zone of a fcc crystal is embedded in a bcc lattice as illustrated in Figure 2.3).
The next multiplet with an energy of ε = 6π2~2/ma2 derives from the parabolic bands emanating
from the neighboring Brillouin zones, with G = G(±1,±1,±1) and G = 2π/a. The eight states
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Figure 2.3: The Brillouin zone of a face-centered cubic crystal (in real space) is embedded in a
bcc lattice.

are split into Γ1⊕Γ2⊕Γ4⊕Γ5. The magnitude of the resulting energies are obtained from band
structure calculations, lifting the energy degeneracy εΓ5

< εΓ4
< εΓ2

< εΓ1
in the presence of a

periodic potential V (r). The essential behavior of the low-energy band structure of C and Si is
shown in Figure 2.4.
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Figure 2.4: Band structure of C and Si.

With two atoms per unit cell and four valence electrons, there are totally eight electrons per unit
cell. It follows that the bands belonging to Γ1 (non-degenerate) and Γ5 (threefold degenerate)
are completely filled. The maximum of the valence band is located at the Γ-point and belongs to
the representation Γ5. Because of the existence of an energy gap between valence and conduction
band, the system is not conducting at T = 0. The gap is indirect, meaning that the minimum of
the conduction band and the maximum of the valence band lie at different points in the Brillouin
zone, i.e., the gap is minimal between the Γ-point of the valence band and some finite momentum
~k0 along the [100]-direction of the conduction band.2 A typical example of a semiconductor
with a direct gap is GaAs, composed of one element of the third and fifth group, respectively.
Next we list some facts about these materials of the group IV:

• Carbon has an energy gap of around 5.5eV in the diamond structure. Thus, in this
2Energy gaps in semiconductors and insulators are said to be direct if the wave-vector connecting the maximum

of the valence band and the minimum of the conduction band vanishes. Otherwise a gap is called indirect (see
Figure 2.5).
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Figure 2.5: Illustration of direct and indirect band gaps.

configuration it is not a semiconductor but an insulator. The large energy gap causes the
transparency of diamond in the visible range (1.5-3.5eV), as the electromagnetic energy in
this range cannot be absorbed by the electrons.

• The energy gap of silicon is 1.12eV and thus much smaller; furthermore, it is indirect.

• Germanium has an indirect gap of 0.67eV.

2.1.2 k · p - expansion

The band structure in the vicinity of the band edges can be very well described using the k · p
method, as we show now for silicon. First, we consider the maximum of the valence band at
k = 0 (Γ-point), with electronic states

{ |yz〉, |zx〉, |xy〉 } (2.5)

belonging to the representation Γ+
5 (see Table 1.3). By symmetry considerations we obtain, in

second order perturbation theory, the secular equation for the degenerate subspace,

det

 ak2
x + b(k2

y + k2
z)− E ckxky ckxkz

ckxky ak2
y + b(k2

x + k2
z)− E ckykz

ckxkz ckykz ak2
z + b(k2

x + k2
y)− E

 = 0. (2.6)

The general form of the eigenvalues is complicated, but it can be shown that the threefold
degeneracy of the energies is lifted when moving away from the Γ-point along the high-symmetry
lines ∆ and Λ. On the ∆- (C4v) and Λ-lines (C3v) one twofold degenerate and one non-degenerate
band emerge (cf. Figure 2.4):

∆-line (k = k(1, 0, 0)) E1(∆2) = ak2, E2,3(∆5) = bk2, (2.7)

Λ-line (k =
k√
3
(1, 1, 1)) E1(Λ1) = (a+ 2b+ 2c)k2, E2,3(Λ3) = (a+ 2b− c)k2, (2.8)

where ∆i and Λi are irreducible representations of the point group C4v and C3v, respectively.3

On the other hand, the minimum of the conduction band is located on the ∆-line at k0 =

3Spin-orbit coupling has been neglected so far. Including the spin degrees of freedom would lead to a splitting
of the energies at k = 0 into a two-fold degenerate level (Γ+

6 ) and a four-fold degenerate one (Γ+
8 ).
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k0(1, 0, 0) with k0 ≈ 0.8ΓX. Apart from spin, the corresponding band is non-degenerate. It
follows that the k · p-approximation is given by

Ek = a′(kx − k0)
2 + b′(k2

y + k2
z), (2.9)

due to the symmetry around k0 = k0(1, 0, 0). The electronic properties of these semiconductors
are determined by the states close to the band edges, so that these k ·p - approximations – even
if they only describe the energy bands very locally – play an important role in the physics of
semiconductors.

2.2 Elementary excitations in semiconductors

We consider a simple two-band model to illustrate the most basic properties of the excitation
spectrum of a semiconductor. The Hamiltonian is given by

H =
∑
k,s

εV,kĉ
†
V,k,sĉV,k,s +

∑
k,s

εC,kĉ
†
C,k,sĉC,k,s, (2.10)

where εV,k and εC,k are the band energies of the valence band and conduction band, respectively.

The operator c†nks (cnks) creates (annihilates) an electron with (pseudo-)momentum k and spin
s in the band n, n ∈ {V,C}. In the ground state |Φ0〉,

|Φ0〉 =
∏
k,s

ĉ†V,k,s|0〉, (2.11)

the valence band is completely filled, whereas the conduction band is empty. The product on the
right-hand side runs over all wave vectors in the first Brillouin zone. The ground state energy
is given by

E0 = 2
∑
k

εV,k. (2.12)

The total momentum and spin of the ground state vanish. We next consider single electron
excitations from that ground state.

2.2.1 Electron-hole excitations

A simple excitation of the system consists of removing an electron (i.e., creating a hole) from
the valence band and inserting it into the conduction band. We write such an excitation as

|k + q, s;k, s′〉 = c†C,k+q,scV,k,s′ |Φ0〉, (2.13)

where we remove an electron with pseudo-momentum k and spin s′ in the valence band and
replace it by an electron with k + q and s in the conduction band. The possibility of changing
the spin from s′ to s and of shifting the wave vector of conduction electrons by q is included.
Furthermore |k + q, s;k, s′〉 is assumed to be normalized. The electron-hole pair may either be
in a spin-singlet (pure charge excitation s = s′) or a spin-triplet state (spin excitation s 6= s′).
Apart from spin, the state is characterized by the wave vectors k and q. The excitation energy
is given by

E = εC,k+q − εV,k. (2.14)

The spectrum of the electron-hole excitations with fixed q is determined by the spectral function

I(q, E) =
∑
k,s,s′

|〈k + q, s;k, s′|c†C,k+q,scV,ks′ |Φ0〉|
2δ(E − (ε

C
(k + q)− εV (k)). (2.15)

33



continuum

∆E

k0

q

E

Figure 2.6: Electron-hole excitation spectrum for k0 6= 0. Excitations exist in the shaded region,
where I(q, E) 6= 0.

Excitations exist for all pairs E and q for which I(q, E) does not vanish, thus, only above a q-
dependent threshold, which is minimal for q = k0, where k0 = 0 (k0 6= 0) for a direct (indirect)
energy gap. As k is arbitrary, there is a continuum of excited states above the threshold for
each q (see Figure 2.6).
For the electron-hole excitations considered here, interactions among them was assumed to
be irrelevant, and the electrons involved are treated as non-interacting particles. Note the
analogy with the Dirac-sea in relativistic quantum mechanics: The electron-hole excitations of
a semiconductor correspond to electron-positron pair creation in the Dirac theory.

2.2.2 Excitons

Taking into account the Coulomb interaction between the electrons, there is another class of
excitations called excitons. In order to discuss them, we extend the Hamiltonian (2.10) by the
Coulomb interaction,

V̂ =
∑
s,s′

∫
d3r d3r′Ψ̂†

s(r)Ψ̂†
s′(r

′)
e2

|r − r′|
Ψ̂s′(r

′)Ψ̂s(r), (2.16)

where the field operators are defined by

Ψ̂s(r) =
1√
Ω

∑
n=V,C

∑
k

un,k(r)eik·r ĉn,ks, (2.17)

where un,k(r) are the Bloch functions of the band n = C, V . Now, we consider a general
particle-hole state,

|Φq〉 =
∑
k

A(k)ĉ†C,k+q,sĉV,k,s′ |Φ0〉 =
∑
k

A(k)|k + q, s;k, s′〉, (2.18)

and demand that it satisfies the stationary Schrödinger equation (H + V̂ )|Φq〉 = E|Φq〉. This
two-body problem can be expressed as∑

k′

〈k + q, s;k, s′|H+ V̂ |k′ + q, s;k′, s′〉A(k′) = EA(k). (2.19)

The matrix elements are given by

〈k + q, s;k, s′|H|k′ + q, s;k′, s′〉 = δk,k′{εC,k+q − εV,k} (2.20)
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and

〈k + q, s;k, s′|V̂ |k′ + q, s;k′, s′〉 =

2δss′
Ω2

∫
d3r d3r′ u∗C,k+q(r)uV,k(r)uC,k′+q(r′)u∗V,k′(r

′)e−iq·(r−r′) e2

|r − r′|

− 1
Ω2

∫
d3r d3r′ u∗C,k+q(r)uV,k(r′)uC,k′+q(r)u∗V,k′(r

′)ei(k
′−k)·(r−r′) e2

|r − r′|
, (2.21)

The first term is the exchange term, and the second term the direct term of the Coulomb
interaction. Now we consider a semiconductor with a direct energy gap at the Γ-point. Thus,
the most important wave vectors are those around k = 0. We approximate

u∗n,k′(r)un,k(r) ≈ 1
Ω

∫
d3ru∗n,k′(r)un,k(r) =

1
Ω
〈un,k′ |un,k〉 ≈ 1, (2.22)

which is reasonable for k ≈ k′(= k + q). In the same manner, we see that

u∗Ck+q(r)uV,k(r) ≈ 1
Ω
〈uC,k+q|uV,k〉 ≈

1
Ω
〈uC,k|uV,k〉 = 0. (2.23)

Note that the semiconductor is a dielectric medium with a dielectric constant ε (D = εE).
Classical electrodynamics states that

∇ ·E =
4πρ
ε
, (2.24)

i.e., the Coulomb potential is partially screened due to dielectric polarization. Including this
effect in the Schrödinger equation phenomenologically, the matrix element (2.21) takes on the
form

− 4πe2

Ωε|k − k′|2
. (2.25)

Thus, we can write the stationary equation (2.19) as(
εC,k+q − εV,k − E

)
A(k)− 1

Ω

∑
k′

4πe2

ε|k − k′|2
A(k′) = 0. (2.26)

We include the band structure using the k · p - approximation which, for a direct energy gap,
leads to

εC,k =
~2k2

2m
C

+ E0 + Eg and εV,k = E0 −
~2k2

2mV

, (2.27)

where E0 denotes the energy of the valence band top. We define a so-called envelope function
F (r) by

F (r) =
1√
Ω

∑
k

A(k)eik·r. (2.28)

This function satisfies the differential equation[
−~2∇2

2µex

+
~2

2i

(
1
mV

− 1
m

C

)
q ·∇− e2

ε|r|

]
F (r) =

{
E − Eg −

~2q2

2µex

}
F (r), (2.29)

where µex is the reduced mass, i.e., µ−1
ex = m−1

V +m−1
C

. The term linear in ∇ can be eliminated
by the transformation

F (r) = F ′(r) exp
(
i

2
mV −m

C

mV +m
C

q · r
)
, (2.30)
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and after some algebraic manipulations we obtain[
−~2∇2

2µex

− e2

ε|r|

]
F ′(r) =

{
E − Eg −

~2q2

2Mex

}
F ′(r), (2.31)

where Mex = mV +m
C
.

The stationary equation (2.31) is equivalent to the Schrödinger equation of a hydrogen atom.
The energy levels then are given by

Eq = Eg −
µexe

4

2ε2~2n2
+

~2q2

2Mex

, (2.32)

which implies that there are excitations below the particle-hole continuum, corresponding to
particle-hole bound states. This excitation spectrum is discrete and there is a well-defined
relation between energy and momentum (q), which is the wave vector corresponding to the
center of mass of the particle-hole pair. This non-trivial quasiparticle is called exciton. In the
present approximation it takes on the form of a simple two-particle state. In fact, however, it
may be viewed as a collective excitation, as the dielectric constant includes the polarization by
all electrons. When the screening is neglected, the excitonic states would not make sense as
their energies would not be within the band gap but much below. For the case of weak binding
considered above, the excitation is called a Wannier exciton. The typical binding energy is

Eb ∼
µex

mε2
Ry. (2.33)

Typical values of the constants on the right-hand side are ε ∼ 10 and µex ∼ m/10, so that the
binding energy is in the meV range. This energy is much smaller than the energy gap, such that
the excitons are inside the gap, as shown schematically in Figure 2.7.

excitons

q

E

continuum
electron-hole

Figure 2.7: Qualitative form of the exciton spectrum below the electron-hole continuum.

The exciton levels are dispersive and their spectrum becomes increasingly dense with increasing
energy, similar to the hydrogen atom. When they merge with the particle-hole continuum the
bound state is ‘ionized’, i.e., the electron and the hole dissociate and behave like independent
particles.
Strongly bound excitons are called Frenkel excitons. In the limit of strong binding, the pair is
almost local, so that the excitation is restricted to a single atom rather than involving the whole
semiconductor band structure.
Excitons are mobile, but they carry no charge, as they consist of an electron and a hole with
opposite charges. Their spin quantum number depends on s and s′. If s = s′ the exciton is
a spin singlet, while for s 6=′ it has spin triplet character, both corresponding to integer spin
quasiparticles. For small densities they approximately obey Bose-Einstein statistics, as they
are made from two fermions. In special cases, Bose-Einstein condensation of excitons can be
observed experimentally.

36



2.2.3 Optical properties

Excitation in semiconductors can occur via the absorption of electromagnetic radiation. The
energy and momentum transferred by a photon is ~ω and ~q, respectively. With the linear light
dispersion relation ω = c|q| and the approximation Eg ∼ 1eV ∼ e2/a, we can estimate this
momentum transfer in a semiconductor

q =
ω

c
=

~ω
hc

2π ∼ e2

hc

2π
a

= α
2π
a
� 2π

a
, (2.34)

where c denotes the speed of light, a the lattice constant, and α ≈ 1/137 the fine structure
constant. With this, the momentum transfer from a photon to the excited electron can be
ignored. In other words, pure electromagnetic excitations lead only to ’direct’ excitations. For
semiconductors with a direct energy gap (e.g., GaAs) the photo-induced electron-hole excitation
is most easy and yields absorption rates with the characteristics

Γabs(ω) ∝

 (~ω − Eg)
1/2, dipole-allowed,

(~ω − Eg)
3/2, dipole-forbidden.

(2.35)

Here, the terms “dipole-allowed” and “dipole-forbidden” have a similar meaning as in the exci-
tation of atoms regarding whether matrix elements of the type 〈uV,k|r|uC,k〉 are finite or vanish,
respectively. Obviously, dipole-allowed transitions occur at a higher rate for photon energies
immediately above the energy gap Eg, than for dipole-forbidden transitions.
For semiconductors with indirect energy gap (e.g., Si and Ge), the lowest energy transition con-
necting the top of the valence band to the bottom of the conduction band is not allowed without
the help of phonons (lattice vibrations), which contribute little energy but much momentum
transfer, as ~ωQ � ~ω with ωQ = cs|Q| and the sound velocity cs � c. The requirement of a
phonon assisting in the transition reduces the transition rate to

Γabs(ω) ∝ c+(~ω + ~ωQ − Eg)
2 + c−(~ω − ~ωQ − Eg)

2, (2.36)

where c± are constants and Q corresponds to the wave vector of the phonon connecting the top
of the valence band and the bottom of the conduction band. There are two relevant processes:
either the phonon is absorbed (c+-process) or it is emitted (c−-process) (see Figure 2.8).

Phonon

k

E

Photonk

Photon

E

E = ~ω + ~ωQ

~ωEg Eg

~ωQ

~ω

E = ~ω − ~ωQ

Phonon

~ωQ

Figure 2.8: Phonon-assisted photon absorption in a semiconductor with indirect gap: phonon
absorption (left panel) and phonon emission (right panel).

In addition to the absorption into the particle-hole spectrum, absorption processes inducing
exciton states exist. They lead to discrete absorption peaks below the absorption continuum.
In Figure 2.9, we show the situation for a direct-gap semiconductor.
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Figure 2.9: Absorption spectrum including the exciton states for a direct-gap semiconductor
with dipole-allowed transitions. The exciton states appear as sharp lines below the electron-hole
continuum starting at ~ω = Eg.

Naturally, the recombination of electrons and holes is important as well; in particular, if it is
a radiative recombination, i.e., leads to the emission of a photon. Additionally, other recom-
bination channels such as recombination at impurities, interfaces and through Auger processes
are possible. The radiative recombination for the direct-gap semiconductors is most relevant for
applications. The photon emission rate follows the approximate law

Γem(ω) ∝ [Nγ(ω) + 1](~ω − Eg)
1/2e−~ω/kBT , (2.37)

with the photon density Nγ(ω). This yields the dominant rate for ~ω very close to Eg.

2.3 Doping semiconductors

Let us replace a Si atom in a Si semiconductor by aluminum Al (group III) or phosphorus P
(group V), which then act as impurities in the crystal lattice. Both Al and P are in the same
row of the periodic table, and their electron configurations are given by

Al : [(1s)2(2s)2(2p)6] (3s)2(3p),

P : [(1s)2(2s)2(2p)6] (3s)2(3p)3.

The compound Al (P) has one electron less (more) than Si.

2.3.1 Impurity state

We consider the case of a P-impurity contributing an additional electron whose dynamics is
governed by the conduction band of the semiconductor. For the sake of simplicity, we describe
the conduction band by a single isotropic band with effective mass m∗,

εk =
~2k2

2m∗ + Eg. (2.38)

In the neutral Si background, the phosphorus (P) ion represents a positively charged center,
which attracts its additional electron. In the simplest model, this situation is described by the
so-called Wannier equation {

−~2∇2

2m∗ − e2

ε|~r|

}
F (r) = EF (r), (2.39)
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which is nothing else than the static Schrödinger equation for the hydrogen atom, where the
dielectric constant ε measures the screening of the ionic potential by the surrounding electrons.
Analogous to the discussion of the exciton states, F (r) is an envelope wave function of the
electron. Therefore, the low energy states of the additional electron are bound states around
the P ion. The electron may become mobile when this “reduced hydrogen atom” is ionized. The
binding energy relative to the minimum of the conduction band given by

En − Eg = − m∗e4

2~2ε2n2
= − m∗

mε2n2
Ry, (2.40)

for n ∈ N and the effective radius (corresponding to the renormalized Bohr radius in the material)
of the lowest bound state reads

r1 =
~2ε

m∗e2
=
εm

m∗ aB
, (2.41)

where a
B

= 0.53Å is the Bohr radius for the hydrogen atom. For Si we find m∗ ≈ 0.2m and
ε ≈ 12, such that

E1 ≈ −20meV (2.42)

and

r1 ≈ 30Å. (2.43)

Thus, the resulting states are weakly bound, with energies inside the band gap. We conclude
that the net effect of the P-impurities is to introduce additional electrons into the crystal, whose
energies lie just below the conduction band (Eg ∼ 1eV while Eg − E1 ∼ 10meV). Therefore,
they can easily be transferred to the conduction band by thermal excitation (ionization). One
speaks of an n-doped semiconductor (n: negative charge). In full analogy one can consider
Al-impurities, thereby replacing electrons with holes: An Al-atom introduces an additional hole
into the lattice which is weakly bound to the Al-ion (its energy is slightly above the band edge
of the valence band) and may dissociate from the impurity by thermal excitation. This case is
called p-doping (p: positive charge). In both cases, the chemical potential is tied to the dopand
levels, i.e., it lies between the dopand level and the valence band for p-doping and between the
dopand level and the conduction band in case of n-doping (Figure 2.10).

µ

valence bandvalence bandvalence band

conduction bandconduction bandconduction band

n-doped p-dopedno doping

impurity levels

µ

impurity levels
µ

Figure 2.10: Position of the chemical potential in semiconductors.

The electric conductivity of semiconductors (in particular at room temperature) can be tuned
strongly by doping with so-called ‘donators’ (n-doping) and ‘acceptors’ (p-doping). Practically
all dopand atoms are ionized, with the electrons/holes becoming mobile. Combining differently
doped semiconductors, the possibility to engineer electronic properties is enhanced even more.
This is the basic reason for the semiconductors being ubiquitous in modern electronics.
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2.3.2 Carrier concentration

Let us briefly compare the carrier concentration in doped and undoped semiconductors at room
temperature. Carriers are always created in form of electron hole pairs, following the “reaction
formula”

e+ h↔ γ, (2.44)

where γ denotes a photon which is absorbed (e-h-creation) or emitted (e-h-recombination) and
accounts for the energy balance. The carrier concentration is described by a mass action law of
the form,

nenh = n2
0

(
T

T0

)3

e−Eg/kBT = n2(T ), (2.45)

where T0, n0 and Eg are parameters specific to the semiconductor. In the case of undoped

silicon at T = 300K, nenh ≈ 1020
(
cm−3

)2. Thus, for the undoped semiconductor we find
ne = nh ≈ 1010cm−3. On the other hand, for n-doped Si with a typical donor concentration of
n

D
≈ 1017cm−3 we can assume that most of the donors are ionized at room temperature such

that

ne ≈ n
D

≈ 1017cm−3 (2.46)

and

nh =
n2(T )
ne

≈ 103cm−3. (2.47)

We conclude, that in n-doped superconductors the vast majority of mobile carriers are electrons,
while the hole carriers are negligible. The opposite is true for p-doped Si.

2.4 Semiconductor devices

Semiconductors are among the most important components of current high-technology. In this
section, we consider a few basic examples of semiconductor devices.

2.4.1 pn-contacts

The so-called pn-junctions, made by bringing in contact a p-doped and an n-doped version
of the same semiconductor, are used as rectifiers.4 When contacting the two types of doped
semiconductors the chemical potential, which is pinned by the dopand (impurity) levels, deter-
mines the behavior of the electrons at the interface. In electrostatic equilibrium, the chemical
potential is constant across the interface. This is accompanied by a “band bending” leading
to the ionization of the impurity levels in the interface region (see Figure 2.11). Consequently,
these ions produce an electric dipole layer which induces an electrostatic potential shift across
the interface. Additionally, the carrier concentration is strongly reduced in the interface region
(depletion layer).
In the absence of a voltage U over the junction, the net current flow vanishes because the dipole
is in electrostatic equilibrium. This can also be interpreted as the equilibrium of two oppositely
directed currents, called the drift current Jdrift and the diffusion current Jdiff . From the point
of view of the electrons, the dipole field exerts a force pulling the electrons from the p-side to
the n-side. This leads to the drift current Jdrift. On the other hand, the electron concentration
gradient leads to the diffusion current Jdiff from the n-side to the p-side. The diffusion current

4dt. Gleichrichter
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Figure 2.11: Occupation of the impurity levels of a pn-junction.

is directed against the potential gradient, so that the diffusing electrons have to overcome a
potential step. The equilibrium condition for U = 0 is given by

0 = Jtot(U = 0) = Jdiff + Jdrift ∝ C1(T )e−Eg/kBT − C2(T )e−Eg/kBT = 0, (2.48)

where C1 = C2 = C. Both currents are essentially determined by the factor C(T )e−Eg/kBT . For
the drift current, the exponential behavior e−Eg/kBT stems from the dependence of the current
on the concentration of mobile charge carriers (electrons and holes on the p-side and n-side,
respectively), which are created by thermal excitation (Boltzmann factor). Applying a voltage
does not change this contribution significantly. For the diffusion current however, the factor
C(T )e−Eg/kBT describes the thermal activation over the dipole barrier, which in turn strongly
depends on the applied voltage U . For zero voltage, the height of the barrier Eb is essentially
given by the energy gap Eb ≈ Eg. With an applied voltage, this is modified according to
Eb ≈ Eg + eU , where eU = µn − µp is the difference of the chemical potentials between the
n-side and the p-side. From these considerations, the well-known current-voltage characteristic
of the pn-junctions follows directly as

Jtot(U) = C(T )e−Eg/kBT
(
eeU/kBT − 1

)
. (2.49)

For U > 0, the current is rapidly enhanced with increasing voltage. This is called forward bias.
By contrast, charge transport is suppressed for U < 0 (reverse bias), leading to small currents
only. The current-voltage characteristics J(U) (see Figure 2.12) shows a clearly asymmetric
behavior, which can be used to rectify ac-currents. Rectifiers (or diodes) are an important
component of many integrated circuits.

eU

n-dopedp-doped

µ
∆

∆− eU

eU

∆− eU

µ

∆

n-dopedp-doped U

forward bias

J

reverse bias

Figure 2.12: The pn-junction with an applied voltage and the resulting J-U characteristics.
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2.4.2 Semiconductor diodes

Light emitting diode

As mentioned above, the recombination of electrons and holes can lead to the emission of photons
(radiative recombination) with a rather well-defined frequency essentially corresponding to the
energy gap Eg. An excess of electron-hole pairs can be produced in pn-diodes by running a
current in forward direction. Using different semiconductors with different energy gaps allows
to tune the color of the emitted light. Direct-gap semiconductors are most suitable for this kind
of devices. Well-know are the semiconductors of the GaAs-GaN series (see table 2.1). These
techniques are commonly used in LED (light emitting diode) lamps.

There appear efficiency problems concerning the emission of light by semiconductors. In

semiconductor GaAs GaAs0.6P0.4 GaAs0.4P0.6 GaP GaN
wave length (nm) 940 660 620 550 340
color infrared red yellow green ultraviolet

Table 2.1: Materials commonly used for LEDs and their light emitting properties.

particular, the difference in refractive indices inside nSC ≈ 3 and outside nair ≈ 1 the device
leads to large reflective losses. Thus, the efficacy of diode light sources, defined as the number
of photons emitted per created particle-hole pair, is small, but still larger than the efficiency of
conventional dissipative light bulbs.

Solar cell

Inversely to the previous consideration, the population of charge carriers can be changed by the
absorption of light. Suppose that the n-side of a diode is exposed to irradiation by light, which
leads to an excess of hole carriers (minority charge carriers). Some of these holes will diffuse
towards the pn-interface and will be drawn to the p-side by the dipole field. In this way, they
induce an additional current J

L
modifying the current-voltage characteristics to

Jtot = Jpn − J
L

= Js(e
eU/kBT − 1)− J

L
. (2.50)

It is important for the successful migration of the holes to the interface dipole that they do not
recombine too quickly. When Jtot = 0, the voltage drop across the diode is

U
L

=
k

B
T

e
ln
(
J

L

Js

+ 1
)
. (2.51)

The maximum efficiency is reached by applying an external voltage Uc < U
L

such that the
product JcUc is maximized, where Jc = Jtot(U = Uc) (cf. Figure 2.13).

2.4.3 MOSFET

The arguably most important application of semiconductors is the transistor, an element ex-
isting with different architectures. Here we shortly introduce the MOSFET (Metal-Oxide-
Semiconductor-Field-Effect-Transistor). A transistor is a switch allowing to control the current
through the device by switching a small control voltage. In the MOSFET, this is achieved by
changing the charge carrier concentration in a p-doped semiconductor using a metallic gate.
The basic design of a MOSFET is as follows (see Figure 2.14): A thin layer of SiO2 is deposited
on the surface of a p-type semiconductor. SiO2 is a good insulator that is compatible with the
lattice structure of Si. Next, a metallic layer, used as a gate electrode, is deposited on top of
the insulating layer.
The voltage between the Si semiconductor and the metal electrode is called gate voltage U

G
.
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Figure 2.13: Solar cell design and shifted current-voltage characteristics. The efficiency is max-
imal for a maximal area of the power rectangle.
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Figure 2.14: Schematic design of a MOSFET device.

The insulating SiO2 layer ensures that no currents flow between the electrode and the semicon-
ductor when a gate voltage is applied. The switchable currents in the MOSFET flow between
the source and the drain which are heavily n-doped semiconductor regions.

inversion
layer

UG small UG large

depleted
layer

p-type Si p-type Si

conduction band conduction band

valence band valence band
µ µ

SiO2 SiO2

layerd

d

z = 0 z z = 0 z

depleted

Figure 2.15: Depletion layer at the SiO2-Si interface for 0 < eU
G
< Eg (left panel) and the

inversion layer Eg < eU
G

(right panel).

Depending on the applied gate voltage U
G

three different regimes can be realized:

1. U
G

= 0

Virtually no current flows, as the conduction band of the p-doped semiconductor is empty. The
doping states (acceptor levels) are occupied by thermal excitations.
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2. 0 < e UG
Eg

< 1

In this case, the energy of the Si bands is lowered, such that in a narrow region within the
p-doped Si the acceptor levels drops below the chemical potential and the states are filled with
electrons (or, equivalently, holes are removed). This depletion layer has the extension dmeasured
from the Si-Sio2 interface. The negative charge of the acceptors leads to a position-dependent
potential Φ(z), where z is the distance from the boundary between SiO2 and Si. This potential
Φ(z) satisfies the simple one-dimensional Poisson equation

d2

dz2
Φ(z) =

4πρ(z)
ε

, (2.52)

where the charge density originates in the occupied acceptor levels,

ρ(z) =

{
−en

A
, z < d,

0, z > d,
(2.53)

and n
A

is the density of acceptors. The boundary conditions are given by

Φ(z = 0) = U
G

and Φ(z = d) = 0. (2.54)

The solution for 0 ≤ z ≤ d then reads

Φ(z) =
2πen

A

ε
(z − d)2, with d2 =

εU
G

2πen
A

. (2.55)

The thickness of the depletion layer increases with increasing gate voltage d2 ∝ U
G
.

3. 1 < e UG
Eg

When the applied gate voltage is sufficiently large, a so-called inversion layer is created (cf.
Figure 2.15). Close to the boundary, the conduction band is bent down so that its lower edge
lies below the chemical potential. The electrons accumulating in this inversion layer providing
carriers connecting the n-type source and drain electrodes and producing a large, nearly metallic,
current between source and drain. Conduction band electrons accumulating in the inversion layer
behave like a two-dimensional electron gas. In such a system, the quantum Hall effect (QHE),
which is characterized by highly unusual charge transport properties in the presence of a large
magnetic field, can occur.
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Chapter 3

Metals

The electronic states in a periodic atomic lattice are extended and have an energy spectrum
forming energy bands. In the ground state these energy states are filled successively starting
at the bottom of the electronic spectrum until the number of electrons is exhausted. Metallic
behavior occurs whenever in this way a band is only partially filled. The fundamental difference
that distinguishes metals from insulators and semiconductors is the absence of a gap for electron-
hole excitations. In metals, the ground state can be excited at arbitrarily small energies which
has profound phenomenological consequences.
We will consider a basic model suitable for the description of simple metals like the Alkali metals
Li, Na, or K, where the (atomic) electron configuration consists of closed shell cores and one
single valence electron in an ns-orbital. Neglecting the core electrons (completely filled bands),
we consider the valence electrons only and apply the approximation of nearly free electrons. The
lowest band around the Γ-point is then half-filled. First, we will also neglect the influence of
the periodic lattice potential and consider the problem of a free electron gas subject to mutual
(repulsive) Coulomb interaction.

3.1 The Jellium model of the metallic state

The Jellium1 model is the probably simplest possible model of a metal that is able to describe
qualitative and to some extend even quantitative aspects of simple metals. The main simpli-
fication made is to replace the ionic lattice by a homogeneous positively charged background
(Jellium). The uniform charge density enion is chosen such that the whole system – electrons
and ionic background – is charge neutral, i.e. nion = n, where n is the electron density. In this
fully translational invariant system, the plane waves

ψk,s(r) =
1√
Ω
eik·r (3.1)

represent the single-particle wave functions of the free electrons. Here Ω is the volume of the
system, k and s ∈ {↑, ↓} denote the wave vector and spin, respectively. Assuming a cubic
system of side length L and volume Ω = L3 we impose periodic boundary conditions for the
wave function

ψk,s(r + (L, 0, 0)) = ψk,s(r + (0, L, 0)) = ψk,s(r + (0, 0, L)) = ψk,s(r) (3.2)

such that the reciprocal space is discretized as

k =
2π
L

(nx, ny, nz) (3.3)

1Jellium originates form the word jelly (gelatin) and was first introduced by Conyers Herring.
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where (nx, ny, nz) ∈ Z3. The energy of a single-electron state is given by εk = ~2k2/2m (free
particle). The ground state of non-interacting electrons is obtained by filling all single particle
states up to the Fermi energy with two electrons. In the language of second quantization the
ground state is, thus, given by

|Ψ0〉 =
∏

|k|≤kF

∏
s

ĉ†k,s|0〉 (3.4)

where the operators ĉ†k,s (ĉk,s) create (annihilate) an electron with wave vector k and spin s.
The Fermi wave vector k

F
with the corresponding Fermi energy ε

F
= ~2k2

F
/2m is determined

by equating the filled electronic states with the electron density n. We have

n =
1
Ω

∑
|k|≤kF ,s

1 = 2
∫

d3k

(2π)3
1 = 2

4π
3

k3
F

(2π)3
, (3.5)

which results in

k
F

= (3π2n)1/3 . (3.6)

Note k
F

is the radius of the Fermi sphere in k-space around k = 0.2 We define here also the
Next, we compute the ground state energy of the Jellium system variationally, using the density
n as a variational parameter, which is equivalent to the variation of the lattice constant. In this
way, we will obtain an understanding of the stability of a metal, i.e. the cohesion of the ion
lattice through the itinerant electrons (in contrast to semiconductors where the stability was
due to covalent chemical bonding). The variational ground state shall be |Ψ0〉 from Eq.(3.4) for
given k

F
. The Hamiltonian splits into four terms

H = Hkin +Hee +Hei +Hii (3.7)

with

Hkin =
∑
k,s

εkĉ
†
ksĉks (3.8)

Hee =
1
2

∑
s,s′

∫
d3r d3r′ Ψ̂†

s(r)Ψ̂†
s′(r

′)
e2

|r − r′|
Ψ̂s′(r

′)Ψ̂s(r) (3.9)

Hei = −
∑

s

∫
d3r d3r′

ne2

|r − r′|
Ψ̂†

s(r)Ψ̂s(r) (3.10)

Hii =
1
2

∫
d3r d3r′

n2e2

|r − r′|
, (3.11)

where we have used in second quantization language the electron field operators

Ψ̂†
s(r) =

1√
Ω

∑
k

ĉ†k,se
−ik·r (3.12)

Ψ̂s(r) =
1√
Ω

∑
k

ĉk,se
ik·r (3.13)

The variational energy – which we want to minimize with respect to n – can be computed from
Eg = 〈Ψ0|H|Ψ0〉 and consists of four different contributions:

2Note that the function kF (n) ∝ n(1/d) depends on the dimensionality d of the system.
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First we have the kinetic energy

Ekin = 〈Ψ0|Hkin|Ψ0〉 =
∑
k,s

εk 〈Ψ0|ĉ
†
ksĉks|Ψ0〉︸ ︷︷ ︸

= nks

(3.14)

= 2Ω
∫

d3k

(2π)3
εk nks = N

3
5
ε

F
(3.15)

where we used N = Ωn the number of valence electrons and

nks =


1 |k| ≤ k

F

0 |k| > k
F

. (3.16)

Secondly, there is the energy resulting from the Coulomb repulsion between the electrons,

Eee =
1
2

∫
d3r d3r′

e2

|r − r′|
∑
s,s′

〈Ψ0|Ψ̂
†
s(r)Ψ̂†

s′(r
′)Ψ̂s′(r

′)Ψ̂s(r)|Ψ0〉 (3.17)

=
1
2

∫
d3r d3r′

e2

|r − r′|
(
n2 −G(r − r′)

)
(3.18)

= EHartree + EFock. (3.19)

For this contribution we used the fact, that the two-particle correlation function from equation
(3.17) may be expressed3 as∑

s,s′

〈Ψ0|Ψ̂
†
s(r)Ψ̂†

s′(r
′)Ψ̂s′(r

′)Ψ̂s(r)|Ψ0〉 = n2 −G(r − r′) (3.27)

3We shortly sketch the derivation of the pair correlation function. Using equations (3.12) and (3.13) we find

〈Ψ0|bΨ†
s(r)bΨ†

s′(r
′)bΨs′(r

′)bΨs(r)|Ψ0〉 =
1

Ω2

X
k,k′,q,q′

e−i(k−k′)·re−i(q−q′)·r′〈Φ0|bc†ksbc†qs′bcq′s′bck′s|Φ0〉. (3.20)

We distinguish two cases:
First, consider s 6= s′,

〈Φ0|bc†ksbc†qs′bcq′s′bck′s|Φ0〉 = δkk′δqq′nksnqs′ (3.21)

leading to

〈Ψ0|bΨ†
s(r)bΨ†

s′(r
′)bΨs′(r

′)bΨs(r)|Ψ0〉 =
1

Ω2

X
k,q

nksnq,s′ =
n2

4
. (3.22)

Secondly, assume s = s′ such that

〈Φ0|bc†ksbc†qsbcq′sbck′s|Φ0〉 = (δkk′δqq′ − δkq′δqk′)nksnqs , (3.23)

which in turn leads to

〈Ψ0|bΨ†
s(r)bΨ†

s(r
′)bΨs(r

′)bΨs(r)|Ψ0〉 =
1

Ω2

X
k,q

“
1− ei(q−k)·(r−r′)

”
nksnq,s. (3.24)

Both cases eventually lead to the result in equation (3.27) with

G(r) = 2

 
1

Ω

X
k

eik·rnks

!2

= 2

0B@ Z
|k|≤kF

d3k

(2π)3
eik·r

1CA
2

(3.25)

= 2

0@ 1

2π2r

kFZ
0

dk k sin kr

1A2

= 2

„
1

2π2

sin kF r − kF r cos kF r

r3

«2

(3.26)

and n = k3
F/3π

2 (k = |k| and r = |r|).
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where

G(r) =
9n2

2

(
k

F
|r| cos k

F
|r| − sin k

F
|r|

(k
F
|r|)3

)2

. (3.28)

The Coulomb repulsionHee between the electrons leads to two terms, called the direct or Hartree
term describing the Coulomb energy of a uniformly spread charge distribution, and the exchange
or Fock term resulting from the exchange hole that follows from the Fermi-Dirac statistics (Pauli
exclusion principle).
The third contribution originates in the attractive interaction between the (uniform) ionic back-
ground and the electrons,

Eei = −
∫
d3r d3r′

e2

|r − r′|
n
∑

s

〈Ψ0|Ψ̂
†
s(r)Ψs(r)|Ψ0〉 (3.29)

= −
∫
d3r d3r′

e2

|r − r′|
n2. (3.30)

Were the expectation value 〈Ψ0|Ψ̂†
s(r)Ψs(r)|Ψ0〉 corresponds to the uniform density n, as is

easily calculated from the definitions (3.12) and (3.13).
Finally we have the repulsive ion-ion interaction

Eii = 〈Ψ0|Hii|Ψ0〉 =
1
2

∫
d3r d3r′

n2e2

|r − r′|
. (3.31)

5

2

k  (r−r’)
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n /22

n  − G(r−r’)

Figure 3.1: Pair correlation function.

It is easy to verify that the three contributions EHartree, Eei, and Eii compensate each other
to exactly zero. Note that these three terms are the only ones that would arise in a classical
electrostatic calculation, implying that the stability of metals relies purely on quantum effect.
The remaining terms are the kinetic energy and the Fock term. The latter is negative and reads

EFock = −Ω
9n2

4

∫
d3r

e2

|r|

(
sin k

F
|r| − k

F
|r| cos k

F
|r|

(k
F
|r|)3

)2

= −N 3e2

4π
k

F
. (3.32)

Eventually, the total energy per electron is given by

Eg

N
=

3
5

~2k2
F

2m
− 3e2

4π
k

F
=
(

2.21
r2s

− 0.916
rs

)
Ry (3.33)

where 1Ry = e2/2a
B

and the dimensionless quantity rs is defined via

n =
3

4πd3
(3.34)
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and

rs =
d

a
B

=
(

9π
4

)1/3 me2

~2k
F

. (3.35)

The length d is the average radius of the volume occupied by one electron. Minimizing the
energy per electron with respect to n is equivalent to minimize it with respect to rs, yielding
rs,min = 4.83 d ≈ 2.41Å. This corresponds to a lattice constant of a = (4π/3)1/3d ≈ 3.9Å. This
estimate is roughly in agreement with the lattice constants of the Alkali metals : rs,Li = 3.22,
rs,Na = 3.96, rs,K = 4.86. Note that in metals the delocalized electrons are responsible for the
cohesion of the positive background yielding a stable solid.
The good agreement of this simple estimate with the experimental values is due to the fact that
the Alkali metals have only one valence electron in an s-orbital that is delocalized, whereas the
the core electrons are in a noble gas configuration and, thus, relatively inert. In the variational
approach outlined above correlation effects among the electrons due to the Coulomb repulsion
have been neglected. In particular, electrons can be expected to ’avoid’ each other not just
because of the Pauli principle, but also as a result of the repulsive interaction. However, for the
problem under consideration the correlation corrections turn out to be small for rs ∼ rs,min:

Etot

N
=
(

2.21
r2s

− 0.916
rs

+ 0.062lnrs − 0.096 + . . .

)
Ry (3.36)

which can be obtained from a more sophisticated quantum field theoretical analysis.

3.2 Charge excitations and the dielectric function

In analogy to semiconductors, the elementary excitations of metallic systems are the electron-
hole excitations, which for metals, however, can have arbitrarily small energies. One particularly
drastic consequence of this behavior is the strong screening of the long-ranged Coulomb potential.
As we will see, a negative test charge in a metal reduces the electron density in its vicinity, and
the induced cloud of positive charges, relative to the uniform charge density, weaken the Coulomb
potential as,

V (r) ∝ 1
r

−→ V ′(r) ∝ e−r/l

r
(3.37)

i.e. the Coulomb potential is modified into the short-ranged Yukawa potential with screening
length l. In contrast to metals, the finite energy gap for electron-hole excitations the charge
distribution in semiconductors reduces the adaption of the system to perturbations, so that the
screened Coulomb potential remains long-ranged,

V (r) ∝ 1
r

−→ V ′(r) ∝ 1
εr
. (3.38)

As mentioned earlier, the semiconductor acts as a dielectric medium and its screening effects are
accounted for by the polarization of localized electric dipoles, i.e., the Coulomb potential inside
a semiconductor is renormalized by the dielectric constant ε.

3.2.1 Dielectric response and Lindhard function

We will now investigate the response of an electron gas to a time- and position-dependent weak
external potential Va(r, t) in more detail based on the equation of motion. We introduce the
Hamiltonian

H = Hkin +H
V

=
∑
k,s

εkĉ
†
ksĉks +

∑
s

∫
d3r Va(r, t)Ψ̂

†
s(r)Ψ̂s(r) (3.39)
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where the second term is considered as a small perturbation. In a first step we consider the
linear response of the system to the external potential. On this level we restrict ourself to one
Fourier component in the spatial and time dependence of the potential,

Va(r, t) = Va(q, ω)eiq·r−iωteηt, (3.40)

where η → 0+ includes the adiabatic switching on of the potential. To linear response this
potential induces a small modulation of the electron density of the form nind(r, t) = n0 +
δnind(r, t) with

δnind(r, t) = δnind(q, ω)eiq·r−iωt. (3.41)

Using equations (3.12) and (3.13) we obtain for the density operator in momentum space,

ρ̂q =
∑

s

∫
d3rΨ̂†

s(r)Ψ̂s(r)e−iq·r =
1
Ω

∑
k,s

ĉ†k+qsĉks =
1
Ω

∑
k,s

ρ̂k,q,s, (3.42)

where we define ρ̂k,q,s = ĉ†k+qsĉks. The perturbation term H
V

now reads

H
V

=
1
Ω

∑
k,s

ρ̂k,−q,sVa(q, ω)e−iωteηt. (3.43)

The density operator ρ̂q(t) in Heisenberg representation is the relevant quantity needed to de-
scribe the electron density in the metal. We introduce the equation of motion for ρ̂k,q,s(t):

i~
d

dt
ρ̂k,q,s =

[
ρ̂k,q,s,H

]
=
[
ρ̂k,q,s,Hkin +H

V

]
(3.44)

=
(
εk+q − εk

)
ρ̂k,q,s +

(
ĉ†ksĉks − ĉ†k+qsĉk+qs

)
Va(q, ω)e−iωteηt. (3.45)

We now take the thermal average 〈Â〉 = Tr[Âe−βH]/Tr[e−βH] and follow the linear response
scheme by assuming the same time dependence for ρ̂k,q,s(t) as for the potential , so that the
equation of motion reads,

(~ω + i~η)〈ρ̂k,q,s〉 =
(
εk+q − εk

)
〈ρ̂k,q,s〉+

(
n0k,s − n0k+q,s

)
Va(q, ω) (3.46)

where n0k,s = 〈ĉ†ksĉks〉 and, therefore,

δnind(q, ω) =
1
Ω

∑
k,s

〈ρ̂k,q,s〉 =
1
Ω

∑
k,s

n0k+q,s − n0k,s

εk+q − εk − ~ω − i~η
Va(q, ω). (3.47)

With this, we define the dynamical linear response function as

χ0(q, ω) =
1
Ω

∑
k,s

n0k+q,s − n0k,s

εk+q − εk − ~ω − i~η
(3.48)

such that δnind(q, ω) = χ0(q, ω)Va(q, ω), where χ0(q, ω) is known to be the Lindhard func-
tion. So far we treated the linear response of the system to an external perturbation without
considering ”feedback effects” due to the interaction among electrons. In fact, the density fluc-
tuation δn(r, t) can be thought as a source for an additional Coulomb potential Vδn which can
be determined by means of the Poisson equation,

∇2Vδn(r, t) = −4πe2δn(r, t) (3.49)
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or in Fourier space

Vδn(q, ω) =
4πe2

q2
δn(q, ω). (3.50)

If we allow feedback effects in our system with external perturbation Va(q, ω), the effective
potential V felt by the electrons is determined self-consistently via

V (q, ω) = Va(q, ω) + Vδn(q, ω) (3.51)

= Va(q, ω) +
4πe2

q2
δn(q, ω), (3.52)

where

δn(q, ω) = χ0(q, ω)V (q, ω). (3.53)

The relation between V and Va may then be written as

V (q, ω) =
Va(q, ω)
ε(q, ω)

(3.54)

with

ε(q, ω) = 1− 4πe2

q2
χ0(q, ω), (3.55)

where ε(q, ω) is termed the dynamical dielectric function and describes the renormalization of
the external potential due to the dynamical response of the electrons in the metal. Extending
Eq.(3.53) to

δn(q, ω) = χ0(q, ω)V (q, ω) = χ(q, ω)Va(q, ω). (3.56)

we define the response function χ(q, ω) within ”random phase approximation” 4 to be

χ(q, ω) =
χ0(q, ω)
ε(q, ω)

=
χ0(q, ω)

1− 4πe2

q2
χ0(q, ω)

> (3.58)

This response function χ(q, ω) contains also effects of electron-electron interaction and comprises
information not only about the renormalization of potentials, but also on the excitation spectrum
of the metal.

4The equation (3.58) can be written in the form of a geometric series,

χ(q, ω) = χ0(q, ω)

"
1 +

4πe2

q2
χ0(q, ω) +

„
4πe2

q2
χ0(q, ω)

«2

+ · · ·

#
. (3.57)

From the point of view of perturbation theory, this series corresponds to summing a limited subset of perturbative
terms to infinite order. This approximation is called Random Phase Approximation (RPA) and is based on the
assumption the phase relation between different particle-hole excitations entering the perturbation series are
random such that interference terms vanish on the average. This approximation is used quite frequently, in
particular, in the discussion of instabilities of a system towards an ordered phase.
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3.2.2 Electron-hole excitation

For simple particle-hole excitations in metals, neglecting Coulomb interaction between the elec-
trons, it is sufficient to study the bare response function χ0(q, ω). We may separate χ0 into its
real and imaginary part, χ0(q, ω) = χ01(q, ω) + iχ02(q, ω). Using the relation

lim
η→0+

1
z − iη

= P
(

1
z

)
+ iπδ(z) (3.59)

where the Cauchy principal value P of the first term has to be taken, we separate the Lindhard
function (3.48) into

χ01(q, ω) =
1
Ω

∑
k,s

P

(
n0,k+q − n0,k

εk+q − εk − ~ω

)
(3.60)

χ02(q, ω) =
1
Ω

∑
k,s

(n0,k+q − n0,k)δ(εk+q − εk − ~ω) (3.61)

The real part will be important later in the context of instabilities of metals. The excitation
spectrum is visible in the imaginary part which relates to the absorption of energy by the
electrons subject to a time-dependent external perturbation.5 Note that χ02(q, ω) corresponds
to Fermi’s golden rule known from time-dependent perturbation theory, i.e. the transition rate
from the ground state to an excited state of energy ~ω and momentum q.

k+q

k

Fermi−See Fermi−See

Figure 3.2: Schematic view of an particle-hole pair creation (electron-hole excitation).

The relevant excitations originating from the Lindhard function are particle-hole excitations.
Starting from the ground state of a completely filled Fermi sea, one electron with momentum k
is removed and inserted again outside the Fermi sea in some state with momentum k + q (see
Figure 3.2). The energy difference is then given by

Ek,q = εk+q − εk > 0. (3.62)

In analogy to the semiconducting case, there is a continuum of particle-hole excitation spectrum
in the energy-momentum plane – sketched in Figure 3.3. Note the absence of an energy gap for
excitations.

3.2.3 Collective excitation

For the electron-hole excitations the Coulomb interaction was ignored (by using χ0(q, ω) instead
of χ(q, ω)), such that the bare Lindhard function provides information about the single particle
spectrum. Including the Coulomb interaction a new collective excitation will arise, the so-called
plasma resonance. For a long-ranged interaction like the Coulomb interaction this resonance
appears at finite frequency for small momenta q. We derive it here using the response function

5See Chapter 6 “Linear response theory” of the course “Statistical Physics” FS09.
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ωp

Plasmaresonanz

ω

F q2k

Figure 3.3: Excitation spectrum in the ω-q-plane. The large shaded region corresponds to
the electron-hole continuum and the sharp line outside the continuum represents the plasma
resonance which is damped when entering the continuum.

χ(q, ω). Assuming |q| � k
F

we expand χ0(q, ω) in q, starting with

εk+q = εk + q ·∇k εk + · · · (3.63)

n0,k+q = n0,k +
∂n0

∂ε
q ·∇k εk + · · · (3.64)

Note that ∂n0/∂εk = −δ(εk − ε
F
) at T = 0 and ∇k εk = ~vk is the velocity. Since we will deal

with states located at the Fermi energy here, vk = vF k/|k| is the Fermi velocity. This leads to
the approximation

χ0(q, ω) ≈ −2
∫

d3k

(2π)3
q · v

F
δ(εk − µ)

q · v
F
− ω − iη

=
2

(2π)2

∫
d cos θ

k2
F

~vF

[
qvF cos θ
ω + iη

+
(
qvF cos θ
ω + iη

)2

+
(
qvF cos θ
ω + iη

)3

+ · · ·

]
(3.65)

≈
k3

F
q2

3π2m(ω + iη)2

(
1 +

3
5

v2
F q

2

(ω + iη)2

)
(3.66)

=
n0q

2

m(ω + iη)2

(
1 +

3
5

v2
F q

2

(ω + iη)2

)
. (3.67)

According to equation (3.55), we find

lim
|q|→0

ε(q, ω) = 1−
ω2

p

ω2
(3.68)

for the dielectric function in the long wavelength limit (|q| → 0), with

ω2
p =

4πe2n0

m
. (3.69)

We now use the result in Eq.(3.67) to approximate χ(q, ω),

χ(q, ω) ≈
n0q

2R(q, ω)2

m(ω + iη)2 − 4πe2n2
0R(q, ω)2

(3.70)

=
n0q

2R(q, ω)
2mωp

{
1

ω + iη − ωpR(q, ω)
− 1
ω + iη + ωpR(q, ω)

}
(3.71)
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where we introduced

R(q, ω)2 =
(

1 +
3v2

F q
2

5ω2

)
. (3.72)

Applying the relation (3.59) in Eq.(3.67) we obtain

Im
[
χ(q, ω)

]
≈
πn0q

2R(q, ωp)
ωp

[
δ(ω − ωpR(q, ωp))− δ(ω + ωpR(q, ωp))

]
(3.73)

which yields a sharp excitation mode,

ω(q) = ωpR(q, ωp) = ωp

{
1 +

3v2
F q

2

10ω2
p

+ · · ·

}
, (3.74)

which is called plasma resonance with ωp as the plasma frequency. Similar to the exciton,
the plasma excitation has a well-defined energy-momentum relation and may consequently be
viewed as a quasiparticle (plasmon) which has bosonic character. When the plasmon dispersion
merges with the electron-hole continuum it is damped (Landau damping) because of the allowed
decay into electron-hole excitations. This results in a finite life-time of the plasmons within
the electron-hole continuum corresponding to a finite width of the resonance of the collective
excitation.

metal ω(exp)
p [eV] ω(theo)

p [eV]
Li 7.1 8.5
Na 5.7 6.2
K 3.7 4.6
Mg 10.6 -
Al 15.3 -

Table 3.1: Experimental values of the plasma frequency for different compounds. For the alkali
metals a theoretically determined ωp is given for comparison, using equation (3.69) with m the
free electron mass and n determined through rs,Li = 3.22, rs,Na = 3.96 and Rs,K = 4.86.

It is possible to understand the plasma excitation in a classical picture. Consider negatively
charged electrons in a positively charged ionic background. When the electrons are shifted
uniformly by r with respect to the ions, a polarization P = −n0er results. The polarization
causes an electric field E = −4πP which acts as a restoring force. The equation of motion for
an individual electron describes harmonic oscillations

m
d2

dt2
r = −eE = −4πe2n0r. (3.75)

with the same oscillation frequency as in Eq.(3.69), the plasma frequency,

ω2
p =

4πe2n0

m
. (3.76)

Classically, the plasma resonance can therefore be thought as an oscillation of the whole electron
gas cloud on top of a positively charged background.
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+
r

Figure 3.4: Classical understanding of the plasma excitation.

3.2.4 Screening

Thomas-Fermi screening

Next, we analyze the potential V felt by the electrons exposed to a static field (ω → 0). Using
the expansion (3.64) we obtain

χ0(q, 0) = − 1
Ω

∑
k,s

δ(εk − ε
F
) = − 1

π2

k2
F

~vF

= −
3n0

2ε
F

(3.77)

and thus

ε(q, 0) = 1 +
k2

TF

q2
(3.78)

with the so-called Thomas-Fermi wave vector k2
TF

= 6πe2n0/εF
. The effect of the renormalized

q-dependence of the dielectric function can best be understood by considering a bare point
charge Va(r) = e2/r (or Va(q) = 4πe2/q2) and its renormalization in momentum space

V (q) =
Va(q)
ε(q, 0)

=
4πe2

q2 + k2
TF

(3.79)

or in real space

V (r) =
e2

r
e−kTF r. (3.80)

The potential is screened by a rearrangement of the electrons and this turns the long-ranged
Coulomb potential into a Yukawa potential with exponential decay. The new length scale is k−1

TF
,

the so-called Thomas-Fermi screening length. In ordinary metals k
TF

is typically of the same
order of magnitude as k

F
, i.e. the screening length is of order 5Å comparable to the distance

between neighboring atoms.6 As a consequence also external electric fields cannot penetrate a
metal, but are screened on this length 1/kTF . This legitimates one of the basic assumptions
used in electrostatics with metals.

6The Thomas-Fermi approach for electron gas is sketched in the following. The Thomas-Fermi theory for
the charge distributions slowly varying in space is based on the approximation that locally the electrons form a
Fermi gas with Fermi energy εF and electron density ne(εF ) neutralizing the ionic background. The electrostatic
potential Φ(r) of an external charge distribution ρex(r) induces a charge redistribution ρind(r) relative to ne(εF ).
Within Thomas-Fermi approximation the induced charge distribution can then be written as

ρind(r) = −e
ˆ
ne(εF + eΦ(~r))− ne(εF )

˜
(3.81)

with

ne(εF ) =
k3

F

3π2
=

1

3π2~2
(2mεF )3/2 (3.82)

where εF = ~2k2
F/2m. This approach is justified, if the spacial change of the potential Φ(r) is slow compared to

k−1
F , so that locally we may describe the electron gas as a filled Fermi sphere of corresponding electron density.
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Friedel oscillations

The static dielectric function can be evaluated exactly for a system of free electrons, resulting
for 3 dimensions in

ε(q, 0) = 1 +
4e2mk

F

πq2

{
1
2

+
4k2

F
− q2

8k
F
q

ln
∣∣∣∣2kF

+ q

2k
F
− q

∣∣∣∣} . (3.87)

Noticeably the dielectric function varies little for small q � k
F
. At q = ±2k

F
there is, however,

a logarithmic singularity. This is a consequence of the sharpness of the Fermi surface in k-space.
Consider the induced charge of a point charge at the origin: na(r) = eδ(r).7

δn(r) = e

∫
d3q

(2π)3

{
1
ε(q)

− 1
}
na(q, 0)eiq·r = −e

r

∞∫
0

g(q)na(q, 0) sin qr dq (3.89)

with

g(q) =
q

2π2

ε(q)− 1
ε(q)

. (3.90)

Note that g(q) vanishes for both q → 0 and q →∞. Using partial integration twice, we find

δn(r) =
e

r3

∞∫
0

g′′(q) sin qrdq (3.91)

where

g′(q) ≈ A ln|q − 2k
F
| (3.92)

and

g′′(q) ≈ A

q − 2k
F

(3.93)

The Poisson equation may now be formulated as

∇2Φ(r) = −4π[ρind(r) + ρex(r)] ≈ 4π

"
e2Φ(r)

∂ne(ε)

∂ε

˛̨̨̨
ε=εF

− ρex(r)

#
(3.83)

= k2
T F Φ(r)− 4πρex(r) (3.84)

with the Thomas-Fermi momentum kT F defined as,

k2
T F = 4πe2

∂ne(ε)

∂ε

˛̨̨̨
ε=εF

=
6πe2ne

εF

. (3.85)

and ne = ne(εF ). For a point charge Q located at the origin we obtain,

Φ(r) = Q
e−rkT F

r
. (3.86)

This is the Yukawa potential as obtained above.
7The charge distribution can be deduced from the Poisson equation (3.50):

δn(q) =
q2

4πe2
Vδn(q) = χ0(q, 0)V (q) = χ0(q, 0)

Va(q)

ε(q, 0)
=

1− ε(q, 0)

ε(q, 0)
na(q, 0) (3.88)

The charge distribution in real space can be obtained by Fourier transformation.
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dominate around q ∼ 2k
F
. Hence, for kF r � 1,

δn(r) ≈ eA

r3

2kF +Λ∫
2kF−Λ

sin[(q − 2k
F
)r] cos 2k

F
r + cos[(q − 2k

F
)r]sin2k

F
r

q − 2k
F

dq (3.94)

−→ πeA
cos 2k

F
r

r3
. (3.95)

with a cutoff Λ →∞. The induced charge distribution exhibits so-called Friedel oscillations.

einfach
i

r

Thomas−Fermi

Lindhard−Form

n

Figure 3.5: Friedel oscillations of the charge distribution.

Dielectric function in various dimensions

Above we have treated the dielectric function for a three-dimensional parabolic band. Similar
calculations can be performed for one- and two-dimensional systems. In general, the static
susceptibility is given by

χ0(q, ω = 0) =



− 1
2πq

ln
∣∣∣∣s+ 2
s− 2

∣∣∣∣ , 1D

− 1
2π

{
1−

(
1− 4

s2

)
θ(s− 2)

}
, 2D

−
k

F

2π2

{
1− s

4

(
1− 4

s2

)
ln
∣∣∣∣s+ 2
s− 2

∣∣∣∣} , 3D

(3.96)

where s = q/k
F
. Interestingly χ0(q, 0) has a singularity at q = 2k

F
in all dimensions. The

singularity becomes weaker as the dimensionality is increased. In one dimension, there is a
logarithmic divergence, in two dimensions there is a kink, and in three dimensions only the
derivative diverges. Later we will see that these singularities may lead to instabilities of the
metallic state, in particular for the one-dimensional case.

3.3 Lattice vibrations - Phonons

The atoms in a lattice of a solid are not immobile but vibrate around their equilibrium positions.
We will describe this new degree of freedom by treating the lattice as a continuous elastic medium
(Jellium with elastic modulus λ). This approximation is sufficient to obtain some essential
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Figure 3.6: Lindhard functions for different dimensions. The lower the dimension the stronger
the singularity at q = 2k

F
.

features of the interaction between lattice vibrations and electrons. In particular, renormalized
screening effects will be found. Our approach here is, however, limited to mono-atomic unit cells
because the internal structure of a unit cell is neglected.

3.3.1 Vibration of a isotropic continuous medium

The deformation of an elastic medium can be described by the displacement of the infinitesimal
volume element d3r around a point r to a different point r′(r). We can introduce here the
so-called displacement field u(r) = r′(r)− r as function of r. In general, u is also a function of
time. In the simplest form of an isotropic medium the elastic energy for small deformations is
given by

Eel =
λ

2

∫
d3r (∇ · u(r, t))2 (3.97)

where λ is the elastic modulus (note that there is no deformation energy, if the medium is
just shifted uniformly). This energy term produces a restoring force trying to bring the system
back to the undeformed state. In this model we are neglecting the shear contributions.8 The
continuum form above is valid for deformation wavelengths that are much longer than the lattice
constant, so that details of the arrangement of atoms in the lattice can be neglected. The kinetic
energy of the motion of the medium is given by

Ekin =
ρ0

2

∫
d3r

(
∂u(r, t)
∂t

)2

(3.99)

where ρ0 = Mini is the mass density with the ionic mass Mi and the ionic density ni. Variation
of the Lagrangian functional L[u] = Ekin − Eel with respect to u(r, t) leads to the equation of
motion

1
c2s

∂2

∂t2
u(r, t)−∇(∇ · u(r, t)) = 0, (3.100)

8Note that the most general form of the elastic energy of an isotropic medium takes the form

Eel =

Z
d3r

X
α,β=x,y,z

»
λ

2
(∂αuα)(∂βuβ) + µ(∂αuβ)(∂αuβ)

–
, (3.98)

where ∂α = ∂/∂rα. The Lamé coefficients λ and µ characterize the elastic properties. The elastic constant λ
describes density modulations leading to longitudinal elastic waves, whereas µ corresponds to shear deformations
connected with transversely polarized elastic waves. Note that transverse elastic waves are not important for the
coupling of electrons and lattice vibrations.
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which is a wave equation with sound velocity c2s = λ/ρ0. The resulting displacement field can
be expanded into normal modes,

u(r, t) =
1√
Ω

∑
k

ek

(
qk(t)eik·r + qk(t)∗e−ik·r

)
(3.101)

where every qk(t) satisfies the equation

d2

dt2
qk + ω2

kqk = 0, (3.102)

with the frequency ωk = cs|k| = csk and the polarization vector ek has unit length. Note
that within our simplification for the elastic energy (3.98), all modes correspond to longitudinal
waves, i.e. ∇ × u(r, t) = 0 and ek ‖ k. The total energy expressed in terms of the normal
modes reads

E =
∑
k

ρ0ω
2
k [qk(t)q∗k(t) + q∗k(t)qk(t)] . (3.103)

Next, we switch from a Lagrangian to a Hamiltonian description by defining the new variables

Qk =
√
ρ0(qk + q∗k) (3.104)

Pk =
d

dt
Qk = −iωk

√
ρ0(qk − q∗k) (3.105)

in terms of which the energy is given by

E =
1
2

∑
k

(
P 2

k + ω2
kQ

2
k

)
. (3.106)

Thus, the system is equivalent to an ensemble of independent harmonic oscillators, one for each
normal mode k. Consequently, the system may be quantized by defining the canonical conjugate
operators Pk → P̂k and Qk → Q̂k which obey, by definition, the commutation relation,

[Q̂k, P̂k′ ] = i~δk,k′ . (3.107)

As it is usually done for quantum harmonic oscillators, we define the raising and lowering
operators

b̂k =
1√

2~ωk

(
ωkQ̂k + iP̂k

)
(3.108)

b̂†k =
1√

2~ωk

(
ωkQ̂k − iP̂k

)
, (3.109)

satisfying the commutation relations

[̂bk, b̂
†
k′

] = δk,k′ , (3.110)

[̂bk, b̂k′ ] = 0, (3.111)

[̂b†k, b̂
†
k′

] = 0. (3.112)

These relations can be interpreted in a way that these operators create and annihilate quasi-
particles following the Bose-Einstein statistics. According to the correspondence principle, the
quantum mechanical Hamiltonian corresponding to the energy (3.106) is

H =
∑
k

~ωk

(
b̂†kb̂k +

1
2

)
. (3.113)
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In analogy to the treatment of the electrons in second quantization we say that the operators b̂†k
(̂bk) create (annihilate) a phonon, a quasiparticle with well-defined energy-momentum relation,
ωk = cs|k|. Using Eqs.(3.102, 3.105, and 3.109) the displacement field operator û(r) can now
be defined as

û(r) =
1√
Ω

∑
k

ek

√
~

2ρ0ωk

[
b̂ke

ik·r + b̂†ke
−ik·r

]
. (3.114)

As mentioned above, the continuum approximation is valid for long wavelengths (small k) only.
For wavevectors with k ≈ π/a the discreteness of the lattice appears in the form of corrections
to the linear dispersion ωk ∝ |k|. Since the number of degrees of freedom is limited to 3Ni (Ni

number of atoms), there is a maximal wave vector called the Debye wavevector9 k
D
. We can now

define the corresponding Debye frequency ω
D

= cskD
and the Debye temperature Θ

D
= ~ω

D
/k

B
.

In the continuous medium approximation there are only acoustic phonons. For the inclusion of
optical phonons, the arrangement of the atoms within a unit cell has to be considered, which
goes beyond this simple picture.

3.3.2 Phonons in metals

The consideration above is certainly valid for semiconductors, where ionic interactions are me-
diated via covalent chemical bonds and oscillations around the equilibrium position may be
approximated by a harmonic potential, so that the form of the elastic energy above is well moti-
vated. The situation is more subtle for metals, where the ions interact through the long-ranged
Coulomb interaction and are held to together through an intricate interplay with the mobile
conduction electrons.

First, neglecting the gluey effect of the electrons, the positively charged background can it-
self be treated as an ionic gas. Similar to the electronic gas (3.69), the background exhibits a
well-defined collective plasma excitation at the ionic plasma frequency

Ω2
p =

4πni(Zie)
2

Mi

, (3.115)

For equation (3.115) we used the formula (3.69) with n0 → ni = n0/Zi the density of ions with
charge number Zi, e → Zie, and m → Mi the atomic mass. Apparently the excitation energy
does not vanish as k → 0. So far, the background of the metallic system can not be described
as an elastic medium where the excitation spectrum is expected to be linear in k, ωk ∝ |k|.

The shortcoming in this discussion is that we neglected the feedback effects of the electrons that
react nearly instantaneously to the slow ionic motion, due to their much smaller mass. The
finite plasma frequency is a consequence of the long-range nature of the Coulomb potential (as
mentioned earlier), but as we have seen above the electrons tend to screen these potentials, in
particular for small wavevectors k. The “bare” ionic plasma frequency Ωp is thus renormalized
to

ω2
k =

Ω2
p

ε(k, 0)
=

k2Ω2
p

k2 + k2
TF

≈ (csk)
2, (3.116)

where the presence of the electrons leads to a renormalization of the Coulomb potential by a
factor 1/ε(k, ω). Having included the back-reaction of the electrons, a linear dispersion of a
sound wave (ωk = cs|k|) is finally recovered, and the renormalized velocity of sound cs reads

c2s ≈
Ω2

p

k2
TF

=
Zmω2

p

Mik
2
TF

=
1
3
Z
m

Mi

v2
F . (3.117)

9See course of Statistical Physics HS09.
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For the comparison of the energy scales we find,

Θ
D

T
F

∼
cs
vF

=

√
1
3
Z
m

Mi

� 1, (3.118)

where we used k
B
T

F
= ε

F
and k

D
≈ k

F
.

Kohn anomaly

Notice that phonon frequencies are much smaller than the (electronic) plasma frequency, so that
the approximation

ω2
k =

Ω2
p

ε(k, 0)
(3.119)

is valid even for larger wavevectors. Employing the Lindhard form of ε(k, 0), we deduce that
the phonon frequency is singular at |k| = 2k

F
. More explicitly we find

∂ωk

∂k
→∞ (3.120)

in the limit k → 2k
F
. This behavior is called the Kohn anomaly and results from the interaction

between electrons and phonons. This effect is not contained in the previous elastic medium
model that neglected ion-electron interactions.

3.3.3 Peierls instability in one dimension

The Kohn anomaly has particularly drastic effects in (quasi) one-dimensional electron systems,
where the electron-phonon coupling leads to an instability of the metallic state. We consider a
one-dimensional Jellium model where the ionic background is treated as an elastic medium with a
displacement field u along the extended direction (x-axis). We neglect both the electron-electron
interaction and the slow time evolution of the background modulation so that the Hamiltonian
reads,

H = Hisol +Hint, (3.121)

where contributions of the isolated electronic and ionic systems are included in

Hisol =
∑
k,s

~2k2

2m
c†k sck s +

λ

2

∫
dx

(
du

dx
(x)
)2

(3.122)

whereas the interactions between the system comes in via the coupling

Hint = −n0

∑
s

∫
dx dx′ V (x− x′)

d

dx
u(x)Ψ̂†

s(x
′)Ψ̂s(x

′) (3.123)

In the general theory of elastic media ∇ · u = −δn/n0 describes density modulations, so that
the second term in (3.121) models the coupling of the electrons to charge density fluctuations of
the positively charged background10 mediated by the screened Coulomb interaction V (x − x′).
Consider the ground state of N electrons in a system of length L, leading to an electronic density

10Note that only phonon modes with a finite value of ∇ ·u couple in lowest order to the electrons. This is only
possible of longitudinal modes. Transverse modes are defined by the condition ∇ · u = 0 and do not couple to
electrons in lowest order.
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n = N/L. For a uniform background u(x) = const, the Fermi wavevector of free electrons is
readily determined to be

N =
∑

s

+kF∫
−kF

dk 1 = 2
L

2π
2k

F
(3.124)

leading to

k
F

=
π

2
n. (3.125)

Emersion of the instability

Now we consider the Kohn anomaly of this system. For a small background modulation u(x) 6=
const, the interaction term Hint can be treated perturbatively and will lead to a renormalization
of the elastic modulus λ in (3.121). For that it will be useful to express the full Hamiltonian in
momentum space,

Hisol =
∑
k,s

~2k2

2m
c†k sck s +

Ωρ0

2

∑
q

ω2
ququ−q (3.126)

Hint = i
∑
k,q,s

q
[
Ṽ−quq ĉ

†
k+q,sĉk,s − Ṽqu−q ĉ

†
k,sĉk+q,s

]
, (3.127)

where we used from previous considerations λq2 = ρ0ω
2
q . Furthermore we defined

u(x) =
1√
L

∑
q

uqe
−iqx, (3.128)

V (x) =
1√
L

∑
q

Ṽqe
iqx, (3.129)

with Ṽq = 4πe2/q2ε(q, 0). We compute the second order correction to the ground state energy
using Rayleigh-Schrödinger perturbation theory (note that the linear energy shift vanishes)

∆E(2) =
∑
k,q,s

q2|Ṽq|
2uqu−q

∑
n

|〈Ψ0|ĉ
†
k,sĉk+q,s|n〉|2 + |〈Ψ0|ĉ

†
k+q,sĉk,s|n〉|2

E0 − En

(3.130)

=
∑

q

|Ṽq|
2q2uqu−q

∑
k

nk+q − nk

εk+q − εk
(3.131)

= Ω
∑

q

|Ṽq|
2q2χ0(q, 0)uqu−q (3.132)

where the virtual states |n〉 are electron-hole excitations of the filled Fermi sea. This term gives
a correction to the elastic term in (3.126). In other words, the elastic modulus λ and, thus, the
phonon frequency ωq

2 = λ/ρ0q
2 is renormalized according to

(
ωren

q

)2 ≈ ω2
q +

|Ṽq|2q2

ρ0

χ0(q, 0) = ω2
q −

|Ṽq|2q
2πρ0

ln
∣∣∣∣q + 2k

F

q − 2k
F

∣∣∣∣ (3.133)

From the behavior for q → 0 we infer that the velocity of sound is renormalized. However, a much
more drastic modification occurs at q = 2k

F
. Here the phonon spectrum is ’softened’, i.e. the

frequency vanishes and even becomes negative. The latter effect is an artifact of the perturbation
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Figure 3.7: Kohn anomaly for the one-dimensional system with electron-phonon coupling. The
renormalization of the phonon frequency is divergent at q = 2k

F
.

theory.11 This hints at an instability triggered by the Bose-Einstein condensation of phonons
with a wave vector of q = 2k

F
. This coherent superposition12 of many phonons corresponds

classically to a static periodic deformation of the ionic background with wave vector 2k
F
. The

unphysical behavior of the frequency ωq indicates that in the vicinity of 2k
F
, the current problem

can not be treated with the help of perturbation theory around the uniform state.

Peierls instability at Q = 2k
F

Instead of the perturbative approach, we assume that the background shows a periodic density
modulation (coherent phonon state)

u(x) = u0 cos(Qx) (3.138)

where Q = 2k
F

and u0 remains to be determined variationally. We investigate the effect of
this modulation on the electron-phonon system. To this end we show that such a modulation
lowers the energy of the electrons. Assuming that u0 is small we can evaluate the electronic
energy using the approximation of nearly free electrons, where Q appears as a reciprocal lattice
vector. The electronic spectrum for 0 ≤ k ≤ Q is then approximately determined by the secular

11Note that indeed the expression

ω2
q =

Ω2
p

ε(q, 0)
(3.134)

in (3.119) does not yield negative energies but gives a zero of ωq at q = 2kF .
12We introduce the coherent state

|Φcoh
Q 〉 = e−|α|

2/2
∞X

n=0

(bb†Q)n

n!
αn|0〉 (3.135)

which does not have a definite phonon number for the mode of wave vector Q. On the other hand, this mode is
macroscopically occupied, since

nQ = 〈Φcoh
Q |bb†QbbQ|Φcoh

Q 〉 = |α|2 (3.136)

and, moreover, we find

〈Φcoh
Q |bu(x)|Φcoh

Q 〉 =
1

L

~
2ρ0ωQ

h
αeiQx + α∗e−iQx

i
= u0 cos(Qx) (3.137)

with u0 = ~α/ρ0LωQ, assuming α being real.
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equation

det

(
~2k2

2m − E ∆
∆∗ ~2(k−Q)2

2m − E

)
= 0 (3.139)

where ∆ follows from the Fourier transform of the potential V (x),

∆ = −iQu0nṼQ (3.140)

with

ṼQ =
∫
dx eiQxV (x). (3.141)

The equation (3.139) leads to the energy eigenstates

E±
k =

~2

4m

[
(k −Q)2 + k2 ±

√
{(k −Q)2 − k2}2 + 16m2|∆|2/~4

]
. (3.142)

The total energy of the electronic and ionic system is then given by

Etot(u0) = 2
∑

0≤k<Q

Ek− +
λLQ2

4
u2

0 (3.143)

where all electronic states of the lower band (Ek−) are occupied and all states of the upper band
(Ek+) are empty. The amplitude u0 of the modulation is found by minimizing Etot with respect
to u0:

0 =
1
L

dEtot

du0

(3.144)

= − ~2

2m
32Q2m2n2Ṽ 2

Q

~4
u0

Q∫
0

dk

2π
1√

{(k −Q)2 − k2}2 + 16m2Q2n2Ṽ 2
Q
u2

0/~4
+
λ

2
Q2u0 (3.145)

= −u0

4Qmn2Ṽ 2
Q

~2π

+kF∫
−kF

dq
1√

q2 + 4m2n2Ṽ 2
Q
u2

0/~4
+
λ

2
Q2u0 (3.146)

= −u0

8Qmn2Ṽ 2
Q

~2π
arsinh

(
~2k

F

2mnṼ
Q
u0

)
+
λ

2
Q2u0. (3.147)

We solve this equation for u0 using arsinh(x) ≈ ln(2x) when x� 1.

u0 =
~2k

F

mnṼ
Q

exp

[
−

~2k
F
πλ

8mn2Ṽ 2
Q

]
=

2
k

F

ε
F

nṼ
Q

e−1/N(0)g (3.148)

where ε
F

= ~2k2
F
/2m is the Fermi energy and N(0) = 2m/π~2k

F
is the density of states at the

Fermi energy. We introduced the coupling constant g = 4n2Ṽ 2
Q
/λ that describes the phonon-

induced effective electron-electron interaction. The coupling is the stronger the more polarizable
(softer) ionic background, i.e. when the elastic modulus λ is small. Note that the static displace-
ment u0 depends exponentially on the coupling and on the density of states. The underlying
reason for this so-called Peierls instability to happen lies in the opening of an energy gap,

∆E = E+
kF
− E−

kF
= 2|∆| = 8ε

F
exp

(
− 1
N(0)g

)
, (3.149)
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Figure 3.8: Change of the electron spectrum. The modulation of the ionic background yields
gaps at the Fermi points and the system becomes an insulator.

at k = ±k
F
, i.e. at the Fermi energy. The gap is associated with a lowering of the energy of the

electron states in the lower band in the vicinity of the Fermi energy. For this reason this kind
of instability is called a Fermi surface instability. Due to the gap the metal has turned into a
semiconductor with a finite energy gap for all electron-hole excitations.
The modulation of the electron density follows the charge modulation due to the ionic lattice
deformation, which can be seen by expressing the wave function of the electronic states,

ψ′k(x) =
1√
Ω

∆eikx + (Ek − εk)e
i(k−Q)x√

(Ek − εk)2 + |∆|2
, (3.150)

which is a superposition of two plane waves with wave vectors k and k−Q, respectively. Hence
the charge density reads

ρk(x) = −e|ψ′k(x)|
2 = − e

Ω

[
1−

2(εk − Ek)|∆|
(Ek − εk)2 + |∆|2

sinQx
]

(3.151)

and its modulation from the homogeneous distribution −en is given by

δρ(x) =
∑

k

ρk(x)− (−en) =
e

2

kF∫
0

dk′

2π
m|∆| sinQx√

~4k2
F
k′2 +m2|∆|2

(3.152)

=
en|∆|
16ε

F

ln
∣∣∣∣2εF

|∆|

∣∣∣∣ sin(2k
F
x). (3.153)

Such a state, with a spatially modulated electronic charge density, is called a charge density
wave (CDW) state. This instability is important in quasi-one-dimensional metals which are for
example realized in organic conductors such as TTF·TCNQ (tetrathiafulvalene tetracyanoquino-
methane). In higher dimensions the effect of the Kohn anomaly is generally less pronounced, so
that in this case spontaneous deformations rarely occur. As we will see later, a charge density
wave instability can nevertheless be observed in multi-dimensional (d > 1) systems with a so-
called nested Fermi surface. These systems resemble in some respects one-dimensional systems.
Finally, notice that the electron-phonon interaction strongly contributes to another kind of Fermi
surface instability, when metals exhibit superconductivity.

3.3.4 Dynamics of phonons and the dielectric function

We have seen that an external potential Va is screened by the polarization of the electrons.
As the positively charged ionic background is also polarizable, it should be included in the
renormalization of the external potential. In general, the fully renormalized potential Vren may
be expressed via

εVren = Va, (3.154)
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with the full dielectric function ε. In order to determine Vren and ε, we define the ’bare’ (unrenor-
malized) electronic (ionic) dielectric function εel (εion). The renormalized potential in (3.154)
can be expressed considering three other points of view. First, if the ionic potential Vion is added
to the external potential Va, the remaining screening is due to the electrons only, i.e.,

εelVren = Va + Vion. (3.155)

Secondly, the electronic potential Vel may be added to the external potential Va, so that the ions
exclusively renormalize the new potential Vel + Va, resulting in

εionVren = Va + Vel. (3.156)

Note that in (3.156) all effects of electron polarization are included in Vel, so that the dielectric
function results from the ’bare’ ions. Finally we use the fact that Vren may be expressed as

Vren = Va + Vel + Vion. (3.157)

Adding (3.155) to (3.156) and subtracting (3.154), we obtain

(εel + εion − ε)Vren = Va + Vel + Vion (3.158)

which simplifies with (3.157) to

ε = εel + εion − 1 (3.159)

In order to find an alternative expression relating the renormalized potential Vren to the external
potential Va, we make the Ansatz

Vren =
1
ε
Va =

1
εioneff

1
εel
Va (3.160)

i.e. the potential Va/ε
el that results from bare screening of the polarizable electrons is addi-

tionally screened by an effective ionic dielectric function εioneff which includes electron-phonon
interactions. Using equation (3.159) and the definition of εioneff via (3.160) we obtain

εioneff = 1 +
1
εel

(εion − 1), (3.161)

or using the definition (3.55)

χion
0,eff =

χion
0

εel
. (3.162)

Taking into account the discussion of the plasma excitation of the bare ions in Eqs.(3.68, 3.69,
and 3.115), and considering the long wave-length excitations (k → 0), we approximate

εion = 1−
Ω2

p

ω2
, (3.163)

εel = 1 +
k2

TF

k2
. (3.164)

For the electrons we used the result from the quasi-static limit in (3.78). The full dielectric
function now reads

ε = 1 +
k2

TF

k2
−

Ω2
p

ω2
=
(

1 +
k2

TF

k2

)(
1−

ω2
k

ω2

)
. (3.165)
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Figure 3.9: Diagram for the electron-electron interaction involving also electron-phonon cou-
pling.

The time-independent Coulomb interaction

Va =
4πe2

q2
(3.166)

between the electrons is replaced in a metal by an effective interaction

Vren(q, ω) =
4πe2

q2ε(q, ω)
(3.167)

=
4πe2

k2
TF

+ q2

(
ω2

ω2 − ω2
q

)
. (3.168)

This interaction corresponds to the matrix element for a scattering process of two electrons
with momentum exchange q and energy exchange ω. The phonon frequency ωq is always less
than the Debye frequency ω

D
. Hence the effect of the phonons is almost irrelevant for energy

exchanges ω that are much larger than ω
D
. The time scale for such energies would be too short

for the slow ions to move and influence the interaction. Interestingly, the repulsive bare Coulomb
potential is renormalized to an interaction with an attractive channel for ω < ω

D
because of

overcompensation by the ions. This aspect of the electron-phonon interaction is most important
for superconductivity.
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Chapter 4

Itinerant electrons in a magnetic
field

Electrons couple through their orbital motion and their spin to external magnetic fields. In
this chapter we focus on the case of orbital coupling which can be also used as a diagnostic
tool to observe the presence of a Fermi surface in a metallic system and to map out the Fermi
surface topology. A further most intriguing feature of electrons moving in a magnetic field is
the Quantum Hall effect of a two-dimensional electronic system. In both case the Landau levels
with play an important role and will be introduced here in a first step.

4.1 The de Haas-van Alphen effect

The ground state of a metal is characterized by the existence of a discontinuity of the occupation
number in momentum space - the Fermi surface. The de Haas-van Alphen experiment is one
of the best methods to verify its existence and to determine the shape of a Fermi surface. It is
based on the behavior of electrons at low temperatures in a strong magnetic field.

4.1.1 Landau levels

Consider a free electron gas subject to a uniform magnetic field B = (0, 0, B). The one-particle
Hamiltonian for an electron is given by

H =
1

2m

(
−i~∇− e

c
A
)2
−
gµ

B

~
ŜzB. (4.1)

We fix the gauge freedom of the vector potential A by working in the Landau gauge, A =
(0, Bx, 0), satisfying B = ∇×A. Hence the Hamiltonian (4.1) simplifies to

H =
1

2m

[
−~2 ∂

2

∂x2
+
(
−i~ ∂

∂y
− e

c
Bx

)2

− ~2 ∂
2

∂z2

]
−
gµ

B

~
ŜzB. (4.2)

In this gauge, the vector potential acts like a confining harmonic potential along the x-axis. As
translational invariance in the y- and z-directions is preserved, the eigenfunctions separate in
the three spacial components and take the form

ψ(r) = eikzzeikyyφ(x)ξs (4.3)

where ξs is the spin wave function. The states φ(x) are found to be the eigenstates of the
harmonic oscillator problem, so that we have

φn,ky
(x) =

1√
2n n! 2π `2

Hn[(x− ky`
2)/`]e−(x−ky`2)2/2`2 (4.4)
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where Hn(x) are the Hermite polynomials and ` represents the magnetic length defined via
`2 = ~c/|eB|. The eigenenergies of the Hamiltonian (4.2) read

En,kz ,s =
~2k2

z

2m
+ ~ωc

(
n+

1
2

)
−
gµ

B

~
Bs (4.5)

where s = ±~/2, n ∈ N0 and we have introduced the cyclotron frequency ωc = |eB|/mc. Note
that the energy (4.5) does not depend on ky. The apparent differences in the spatial dependence
of the wave functions for the x- and y-directions are merely a consequence of the chosen gauge.1

The fact that the energy does not depend on ky in the chosen gauge indicates a huge degeneracy
of the eigenstates. To obtain the number of degenerate states we concentrate for simplicity on
kz = 0 and neglect the electron spin. We take the electrons to be confined to a cube of volume
L3 with periodic boundary conditions, i.e., ky = 2πny/L with ny ∈ N0. As the wave function
φn,ky

(x) is centered around ky`
2, the condition

0 < ky`
2 < L (4.8)

fixes the maximal number Ndeg of degenerate states

0 < ny < Ndeg =
L2

2π`2
. (4.9)

The energies correspond to a discrete set of one-dimensional systems, so that the density of states
is determined by the structure of the one-dimensional dispersion (with square root singularities
at the band edges) along the z-direction:

N0(E,n, s) =
Ndeg

Ω

∑
kz

δ(E − En,kz ,s) (4.10)

=
1

2π`2

∫
dkz

2π
δ

(
E −

~2k2
z

2m
− ~ωc

(
n+

1
2
)

+
gµ

B

~
Bs

)
(4.11)

=
(2m)3/2ωc

8π2~2

1√
E − ~ωc(n+ 1/2) + gµ

B
Bs/~

(4.12)

The total density of states N0(E) for a given energy E is obtained by summing over n ∈ N0 and
s = ±~/2. This should be compared to the density of states without the magnetic field,

N0(E,B = 0) =
1
Ω

∑
k,s

δ

(
E − ~2k2

2m

)
=

(2m)3/2

2π2~3

√
E . (4.13)

The density of states for finite applied field is shown in Fig. 4.1 for one spin-component.

4.1.2 Oscillatory behavior of the magnetization

In the presence of a magnetic field, the smooth density of states of the three-dimensional metal
is replaced by a discontinuous form dominated by square root singularities. The position of the

1Like the vector potential, the wave function is a gauge dependent quantity. To see this, observe that under a
gauge transformation

A(r, t) → A′(r, t) = A(r, t) + ∇χ(r, t) (4.6)

the wave function undergoes a position dependent phase shift

ψ(r, t) → ψ′(r, t) = ψ(r, t)ei~cχ(r,t)/e. (4.7)
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Figure 4.1: Density of states for electrons in a magnetic field due to Landau levels. The dashed
line shows the density of states in the absence of a magnetic field.

singularities depends on the strength of the magnetic field. In order to understand the resulting
effect on the magnetization, we consider the free energy

F = Nµ− TS = Nµ− k
B
T

∑
kz ,ky ,n,s

ln
(
1 + e−(En,kz,s−µ)/kBT

)
(4.14)

and use the general thermodynamic relation M = −∂F/∂B. For the details of the somewhat
tedious calculation, we refer to J. M. Ziman, Principles of the Theory of Solids2 and merely
present the result

M = Nχ
P
B

1 +
χ

L

χ
P

+
πk

B
T

µ
B
B

√
ε

F

µ
B
B

∞∑
ν=1

1√
ν

sin
(

π
4 −

πνεF
µBB

)
sinh

(
π2νkBT

µBB

)
 . (4.15)

Here χ
P

is the Pauli-spin susceptibility originating from the Zeeman-term and the second term
χ

L
= −χ

P
/3 is the diamagnetic Landau susceptibility which is due to induced orbital currents

(the Landau levels). For sufficiently low temperatures, k
B
T < µ

B
B, the magnetization as a

function of the applied field exhibits oscillatory behavior. The dominant contribution comes
from the summand with ν = 1. The oscillations are a consequence of the singularities in the
density of states that influence the magnetic moment upon successively passing through the
Fermi energy as the magnetic field is varied. The period in 1/B of the oscillations of the term
ν = 1 is easily found to be

πε
F

µ
B

∆
(

1
B

)
= 2π (4.16)

or

∆
(

1
B

)
=

2πe
~c

1
A(k

F
)

(4.17)

where we used that µ
B

= ~e/2mc and defined the cross sectional area A(k
F
) = πk2

F
of the Fermi

sphere perpendicular to the magnetic field.

4.1.3 Onsager equation

The behavior we have found above for free electrons, generalizes to systems with arbitrary band
structures. In these cases there are usually no exact solutions available. Instead of generalizing
the above treatment to such band systems, we discuss the behavior of electrons within the
quasiclassical approximation (see Section 1.7) and consider the closed orbits of a wave packet

2German title : Prinzipien der Festkörpertheorie
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subject to a magnetic field. The quasi-classical equations of motion for the center of mass of the
wave packet (1.96, 1.97) simplify in the absence of an electric field to

vk =
∂εk
∂~k

(4.18)

~k̇ = −e
c
vk ×B. (4.19)

The wave vector k is restricted to the plane perpendicular to the applied field B. The time
needed for travelling along a path between k1 and k2 is given by

t2 − t1 =

k2∫
k1

dk
1
|k̇|

=
~c
eB

k2∫
k1

dk

|vk,⊥|
(4.20)

where vk,⊥ denotes the component of the velocity that is perpendicular to B. For fixed positive
energies ε and ∆ε, let ∆k be the vector in the plane of the motion that is perpendicular to both
k̇ and B, and that points from an orbit of energy ε to one with energy ε+ ∆ε. Then, we have

∆ε =
∂εk
∂k

·∆k =
∂εk
∂k ⊥

·∆k =
∣∣∣∣∂εk∂k ⊥

∣∣∣∣ |∆k| = ~|vk,⊥||∆k| , (4.21)

because ∂εk/∂k⊥ and ∆k are perpendicular to orbits of constant energy. Therefore, we infer
that

1
|vk,⊥|

=
~|∆k|
∆ε

, (4.22)

hence

t2 − t1 =
~2c

eB

1
∆ε

k2∫
k1

|∆k|dk =
~2c

eB

∆A1,2

∆ε
. (4.23)

Here ∆A1,2 is the (k-space) area swept by ∆k when going from k1 to k2 (see Fig. 4.2). Passing
to infinitesimal calculus (∆k → δk), we can write

t2 − t1 =
~2c

eB

∂A1,2

∂ε
. (4.24)
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k∆

A∆ 1,2

k
.

ε
ε+∆ε

A∆
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y

xk
ε

k

Figure 4.2: Motion of electrons in k-space. The shaded area shows the area covered by the
displacement vector ∆k during the motion.

When k2 → k1 (sweeping the whole circle) with A1,2(ε) → A(ε) 6= 0 and A(ε) is the k-space
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area enclosed by the curve εk = ε the wave packet has returned to the initial point in k-space.
The time T (ε) it takes for the wave packet for such a period is

T (ε) =
~2c

eB

∂A(ε)
∂ε

. (4.25)

Using the discrete Landau levels with energies En,kz
, we conclude from Bohr’s correspondence

principle the relation

∆E = En+1,kz
− En,kz

=
h

T (En,kz
, kz)

, (4.26)

when the number of the Landau levels involved is large. This result states that the difference
between the energies of adjacent energy levels is given by the inverse period of classical closed
orbits. As we are interested in the energy levels close to the Fermi energy, En,kz

∼ ε
F
, we find

n ∼
ε

F

~ωc

� 1 (4.27)

Note that ~ωc = 1.25K × B [Tesla] and εF ∼ 104K typically. Invoking the results from (4.25)
and (4.26) we can show that

∆A = A(En+1,kz
)−A(En,kz

) =
2πeB

~c
(4.28)

where we have used that

∂A(ε)
∂ε

=
∆A
∆E

=
eB

~2c
T (En,kz

, kz) (4.29)

is a good approximation to the equation (4.25).

extremale

Fläche

k z

En

Fermifläche

Figure 4.3: Tubes of quantized electronic states in a magnetic field along the z-axis. A maximum
of the magnetization occurs every time a tube crosses the extremal Fermi surface area as the
magnetic field is increased.

The area bounded by two neighboring classical orbits with quantum mechanically allowed en-
ergies is ∆A, irrespective of the quantum number n. It follows that the area enclosed by one
classical orbit with given quantum numbers n and kz is

A(En,kz
, kz) = (n+ γ)∆A (4.30)
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where γ is an integration constant. This equation is called the Onsager equation. The area
corresponding to an extremal density of states at the Fermi surface belongs to the quantum
number n = n

F
and the orbit with EnF ,kz

= ε
F

A(ε
F
, kz = 0) = ∆A(n

F
+ γ) =

2πeB
~c

(n
F

+ γ). (4.31)

Notice, that n
F

= n
F
(B), and the period of the oscillatory behavior is induced by a jump of

n
F
(B) by an integer with a period

∆
(

1
B

)
=

2πe
~c

1
A(ε

F
)

(4.32)

The oscillations in the magnetization thus allow to measure the cross sectional area of the
Fermi ’sphere’. By varying the orientation of the field the topology of the Fermi surface can
be mapped. As an alternative to the measurement of magnetization oscillations one can also
measure resistivity oscillations known under the name Schubnikov-de Haas effect. For both
methods it is crucial that the Landau levels are sufficiently clearly recognizable. Apart from
low temperatures this necessitates sufficiently clean samples. In this context, sufficiently clean
means that the average life-time τ (average time between two scattering events) has to be much
larger than the period of the cyclotron orbits, i.e. ωcτ � 1. This condition follows from the
uncertainty relation

∆ε ∼ ~
τ
� ~ωc. (4.33)

4.2 Quantum Hall Effect

Classical Hall Effect

The Hall effect, discovered by Edwin Hall in 1879, originates from the Lorentz force exerted by
a magnetic field on a moving charge. This force is perpendicular both to the velocity of the
charged particle and to the magnetic field. In the presence of an electrical current, a Lorentz
force produces a transverse voltage, whenever the applied magnetic field points in a direction
non-collinear to the current in the conductor. This so-called Hall effect can be used to investigate
some properties of the charge carriers. Before treating the quantum version, we briefly review
the original Hall effect. To this end we consider the classical equation of motion of an electron,
subject to an electric and a magnetic field

m∗dv

dt
= −e

(
E +

v

c
×B

)
, (4.34)

where m∗ is the effective electron mass. For this classical system, the steady state equation
reads (

E +
v

c
×B

)
= 0. (4.35)

For the Hall geometry shown in Fig. 4.4 with fixed current j = (0, jy, 0) = (0,−n0ev, 0) and
magnetic field B = Bz, the steady state condition (4.35) simplifies to

Ex +
vBz

c
= 0. (4.36)

The solution Ex = −vBz/c yields the Hall voltage that compensates the Lorentz force. The Hall
conductivity σ

H
is defined as the ratio between the longitudinal current jy and the transverse

electric field Ex, leading to

σ
H

=
jy
Ex

=
n0ec

Bz

= ν
e2

h
, (4.37)
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where ν = n0hc/Be. We infer from Eq.(4.37), that the measurements of the Hall conductivity
can be used to determine both the charge density n0 and the sign of the charge carriers, i.e.
whether the Fermi surfaces encloses the Γ-point for electron-like, negative charges or a point on
the boundary of the Brillouin zone for hole-like, positive charges.

V

yV

B z

x

I

x

y

Figure 4.4: Schematic view of a Hall bar. The current runs a long the y-direction and the
magnetic field is applied along z-direction. The voltage Vy determines the conductance along
the Hall bar, while Vx corresponds to the transverse Hall voltage.

Discovery of the Quantum Hall Effects

When measuring the Hall effect in a special two-dimensional electron system, Klaus von Klitzing
and his collaborators made 1980 an astonishing discovery.3 The system was the inversion layer
of GaAs-MOSFET device with a sufficiently high gate voltage (see Section 2.4.3) which behaves
like a two-dimensional electron gas with a high mobility eτ/m∗ due to the mean free path
l ∼ 10Å and low density (n0 ∼ 1011cm−2. The two extended dimensions correspond to the
interface of the MOSFET, whereas the electrons are confined in the third dimension like in a
potential well (cf. Section 2.4.3). In high magnetic fields between 1 − 30T and at sufficiently
low temperatures (T < 4K), von Klitzing and coworkers observed a quantization of the Hall
conductivity corresponding to exact integer multiples of e2/h

σ
H

= νn

e2

h
(4.38)

where νn ∈ N. By now, the integer quantization is so widely verified, that the von Klitzing
constant (resistance quantum named after the discoverer of the Quantum Hall effect) R

K
=

h/e2 = 25812.807557Ω is used in resistance calibrations. In the field range where the transverse
conductivity shows integer plateaus in ν ∝ 1/B, the longitudinal conductivity σyy vanishes and
takes finite values only when σ

H
crossed over from one quantized value to the next (see Fig.

4.5).
In 1982, Tsui, Störmer, and Gossard4 discovered an additional quantization of σ

H
, corresponding

to certain rational multiples of e2/h. Correspondingly, one now distinguishes between the integer
quantum Hall effect (IQHE) and the fractional quantum Hall effect (FQHE). These discoveries
marked the beginning of a whole new field in solid state physics that continues to produce
interesting results.

3See [von Klitzing, Dorda, and Pepper, Phys. Rev. Lett. 45, 494 (1980)] for the original paper.
4See [Tsui, Störmer and Gossard Phys. Rev. Lett. 48, 1559 (1982)] for the original paper
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Figure 4.5: Integer Quantum Hall effect: As a function of the filling factor ν plateaus in σxy

appear at multiples of e2/h. The longitudinal conductance σyy is only finite for fillings where
σxy changes between plateaus.

4.2.1 Hall effect of the two-dimensional electron gas

Here we first discuss the Hall effect in the quantum mechanical treatment. For this purpose
we start with the Hamilton operator (4.1) and neglect the electron spin. Working again in
the Landau gauge, A = (0, Bx, 0), and confining the electronic system to two dimensions, the
Hamiltonian reduces to

H =
1

2m

[
−~2 ∂

2

∂x2
+
(
−i~ ∂

∂y
− e

c
Bx

)2
]
. (4.39)

For the two-dimensional gas there is no motion in the z-direction, so that the highly degenerate
energy eigenvalues are given by the spectrum of a one-dimensional harmonic oscillator En =
~ωc(n+1/2), where again ωc = |eB|/m∗c. Here, we will concentrate on the lowest Landau level
(n = 0) with the wave function

φ0,ky
=

1√
2π`2

e−(x−x0)2/2`2eikyy. (4.40)

where the magnetic length ` =
√

~c/|eB| gives the extension of the wave function in the presence
of the magnetic field. In x-direction, the wave function is localized around x0 = ky`

2, whereas
it takes the form of a plane wave in y-direction. As discussed previously, the energy does not
depend on ky.

We now introduce an electric field Ex along the x-direction. The Hamilton operator (4.39) is
then modified by an additional potential U(r) = −eExx. This term can easily be absorbed into
the harmonic potential and leads to a shift of the center of the wave function,

x0(ky) → x′0(ky) = ky`
2 −

eEx

m∗ω2
c

. (4.41)

Moreover the degeneracy of the Landau level is lifted since the energy becomes ky-dependent
and (after completing the square) takes the form

En=0(ky) =
~ωc

2
− eExx

′
0(ky) +

m∗

2

(
cEx

B

)2

. (4.42)

75



The energy (4.42) corresponds to the wave function φ0ky
from (4.40) where x0 is replaced by x′0.

The velocity of the electrons is then given by

vy(ky) =
1
~
dEn=0(ky)

dky

= −
eEx`

2

~
= −

cEx

B~
, (4.43)

and from this, we determine the current density,

jy = −en0vy(ky) = en0

cEx

B~
=

eν

2π`2
cEx

B~
= ν

e2

h
Ex = σ

H
Ex (4.44)

where ν = n02π`
2 is the filling of the Landau level.5 The Hall conductivity is then identical to

the result (4.37) derived previously based on the quasiclassical approximation. There is a linear
relation between the Hall conductivity σ

H
and the index ν ∝ B−1.

4.2.2 Integer Quantum Hall Effect

The plateaus observed by von Klitzing in the Hall conductivity σ
H

of the two-dimensional
electron gas as a function of the magnetic field correspond to the values σ

H
= νne

2/h, as if
ν = νn ∈ N was restricted to be an integer. Meanwhile, the longitudinal conductivity of the
electron gas vanishes when a plateau of σ

H
is realized

σyy =
jy
Ey

= 0, (4.45)

and only becomes finite at the transition points of σ
H

between two plateaus (cf. Fig. 4.5). This
fact seems to be in contradiction with the results from the consideration above. The solution
to this mysterious behavior lies in the fact that disorder, which is always present in a real
inversion layer, plays a crucial role and should not be neglected. In fact, due to the disorder, the
electrons move in a randomly modulated potential landscape U(x, y). As we will find out, even
small amounts of disorder lead to the localization of electronic states in this two-dimensional
system. To illustrate this new aspect we focus on the lowest Landau level in the symmetric
gauge A = (−y, x, 0)B/2. The Schrödinger equation in polar coordinates is given by

~2

2m∗

[
−1
r

∂

∂r
r
∂

∂r
−
(

1
r

∂

∂ϕ
− i

e

2~c
Br

)2
]
ψ(r, ϕ) + U(x, y)ψ(r, ϕ) = Eψ(r, ϕ) . (4.46)

Without the external potential U(x, y) we find the ground state solutions

ψn=0,m(r, ϕ) =
1√

2π`22mm!

(r
`

)m
e−imϕe−r2/4`2 (4.47)

where all values of m ∈ N0 correspond to the same energy En=0 = ~ωc/2. One easily verifies,
that the wave functions |ψn=0,m(r, ϕ)| are peaked on circles of radius rm =

√
2m` (see Fig.4.6).

Note that the magnetic flux threading such a circle is given by

πBr2m = πB2m`2 = 2πmB
~c
eB

= m
hc

e
= mΦ0, (4.48)

which is an integer multiple of the flux quantum Φ0 = hc/e.
Now we consider the effect of the disorder potential. The gauge can be adjusted to the potential
landscape. If, for simplicity, we assume the potential to be rotationally invariant around the
origin, the symmetric gauge is already optimal. For the potential

U(x, y) = U(r) =
C1

r2
+ C2r

2 + C3, (4.49)

5Note that ν−1 = B/n0Φ0 where Φ0 = hc/e represents the flux quantum, i.e. ν−1 ∝ B is the number of flux
quanta Φ0 per electron.
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Figure 4.6: Wavefunction of a Landau level state in the symmetric gauge.

the exact expression of all eigenstates of equation (4.46) in the lowest Landau level is obtained
using the Ansatz

ψ̃0,m(r, ϕ) =
1√

2π`∗22αΓ(α+ 1)

( r
`∗

)α
e−imϕe−r2/4`∗2 . (4.50)

After introducing the dimensionless parameters C∗
1 = 2m∗C1/~2 and C∗

2 = 8`4m∗C2/~2, the
quantities α and `∗ from equation (4.50) can be expressed via

α2 = m2 + C∗
1 , (4.51)(

`∗
)−2 =

(
`
)−2√1 + C∗

2 . (4.52)

Indeed, the Ansatz (4.50) describes eigenstates of the disordered problem (4.46). The degeneracy
of the ground state energy (the lowest Landau level) is now lifted,

E0,m =
~ωc

2

[
`2

`∗2
(α+ 1)−m

]
+ C3. (4.53)

The wave functions are concentrated around the radii rm =
√

2α`∗. For weak potentials
C∗

1 , C
∗
2 � 1 and m� 1 the energy is approximatively given by

E0,m ≈
~ωc

2
+
C1

r2m
+ C2r

2
m + C3 + . . . , (4.54)

i.e. the wave function adjusts itself to the potential landscape. It turns out that the same is true
for arbitrarily structured weak potential landscapes. The wave function describes electrons on
quasi-classical trajectories that trace the equipotential lines of the underlying disorder potential.
Consequently the states described here are localized in the sense that they are attached to the
structure of the potential. The application of an electric field cannot set the electrons in the
concentric rings in motion. Therefore, the electrons are localized and do not contribute to
electric transport.

Picture of the potential landscape

When the magnetic field is varied the filling ν = n02π`
2 of the Landau level is adjusted accord-

ingly. While all states of a given level are degenerate in the transitionally invariant case, now,
these states are spread over a certain energy range due to the disorder. In the quasi-classical ap-
proximation, these states correspond to equipotential trajectories that are either filled or empty
depending on the strength of the magnetic field, i.e. they are either below or above the chemical
potential. These considerations lead to an intuitive picture on localized (closed trajectories) and
extended (percolating trajectories) states. We may consider the potential landscape like a real
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landscape where the the trajectories are contour lines. Assume that we fill now water into such
a landscape. The trajectories of the particles is restricted to the shore line. For small filling, we
find lakes whose shores are closed and correspond to contour lines. They correspond to closed
electron trajectories and represent localized electronic states. At very high water level, only
the large mountains of the potential landscape would reach out of the water, forming islands in
the sea. The coastlines again represent closed trajectories corresponding to localized electronic
states. At some intermediate filling, a boundary between the lake and the island topology,
there is a water level at which the coast lines become arbitrarily long and percolate through
the whole landscape. Only these contour lines correspond to extended (non-localized) electron
states. From this picture we conclude that when a Landau level of a system subject to a random
potential is gradually filled, first all occupied state are localized (low filling). At some special in-
termediate filling level, the extended states are filled and contribute to the current transport. At
higher chemical potential (filling) the states would be localized again. In the following argument,
going back to Robert B. Laughlin, the presence of filled extended states plays an important role.

extended

closed

Figure 4.7: Contour plot of potential landscape. There are closed trajectories and extended
percolating trajectories.

Laughlin’s gauge argument

We consider a long rectangular Hall element that is deformed into a so-called Corbino disc, i.e.
a circular disc with a hole in the middle as shown in Fig.4.8. The Hall element is threaded
by a constant and uniform magnetic field B along the z-axis. In addition we can introduce an
arbitrary flux Φ through the hole without influencing the uniform field in the disc. This flux
is irrelevant for all localized electron trajectories since only extended (percolating) trajectories
wind around the hole of the disc and by doing so receive an Aharonov-Bohm phase. When the
flux is increased adiabatically by δΦ, the vector potential is changed according to

A → A + δA = A + ∇χ,

which in our case means

(δA)ϕ =
δΦ
2πr

. (4.55)

At the same time, the wave function acquires a phase factor

ψ → ψ eieχ/~c = ψ ei(δΦ/Φ0) ϕ. (4.56)
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If the disc was translationally invariant, meaning that disorder is neglected and only extended
states exist, we could use the wave functions ψ0,m from (4.47), so that Bπr2m = mΦ0 + δΦ. The
single-valuedness of the wave function implies that m has to be adjusted, m → m − δΦ/Φ0.
This guarantees, that increasing Φ by one flux quantum leads to a decrease of m by 1. Hence,
gauge invariance implies that the wave functions are shifted in their radius. This argument is
also applicable to higher Landau levels.

x

y

V

y
I

B

L

Φ

Figure 4.8: Corbino disk for Laughlin’s argument. According to the Hall bar in Fig. 4.4, the
radial (transverse) component of the Corbino disc is denoted by x, while the angular (longitu-
dinal) component is termed as y. Both the homogeneous magnetic field B and the flux Φ point
along the z-axis perpendicular to the plane of the disc.

Since this argument is topological in nature, it will not break down for independent electrons
when disorder is introduced. The transfer of one electron between neighboring extended states
due to the change of Φ by Φ0 leads to a net shift of one electron from the outer to the inner
boundary. If an electric field Ex is applied in the radial direction (here denoted by x-direction,
see Fig. 4.8), the transfer of this electron results in the energy change

∆εV = −eExL (4.57)

where L is the distance between the inner and the outer boundary of the Corbino disc. A further
change in the electromagnetic energy

∆ε
I
=
Iy δΦ
c

, (4.58)

is caused by the constant current Iy (here the angular component is denoted by y, see Fig.4.8)
in the disc when the magnetic flux is increased by δΦ. Following the Aharanov-Bohm argument
that the energy of the system is invariant under a flux change by integer multiples of Φ0,
the two energies should compensate each other. Thus, setting δΦ = Φ0 and demanding that
∆εV + ∆ε

I
= 0 leads to

σ
H

=
jy
Ex

=
Iy
LEx

=
e2

h
. (4.59)

We conclude from this argument, that each filled Landau level containing percolating states
will contribute e2/h to the total Hall conductivity. Hence, for νn ∈ N0 filled levels the Hall
conductivity is given by σ

H
= νne

2/h. Note the importance of the topological nature of the Hall
conductivity ensuring the universal character of the quantization.
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Localized and extended states

The density of states of the two-dimensional electron gas (2DEG) in absence of an external
magnetic field is given by

N
2DEG

(E) = 2
∑
kx,ky

δ

(
E −

~2(k2
x + k2

y)
2m

)
=
LxLym

2π
, (4.60)

with twice degenerate energy states for the spins, whereas for the Landau levels in a clean
sample, we have

N
L
(E) =

LxLy

2π`2
∑
n,s

δ(E − En,s). (4.61)

Here the prefactor is given by the large degeneracy (4.9) of each Landau level.

N(E) N(E)N(E)

E E E

translationsinvariant Unordnung

B=0
lokalisiert ausgedehnt

B=0 B=0

Figure 4.9: Density of states for the two-dimensional electron gas in three different cases. On
the left panel, the system without applied magnetic field. On the middle panel, an external
magnetic field is applied to a clean system showing sharp strongly degenerate Landau levels.
The right panel visualizes the effect of disorder in the two-dimensional system with magnetic
field; the Landau levels are spread and the density of state shows broadened peaks where most
of the states are localized and only few states in the center percolate.

According to our previous discussion, the main effect of a potential is to lift the degeneracy of the
states comprising a Landau level. This remains true for random potential landscapes. Most of
the states are then localized and do not contribute to electric transport. Only the few extended
states contribute to the transport if they are filled (see Fig. 4.9). For partially filled extended
states the Hall conductivity σ

H
is not an integer multiple of e2/h, since not all percolating states

– necessary for transferring one electron from one edge to the other, when the flux is changed
by Φ0 (in Laughlin’s argument) – are occupied. Thus, the charge transferred does not amount
to a complete −e. The appearance of partially filled extended states marks the transition from
one plateau to the next and is accompanied by a finite longitudinal conductivity σyy. When all
extended states of a Landau level are occupied, the contribution to the longitudinal transport
stops, i.e., in the range of a plateau σyy vanishes. Because of thermal occupation, the plateaus
quickly shrink when the temperature of the system is increased. This is the reason why the
Quantum Hall Effect is only observable for sufficiently low temperatures (T < 4K).

Edge states and Büttiker’s argument

A confining potential prevents the electrons from leaving the metal. This potential at the edges
of the sample has also to be considered in the potential landscape. Interestingly, equi-potential
trajectories of states close to the edge are always extended and percolate along the edge. The
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corresponding wave functions have already been discussed in Section 4.2.1. From Eq.(4.42), we
find that the energy is not symmetric in ky, the wave vector along the edge, i.e. E(ky) 6= E(−ky).
This implies that the states are chiral and can move in one direction only for a given energy.
The edge states on the opposing edges move in opposite directions, a fact that can be readily
verified by inspection of (4.42) based on Fig.4.10. The total current flowing along the edge for
a given Landau level is

I =
∑
ky

e

Ly

vy, (4.62)

meaning that one state per ky extends over the whole length Ly of the Hall element. Thus,
the density is given by 1/Ly. The wave vector is quantized according to the periodic boundary
conditions; ky = 2πny/Ly with ny ∈ Z. The velocity vy is given by equation (4.43). In summary,
we have

I =
e

2π~

∫
occupied

dky

dEn(ky)
dky

=
e

h

∫
occupied

dx0

dE

dx0

=
e

h
(µ− E(0)

n ) (4.63)

where x0 = ky`
2 is the transversal position of the wave function and µ is the chemical potential.

Sufficiently far away from the boundary En is independent of x0 and approaches the value
E(0)

n = ~ωc(1/2+n) of a translationally invariant electron gas. The potential difference between
the two opposing edges leads to a net current along the edge direction of the Hall bar,

µ
A
− µ

B
= eV

H
= eExLx =

h

e
(I

A
+ I

B
) =

h

e
I

H
, (4.64)

and with that

σ
H

=
I

H

ExLx

=
e2

h
, (4.65)

where for µ
A

= µ
B

we have I
A

= −I
B
. Note that I

H
= I

A
+ I

B
is only valid when no currents

are present in the bulk of the system. The latter condition is ensured by the localization of the
states at the chemical potential. This argument by Büttiker leads to the same quantization as
derived before, namely every Landau level contributes one edge state and thus σ

H
= νne

2/h (νn

is the number of occupied Landau levels). Note that this argument is independent of the precise
shape of the confining edge potential.
Within this argument we are able to understand why the longitudinal conductivity has to vanish
at the Hall plateaus. For that we express Ohm’s law However it is simpler to discuss the
resistivity. Like the conductivity σ̂ the resistivity ρ̂ is a tensor:

j = σ̂E (4.66)
E = ρ̂j (4.67)

where the conductivity σ̂ and the resistivity ρ̂ are both a symmetric 2× 2 tensor with σxx = σyy

and ρxx = ρyy. Therefore we find

σyy =
ρyy

ρ2
yy + ρ2

xy

, (4.68)

σxy =
ρxy

ρ2
yy + ρ2

xy

. (4.69)

In the following argument, we explain why the longitudinal resistivity ρyy in two dimensions
has to vanish in the presence of a finite Hall resistivity ρxy. Since the edge state electrons with
a given energy can only move in one direction, there is no backward scattering by obstacles as
long as the edges are far apart from each other. No scattering between the two edges implies
ρyy = 0 and hence σyy = 0. A finite resistivity can only occur when extended states are present
in the bulk, such that the edge states on opposite edges are no longer spatially separated from
each other.
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Figure 4.10: Edge state picture by Büttiker. The left panel gives a top view of the two di-
mensional system (L = Lx) where chiral edge states exist on both edges of the Hall bar with
opposite chirality. On the middle panel, a single Landau level without and with transverse po-
tential difference is shown, where the latter yields a finite net current due to current imbalance
between left and right edge. The right panel visualizes the two lowest Landau levels which are
occupied. All higher Landau levels are empty. This fixes the Hall conductance value νn to 2.

4.2.3 Fractional Quantum Hall Effect

Only two years after the discovery of the Integer Quantum Hall Effect, Störmer, Tsui and
Gossard observed further series of plateaus of the Hall resistivity in a 2DEG realized with very
high quality MOSFET inversion layers at low temperatures. The most pronounced of these
plateaus is observed at a filling of ν = 1/3 (σxy = νe2/h). Later, an entire hierarchy of plateaus
at fractional values ν = νp,m = p/m with p,m ∈ N has been discovered,

νp,m ∈
{

1
3
,

2
3
,

2
5
,

3
5
,

3
7
, . . .

}
. (4.70)

The emergence of these new plateaus is a clear evidence of the so-called Fractional Quantum
Hall Effect (FQHE).

Figure 4.11: Experimental evidence of the Fractional Quantum Hall Effect.

It was again Laughlin who found the key concept to explain the FQHE. Unlike the IQHE, this
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new quantization feature can not be understood from a single-electron picture, but is based on
the Coulomb repulsion among the electrons and the accompanying correlation effects. Laughlin
specially investigated the case νp,m = 1/3 and made the Ansatz

Ψ1/m(z1, . . . , zN
) ∝

∏
i<j

(zi − zj)
m exp

(
−
∑

i

|zi|2

4`2

)
(4.71)

for theN -body wave function, where z = x−iy is a complex number representing the coordinates
of the two-dimensional system. Limiting ourselves to the consideration of the lowest Landau
level, this state gives a stable plateau with σ

H
= (1/3)e2/h, when m = 3.

121 2

Aharanov−Bohm−Phase

Austausch

Figure 4.12: Exchange of two particles in two dimensions involves the motion of the particles
around each other. There are two topologically distinct paths.

A heuristic interpretation of the Laughlin state was proposed by J. K. Jane and it is based on
the concept of so-called composite fermions. In fact, Laughlin’s state (4.71) can be written as

Ψ1/m =
∏
i<j

(zi − zj)
m−1Ψ

S
(4.72)

where Ψ
S

is the Slater determinant6 describing the completely filled lowest Landau level. We
see that the prefactor of Ψ

S
in equation (4.72) acts as a so-called Jastro factor that introduces

6The Slater determinant of the lowest Landau level is obtained from the states of the independent electrons.
In symmetric gauge, the states are labelled by the quantum number m̃ ∈ N0 and apart from the normalization
(given in equation (4.47)) they are given by

φm̃(z) = zm̃e|z|
2/4`2 , (4.73)

where z = x− iy. The Slater determinant for N independent electrons is

ΨS(z1, . . . , zN) =
1√
N !

det

264 φ0(z1) · · · φN(z1)
...

...
φ0(zN) · · · φN(zN)

375 (4.74)

=
1√
N !

det

26664
1 z1 z2

1 · · · zN
1

1 z2 z2
2 · · · zN

2

...
...

...
...

1 zN z2
N · · · zN

N

37775 exp

 
−
X

i

|zi|2

4`2

!
. (4.75)

The remaining determinant is a so-called Vandermonde determinant, which can be reexpressed in the form of a
product, such that

ΨS =
Y
i<j

(zi − zj) exp

 
−
X

i

|zi|2

4`2

!
. (4.76)

The prefactor is a homogenous polynomial with roots whenever zi = zj , which is a manifestation of the Pauli
exclusion principle. We also see that the state ΨS has a well defined total angular momentum Lz = N~.
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correlation effects into the wave function, since only the correlations due to the Pauli exclusion
principle are contained in Ψ

S
. The Jastro factor treats the Coulomb repulsion among the

electrons and consequently leads to an additional suppression of the wave function whenever
two electrons approach each other. In the form introduced above, it produces an phase factor
for the electrons encircling each other. In particular, exchanging two electrons (see Fig. 4.12)
leads to a phase

exp(i(m− 1)π) = exp
(
i
e

~c
m− 1

2
Φ0

)
, (4.77)

since Φ0 = 2π~c/e. This phase has to be unity since the Slater state Ψ
S

is odd under exchange
of two electrons. Therefore m is restricted to odd integer values. This guarantees that the total
wave function Ψ1/m still changes sign when two electrons are exchanged.
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Figure 4.13: Sketch of the composite Fermion concept. Electrons with attached magnetic flux
lines, here for the state of ν = 1/3.

According to the Footnote 5 (see equation (4.44)), the case νp,m = 1/3 implies that there are
three flux quanta Φ0 per electron. In order to understand the FQHE, one constructs so-called
composite fermions which do not interact with each other. Here, a composite fermion consists of
an electron that has two (in fact m− 1) negative flux quanta attached to it. These objects may
be considered as independent fermions since the attached flux quanta compensate the Jastro
factor in equation 4.72 through factors of the type (zi − zj)

−(m−1). The exchange of two such
composite fermions in two dimensions leads to an Aharanov-Bohm phase that is just opposed
to that in equation (4.77). Due to the presence of the flux −2Φ0 per electron, the composite
fermions are subject to an effective field composed of the external field and the attached flux
quanta:

Beff = B −
∑

i

2Φ0(zi) (4.78)

=
1
3
B −

(∑
i

2Φ0(zi)−
2
3
B

)
(4.79)

For an external field B = 3n0Φ0, the expression in the brackets of equation (4.79) vanishes and
the composite fermions feel an effective field Beff = n0Φ0 (Fig. (4.13)). Thus, these fermions
form an Integer Quantum Hall state with ν = 1 (for B = 3n0Φ0), as discussed previously. This
way of interpretation is applicable to other Fractional Quantum Hall states, too, since for n
filled Landau levels with composite fermions consisting of an electron with an attached flux of
−2kΦ0, the effective field reads

Beff = n0

Φ0

νp,m

− 2kn0Φ0 = n0

Φ0

n
. (4.80)
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From this we infer, that

1
n

+ 2k =
1

νp,m

(4.81)

or equivalently

νp,m =
p

m
=

n

2kn+ 1
. (4.82)

Despite the apparent simplicity of the treatment in terms of independent composite fermions, one
should keep in mind that one is dealing with a strongly correlated electron system. The structure
of the composite fermions is a manifestation of the fact that the fermions are not independent
electrons. No composite fermions can exist in the vacuum, they can only arise within a certain
many-body state. The Fractional Quantum Hall state also exhibits unconventional excitations
with fractional charges. For example in the case νp,m = 1/3, there are excitations with effective
charge e∗ = e/3. These are so-called ’topological’ excitations, that can only exist in correlated
systems. The Fractional Quantum Hall system is a very peculiar ’ordered’ state of a two-
dimensional electron system that has many interesting and complex properties.7

7Additional literature on the quantum Hall effects. For the Integer quantum Hall effect consult

- K. von Klitzing et al., Physik Journal 4 (6), 37 (2005)

while detailed literature on the fractional quantum Hall effect is found in

- R. Morf, Physik in unserer Zeit 33, 21 (2002)

- J.K. Jain, Advances in Physics 41, 105 (1992).
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Chapter 5

Landau’s Theory of Fermi Liquids

In the previous chapters, we considered the electrons of the system as more or less independent
particles. The effect of their mutual interactions only entered via the renormalization of poten-
tials and collective excitations. The underlying assumptions of our earlier discussions were that
electrons in the presence of interactions can still be described as particles with a well-defined
energy-momentum relation, and that their groundstate is a filled Fermi sea with a sharp Fermi
surface. Since there is no guarantee that this hypothesis holds in general (and in fact they do
not), we have to show that in metals the description of electrons as quasiparticles is justified.
This quasiparticle picture will lead us to Landau’s phenomenological theory of Fermi liquids.

5.1 Lifetime of quasiparticles

We first consider the lifetime of a state consisting of a filled Fermi sea to which one electron
is added. Let k with |k| > k

F
(εk = ~2k2/2m with εk > ε

F
) be the momentum (energy) of

the additional electron. Due to interactions between the electrons, this state will decay into a
many-body state. In momentum space such an interaction takes the form

Hee =
∑

k,k′,q

∑
s,s′

V (q)ĉ†k−q,sĉ
†
k′+q,s′

ĉk′,s′ ĉk,s, (5.1)

where V (q) represents the electron-electron interaction in momentum space while q indicates
the momentum transfer in the scattering process. Below, the short-ranged Yukawa potential

V (q) =
4πe2

q2ε(q, 0)
=

4πe2

q2 + k2
TF

(5.2)

from equation (3.79) will be used. As we are only interested in very small energy transfers
~ω � ε

F
, the static approximation is admissible.

k’

k

k−q
k’+q

Figure 5.1: The decay of an electron state above the Fermi energy happens through scattering
by creating particle-hole excitations.

In a perturbative treatment, the lowest order effect of the interaction is the creation of a particle-
hole excitation in addition to the single electron above the Fermi energy. As the additional
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electron changes its momentum from k to k−q, a hole appears at k′ and a second electron with
wavevector k′ + q is created outside the Fermi sea. The transition is allowed whenever both
energy and momentum are conserved, meaning

k = (k − q)− k′ + (k′ + q), (5.3)

and

εk = εk−q − εk′ + εk′+q. (5.4)

We calculate the lifetime τk of the initial state with momentum k using Fermi’s golden rule,
yielding the transition rate from the initial state of a filled Fermi sea and one particle with
momentum k to a state with two electrons above the Fermi sea, with momenta k−q and k′+q,
and a hole with k′, as shown in Fig. 5.1. Since neither the momenta k′ and q, nor the spin of
the created electron are fixed, a summation over the possible configuration has to be performed,
leading to

1
τk

=
2π
~

1
Ω2

∑
k′,q

∑
s′

|V (q)|2 n0,k′(1− n0,k−q)(1− n0,k′+q)δ(εk−q − εk − (εk′ − εk′+q)). (5.5)

Note that the term n0,k′(1− n0,k−q)(1− n0,k′+q) takes care of the Pauli principle, by ensuring
that the final state after the scattering process exists, i.e. the hole state k′ lies inside and the
two particle states k − q and k′ + q lie outside the Fermi sea. First the integral over k′ is
performed under the condition that the energy εk′+q − εk′ of the excitation is small. With that,
the integral reduces to

S(ωq,k, q) =
1
Ω

∑
k′

n0,k′(1− n0,k′+q)δ(εk−q − εk − (εk′ − εk′+q)) (5.6)

=
1

(2π)3

∫
d3k′ n0,k′(1− n0,k′+q)δ(εk′+q − εk′ − ~ωq,k) (5.7)

=
N(ε

F
)

4
ωq,k

qvF

(5.8)

where N(ε
F
) = mk

F
/π2~2 is the density of states of the electrons at the Fermi surface and

~ωq,k = ~2(2k ·q−q2)/2m > 0 is the energy loss of the decaying electron.1 In order to compute

1Small ω are justified, because ~ω ≤ (2kF q− q2)/2m for most allowed ω. The integral may be computed using
cylindrical coordinates, where the vector q points along the axis of the cylinder. It results in

S(q, ω) =
1

(2π)2

k1Z
k2

dk′⊥k
′
⊥

kFZ
0

dk′‖ δ

 
~2q2

2m
+

~2qk′‖
m

− ~ω

!
(5.9)

=
m

4π2~2q

`
k2
1 − k2

2

´
, (5.10)

with k2
1 = k2

F − k2
‖,0 and k2

2 = k2
F − (k‖,0 + q)2, where k‖,0 = (2mω − ~q2)/2~q is enforced by the delta function.

q

||

kF

k
F

k
2

k1

k

The wave vectors k2 and k1 are the upper and lower limits of integration determined from the condition n0,k′(1−
n0,k′+q) > 0 and can be obtained by simple geometric considerations. equation (5.8) follows immediately.
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the remaining integral over q, we assume that the matrix element |V (q)|2 depends only weakly
on q when q � k

F
. This is especially true when the interaction is short-ranged. In spherical

coordinates, the integral reads

1
τk

=
2π
~
·
N(ε

F
)

4v
F
Ω

∑
q,s′

|V (q)|2
ωq,k

q
(5.11)

=
N(ε

F
)

(2π)22~v
F

∫
d3q |V (q)|2

ωq,k

q
(5.12)

=
N(ε

F
)

(2π)4mv
F

∫
dq |V (q)|2 q2

θ2∫
θ1

dθ sin θ(2k cos θ − q) (5.13)

=
N(ε

F
)

(2π)4mv
F

∫
dq |V (q)|2 q2

[
− 1

4k
(2k cos θ − q)2

]θ2

θ1

. (5.14)

The restriction of the domain of integration of θ follows from the two conditions k2 ≥ (k−q)2 ≥
k2

F
and (k − q)2 = k2 − 2kq cos θ + q2. From the first condition, cos θ2 = q/2k, and from the

second, cos θ1 = (k2 − k2
F

+ q2)/2kq. Thus,

1
τk

=
N(ε

F
)

(2π)4mv
F

∫
dq |V (q)|2 1

4k
(
k2 − k2

F

)2 (5.15)

≈
N(ε

F
)

(2π)4v
F

m

k
F

1
~4

(εk − ε
F
)2
∫
dq |V (q)|2 (5.16)

=
1

8π~3

N(ε
F
)

v2
F

(εk − ε
F
)2
∫
dq |V (q)|2 . (5.17)

Note that convergence of the last integral over q requires that the integrand does not diverge
stronger than qα (α < 1) for q → 0. With the dielectric constant obtained in the previous
chapter, this condition is certainly fulfilled. Essentially, the result states that

1
τk
∝ (εk − ε

F
)2 (5.18)

for k slightly above the Fermi surface. This implies that the state |ks〉 occurs as a resonance of
width ~/τk and features a quasiparticle, which can be observed in the spectral function A(E,k)
as depicted in Fig.5.2.2 The quasiparticle (coherent) part of the spectral function has a weight
reduced from one (corresponding to the quasiparticle weight Zk). The remaining weight is
shifted to higher energies as a so-called incoherent part (continuum without clear momentum-
energy relation).
The resonance becomes arbitrarily sharp as the Fermi surface is approached

lim
k→kF

~/τk
εk − ε

F

= 0, (5.21)

2The spectral function is defined as

A(E,k) ∝
X

n

|〈Ψn|bcks|Ψ0〉|2 δ(E − En) (5.19)

where |Ψ0〉 is the exact (renormalized) ground state and |Ψn〉 are the corresponding exact excited states. The
coherent part of the spectral function can be represented as a Lorentzian form

Acoh(E,k) =
Zk~
πτk

1

(E − ε̃k)2 + ~2

τ
k2

, (5.20)

where Zk is the quasiparticle weight, smaller than 1.
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incoherent part

F
E

F E

k
A(E,k)

Quasiparticle

k

Figure 5.2: Quasiparticle spectrum: Quasiparticle peaks appear the sharper the closer the
energy lies to the Fermi energy. The area under the “sharp” quasiparticle peak corresponds to
the quasiparticle weight. The missing quasiparticle weight is transferred to higher energies.

so that the quasiparticle concept is asymptotically valid. The equation (5.21) can also be seen as
a verification of Heisenberg’s uncertainty principle. Consequently, the momentum of an electron
is a good quantum number in the vicinity of the Fermi surface. Underlying this result is the
Pauli exclusion principle, which restricts the phase space for decay processes of single particle
states close to the Fermi surface. In addition, the assumption of short ranged interactions is
crucial. Long ranged interactions can change the behavior drastically due to the larger number
of decay channels.

5.2 Phenomenological Theory of Fermi Liquids

The existence of well-defined fermionic quasiparticles in spite of the underlying complex many-
body physics inspired Landau to the following phenomenological theory. Just like the states of
independent electrons, quasiparticle states shall be characterized by their momentum k and spin
σ. In fact, there is a one-to-one mapping between the free electrons and the quasiparticles. Con-
sequently, the number of quasiparticles and the number of electrons coincide. The momentum
distribution function of quasiparticles, defined as nσ(k), is subject to the condition

N =
∑
k,σ

nσ(k). (5.22)

In analogy to the Fermi-Dirac distribution of free electrons, one demands, that the ground state
distribution function n(0)

σ (k) for the quasiparticles is described by a simple step function

n(0)
σ (k) = Θ(k

F
− |k|). (5.23)

For a spherically symmetric electron system, the quasiparticle Fermi surface is a sphere with
the same radius as the one for free electrons of the same density. For a general point group
symmetry, the Fermi surface may be deformed by the interactions without changing the un-
derlying symmetry. The volume enclosed by the Fermi surface is always conserved despite the
deformation.3 Note that the distribution n(0)

σ (k) of the quasiparticles in the ground state and
that n0ks = 〈ĉ†kσ ĉkσ〉 of the real electrons in the ground state are not identical (Figure 5.3).
Interestingly, n0ks is still discontinuous at the Fermi surface, but the height of the jump is, in
general, smaller than unity. The modification of the electron distribution function from a step

3This is the content of the Luttinger theorem [J.M. Luttinger, Phys. Rev. 119, 1153 (1960)].
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kF
k

F

n
0ks

n  (k)

k
k

σ

Figure 5.3: Schematic picture of the distribution function: Left panel: modified distribution
function of the original electron states; right panel: distribution function of quasiparticle states
making a simple step function.

function to a “smoother” Fermi surface indicates the involvement of electron-hole excitations
and the renormalization of the electronic properties, which deplete the Fermi sea and populate
the states above the Fermi level. The reduced jump in n0ks is a measure for the quasiparticle
weight at the Fermi surface, ZkF

, i.e. the amplitude of the corresponding free electron state in
the quasiparticle state.
In Landau’s theory of Fermi liquids, the essential information on the low-energy physics of the
system shall be contained in the deviation of the quasiparticle distribution nσ(k) from its ground
state distribution n(0)

σ (k),

δnσ(k) = nσ(k)− n(0)
σ (k). (5.24)

The symbol δ is generally used in literature to denote this difference. Unfortunately this may
suggest that the term δnσ(k) is small, which is not true in general. Indeed, δnσ(k) is con-
centrated on momenta k very close to the Fermi energy only, where the quasiparticle concept
is valid. This distribution function, describing the deviation from the ground state, enters a
phenomenological energy functional of the form

E = E0 +
∑
k,σ

εσ(k)δnσ(k) +
1

2Ω

∑
k,k′

∑
σ,σ′

fσσ′(k,k
′)δnσ(k)δnσ′(k

′) +O(δn3) (5.25)

where E0 denotes the energy of the ground state. Moreover, the phenomenological parameters
εσ(k) and fσσ′(k,k

′) have to be determined by experiments or by means of a microscopic theory.
The variational derivative

ε̃σ(k) =
δE

δnσ(k)
= εσ(k) +

1
Ω

∑
k′,σ′

fσσ′(k,k
′)δnσ′(k

′) (5.26)

yields an effective energy-momentum relation ε̃σ(k), whose second term depends on the distribu-
tion of all quasiparticles. A quasiparticle moves in the “mean-field” of all other quasiparticles, so
that changes δnσ(k) in the distribution affect ε̃σ(k). The second variational derivative describes
the coupling between the quasiparticles

δ2E

δnσ(k)δnσ′(k
′)

=
1
Ω
fσσ′(k,k

′). (5.27)

We introduce a parametrization for these couplings fσσ′(k,k
′) by assuming spherical symmetry

of the system. Furthermore, the radial dependence is ignored, as we only consider quasiparticles
in the vicinity of the Fermi surface where |k|, |k′| ≈ k

F
. Therefore the dependence of fσσ′(k,k

′)
on k,k′ can be reduced to the relative angle θk̂,k̂′

fσσ′(k,k
′) = fs(k̂, k̂′) + σσ′fa(k̂, k̂′) (5.28)
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where k̂ = k/|k|. The symmetric (s) and antisymmetric (a) part of fσσ′(k,k
′) can be expanded

in Legendre-polynomials Pl(z), leading to

fs,a(k̂, k̂′) =
∞∑
l=0

fs,a
l Pl(cos θk̂,k̂′). (5.29)

The density of states at the Fermi surface is defined as

N(ε
F
) =

2
Ω

∑
k

δ(ε(k)− ε
F
) =

k2
F

π2~vF

=
m∗k

F

π2~2
(5.30)

and follows from the dispersion ε(k) of the bare quasiparticle energy

∇k ε(k)|kF
= vF =

~k
F

m∗ (5.31)

With this definition, we also introduce the so-called Landau parameters

F s
l = N(ε

F
)fs

l , (5.32)
F a

l = N(ε
F
)fa

l , (5.33)

commonly used in the literature.4 In the following, we want to study the relation between the dif-
ferent phenomenological parameters of Landau’s theory of Fermi liquids and the experimentally
accessible quantities of a real system, such as specific heat, compressibility, spin susceptibility
among others.

5.2.1 Specific heat - Density of states

Since the quasiparticles are fermions, they obey Fermi-Dirac statistics

nσ(0)(T,k) =
1

e[ε̃(k)−µ]/kBT + 1
(5.34)

with the chemical potential µ. For low temperatures, we find

δnσ(k) = n(0)
σ (T,k)− n(0)

σ (0,k) (5.35)

which leads to

1
Ω

∑
k

δnσ(k) ∝ T 2 +O(T 4). (5.36)

In the limit T → 0, the left-hand side of equation (5.36) will vanish quadratically in T . Remem-
ber, that this does not mean that δnσ(k) is small. To leading order in T , the distribution (5.34)
can be replaced by

nσ(k) =
1

e[ε(k)−εF ]/kBT + 1
(5.37)

with the bare quasiparticle energy εσ(k) in place of the renormalized dispersion ε̃σ(k), as ε̃ differs
from ε only by the order T 2. Similarly we replaced µ = ε

F
+ O(T 2) by ε

F
. When focussing on

leading terms, which are usually of the order T 0 and T 1, corrections of higher order may be
neglected in the low-temperature regime. In order to discuss the specific heat, we employ the

4Another frequently used notation for the Landau parameters in the literature is Fl = F s
l and Zl = F a

l .
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expression for the entropy of a fermion gas. For each quasiparticles with a given spin there is
one state labelled by k. The entropy density may be computed from the distribution function

S = −
k

B

Ω

∑
k,σ

[
nσ(k) ln (nσ(k)) + (1− nσ(k)) ln (1− nσ(k))

]
. (5.38)

Taking the derivative of the entropy S with respect to T , the specific heat

C(T ) = T
∂S

∂T
(5.39)

= −
k

B
T

Ω

∑
k,σ

eξ(k)/kBT

( eξ(k)/kBT + 1 )2
ξ(k)
k

B
T 2

ln
(

nσ(k)
1− nσ(k)

)
(5.40)

= −
k

B
T

Ω

∑
k,σ

1
4 cosh (ξ(k)/2k

B
T )2

ξ(k)
k

B
T 2

ξ(k)
k

B
T

(5.41)

is obtained, where we introduced ξ(k) = ε(k)− ε
F
. In the limit T → 0 we find

C(T )
T

≈
N(ε

F
)

4k
B
T 3

∫
dξ

ξ2

cosh2(ξ/2k
B
T )

(5.42)

≈
k2

B
N(ε

F
)

4

+∞∫
−∞

dy
y2

cosh2(y/2)
(5.43)

=
π2k2

B
N(ε

F
)

3
, (5.44)

which is the well-known linear behavior C(T ) = γT for the specific heat at low temperatures,
with γ = π2k2

B
N(ε

F
)/3. Since N(ε

F
) = m∗k

F
/π2~2, the effective mass m∗ of the quasiparticles

can directly determined by measuring the specific heat of the system.

5.2.2 Compressibility - Landau parameter Fs
0

A Fermi gas has a finite compressibility because each fermion occupies a finite amount of space
due to the Pauli principle. The compressibility κ is defined as5

κ = − 1
Ω

(
∂Ω
∂p

)
T,N

(5.46)

where p is the uniform hydrostatic pressure. The indexed T,N means, that the temperature T
and the particle number N are kept fixed. We consider the response of the Fermi liquid upon
application of uniform pressure p. The shift of the quasiparticle energies is given by

δε(k) =
∂ε(k)
∂p

δp =
∂ε(k)
∂k

· ∂k

∂Ω
∂Ω
∂p

δp =
κ(0)

3
~vk · k δp = γkκ

(0)δp (5.47)

5An alternative definition considers the change of particle number upon change of the chemical potential,

κ =
1

n2

„
∂n

∂µ

«
T,Ω

(5.45)

with n = N/Ω.
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with γk = ~vk · k/3 = 2εσ(k)/3. Analogous we introduce the shift of the renormalized quasi-
particle energies,

δε̃σ(k) = γkκδp = γkκ
(0)δp+

1
Ω

∑
k′,σ′

fσ,σ′(k,k
′)δnσ′(k

′)

= γkκδp+
1
Ω

∑
k′,σ′

fσ,σ′(k,k
′)
∂nσ′(k

′)
∂ε̃σ′(k

′)
δε̃σ′(k

′)

= γkκ
(0)δp− 1

Ω

∑
k′,σ′

fσ,σ′(k,k
′)δ(ε̃σ′(k

′)− εF )γk′κ δp

. (5.48)

Changes are concentrated on the Fermi surface such that we can replace γk = 2εF /3 so that

κ = κ(0) − κN(εF )
∫
dΩk̂′

4π
fs(k̂, k̂′) = κ(0) − κF s

0 . (5.49)

Therefore we find

κ =
κ(0)

1 + F s
0

. (5.50)

Now we determine κ(0) from the volume dependence of the energy

E(0) =
∑
k,σ

εσ(k) =
3
5
NεF =

3
5
N

~2k2
F

2m∗ =
3
10

~2N

m∗

(
3π2N

Ω

)2/3

. (5.51)

Then we determine the pressure

p = −

(
∂E(0)

∂Ω

)
N

=
1
5

~2N

m∗

(
3π2N

Ω

)2/3 1
Ω

(5.52)

and
1
κ(0)

= −Ω
∂p

∂Ω
=

1
3

~2N

m∗Ω
(3π2n)2/3 =

2
3
nεF . (5.53)

k
F

kδk kδ
F Fδ

F

k
F

Figure 5.4: Deviations of the distribution functions: Left panel: isotropic increase of the Fermi
surface as used for the uniform compressibility; right panel: spin dependent change of size of
the Fermi surface as used for the uniform spin susceptibility.
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5.2.3 Spin susceptibility - Landau parameter Fa
0

If a magnetic field H is applied to the system, the Zeeman coupling yields a shift of the quasi-
particle energies

δεσ(k) = εσ(k)− ε(k)

= −gµ
B
H
σ

2
, (5.54)

depending on their spin orientation. The term ε(k) represents the quasiparticle spectrum at
H = 0. As we work with an isotropic system, we assumed without loss of generality that the
magnetic field points along the z-direction. The energy shift due to the applied field is

δε̃σ(k) = ε̃σ(k)− ε(k)

= −gµ
B
H
σ

2
+

1
Ω

∑
k′,σ′

fσ,σ′(k,k
′)δnσ′(k

′) (5.55)

= −g̃µ
B
H
σ

2
.

Due to interactions, the renormalized gyromagnetic factor g̃ differs from the value of g = 2 for
free electrons. We focus on the second term in Eq.(5.55), which can be reexpressed as

1
Ω

∑
k′,σ′

fσσ′(k,k
′)δnσ′(k

′) =
1
Ω

∑
k′,σ′

fσσ′(k,k
′)
∂nσ′(k

′)
∂ε̃σ′(k

′)
δε̃σ′(k

′)

=
1
Ω

∑
k′,σ′

fσσ′(k,k
′)δ(ε̃σ′(k

′)− ε
F
)g̃µ

B
H
σ′

2
(5.56)

Combining this result with the Eqs. (5.55) and (5.56), we derive

g̃ = g − g̃N(ε
F
)
∫
dΩk̂′

4π
fa(k̂, k̂′) = g − g̃F a

0 , (5.57)

or equivalently

g̃ =
g

1 + F a
0

. (5.58)

The magnetization of the system can be computed from the distribution function,

M = gµ
B

∑
k,σ

σ

2
δnσ(k) = gµ

B

∑
k,σ

σ

2
∂nσ(k)
∂ε̃σ(k)

δε̃σ(k)

= gµ
B

∑
k,σ

σ

2
δ(ε̃σ(k)− ε

F
)g̃µ

B
H
σ

2
(5.59)

from which the susceptibility is immediately found to be

χ =
M

HΩ
=
µ2

B
N(ε

F
)

1 + F a
0

. (5.60)

The changes in the distribution function induced by the magnetic field feed back into the sus-
ceptibility, so that the latter may be either weakened (F a

0 > 0) or enhanced (F a
0 < 0). For the

magnetic susceptibility, the Landau parameter F a
0 and the effective mass m∗ (through N(ε

F
))

lead to a renormalization compared to the free electron susceptibility.
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5.2.4 Galilei invariance - effective mass and Fs
1

We initially introduced by hand the effective mass of quasiparticles in εσ(k). In this section
we show, that overall consistency of the phenomenological theory requires a relation between
the effective mass and one Landau parameter (F s

1 ). The reason is, that the effective mass
is the result of the interactions among the electrons. This self-consistency is connected with
the Galilean invariance of the system. When the momenta of all particles are shifted by ~q
(|q| shall be very small compared to the Fermi momentum k

F
in order to remain within the

assumption-range of the Fermi liquid theory) the distribution function given by

δnσ(k) = n(0)
σ (k + q)− n(0)

σ (k) ≈ q ·∇k n
(0)
σ (k). (5.61)

This function is strongly concentrated around the Fermi energy (see Figure 5.5).

n=−1δ n=+1δ

F qk

Figure 5.5: Distribution function due to a Fermi surface shift (Galilei transformation).

The current density can now be calculated, using the distribution function nσ(k) = n(0)
σ (k) +

δnσ(k). Within the Fermi liquid theory this yields,

jq =
1
Ω

∑
k,σ

v(k)nσ(k) (5.62)

with

v(k) =
1
~
∇k ε̃σ(k)

=
1
~

(
∇k εσ(k) +

1
Ω

∑
k′,σ′

∇k fσσ′(k,k
′)δnσ(k′)

)
. (5.63)

Thus we obtain for the current density,

jq =
1
Ω

∑
k,σ

~k

m∗nσ(k) +
1
Ω2

∑
k,σ

∑
k′,σ′

[n(0)
σ (k) + δnσ(k)]

1
~
∇k fσσ′(k,k

′)δnσ(k′)

=
1
Ω

∑
k,σ

~k

m∗ δnσ(k)− 1
Ω2

∑
k,σ

∑
k′,σ′

1
~
[∇k n

(0)
σ (k)]fσσ′(k,k

′)δnσ(k′) +O(q2) (5.64)

=
1
Ω

∑
k,σ

~k

m∗ δnσ(k) +
1
Ω2

∑
k,σ

∑
k′,σ′

fσσ′(k,k
′)δ(εσ(k′)− ε

F
)
~k′

m∗ δnσ(k) +O(q2) = j1 + j2.

where, for the second line, we performed an integration by parts and neglect terms quadratic in
δn and, in the third line, used fσσ′(k,k

′) = fσ′σ(k′,k) and

∇k n
(0)
σ (k) =

∂n(0)
σ (k)

∂εσ(k)
∇k εσ(k) = −δ(εσ(k)− ε

F
)∇k εσ(k) = −δ(εσ(k)− ε

F
)
~2k

m∗ . (5.65)
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The first term of equation (5.65) denotes quasiparticle current, j1, while the second term can
be interpreted as a drag current, j2, an induced motion (backflow) of the other particles due to
interactions.

From a different viewpoint, we consider the system as being in the inertial frame with a velocity
~q/m, as all particles received the same momentum. Here m is the bare electron mass. The
current density is then given by

jq =
N

Ω
~q

m
=

1
Ω

∑
k,σ

~k

m
nσ(k) =

1
Ω

∑
k,σ

~k

m
δnσ(k). (5.66)

Since these two viewpoints have to be equivalent, the resulting currents should be the same.
Thus, we compare equation (5.65) and (5.66) and obtain the equation,

~k

m
=

~k

m∗ +
1
Ω

∑
k′,σ′

fσσ′(k,k
′)δ(εσ(k′)− ε

F
)
~k′

m∗ (5.67)

which then leads to

1
m

=
1
m∗ +N(ε

F
)
∫
dΩk̂′

4π
fs(k̂, k̂′)

k̂ · k̂′

m∗ (5.68)

or by using the orthogonality of the Legendre polynomials,

m∗

m
= 1 +

1
3
F s

1 . (5.69)

The factor 1/3 = 1/(2l + 1) for l = 1 originates in the term, as

+1∫
−1

dz Pl(z) Pl′(z) =
2δll′

2l + 1
(5.70)

Therefore, the relation (5.69) has to couple m∗ to F s
1 in order for Landau’s theory of Fermi

liquids to be self-consistent. Generally, we find that F s
1 > 0 so that quasiparticles in a Fermi

liquid are effectively heavier than bare electrons.

5.2.5 Stability of the Fermi liquid

Upon inspection of the renormalization of the quantities treated previously

γ

γ0

=
m∗

m
, (5.71)

κ

κ0

=
m∗

m

1
1 + F s

0

, (5.72)

χ

χ0

=
m∗

m

1
1 + F a

0

(5.73)

with

m∗

m
= 1 +

1
3
F s

1 , γ0 =
k2

BmkF

3~2
, κ0 =

3m
n~2k2

F

and χ0 = µ2
B

mkF

π2~2
(5.74)

one notes that the compressibility κ (susceptibility χ) diverges for F s
0 → −1 (F a

0 → −1),
indicating an instability of the system. A diverging spin susceptibility for example leads to a
ferromagnetic state with a split Fermi surface, one for each spin direction. On the other hand, a
diverging compressibility leads to a spontaneous contraction of the system. More generally, the
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deformation of the quasiparticle distribution function may vary over the Fermi surface, so that
arbitrary deviations of the Fermi liquid ground state may be classified by the deformation

δnσ(k̂) =
∞∑
l=0

δnσ,lPl(cos θk̂) (5.75)

For pure charge density deformations we have δn+l(k̂) = δn−l(k̂), while pure spin density defor-
mations are described by δn+l(k̂) = −δn−l(k̂). Stability of the Fermi liquid against any of these
deformations requires

1 +
F s,a

l

2l + 1
> 0. (5.76)

If for any deformation channel l this conditions is violated one talks about a ”Pomeranchuck
instability”.6 Generally, the renormalization of the Fermi liquid leads to a change in the Wilson
ratio, defined as

R

R0

=
χ

χ0

γ0

γ
=

1
1 + F a

0

(5.77)

where R0 = χ0/γ0 = 6µ2
B
/π2k2

B
. Note that the Wilson ratio does not depend on the effective

mass. A remarkable feature of the Fermi liquid theory is that even very strongly interacting
Fermions remain Fermi liquids, notably the quantum liquid 3He and so-called heavy Fermion
systems, which are compounds of transition metals and rare earths. Both are strongly renormal-
ized Fermi liquids. For 3He we give some of the parameters in Table 5.1 both for zero pressure
and for pressures just below the critical pressure at which He solidifies (pc ≈ 2.5MPa = 25bar).

pressure m∗/m F s
0 F a

0 F s
1 κ/κ0 χ/χ0

p = 0 3.0 10.1 -0.52 6.0 0.27 6.3
p < pc 6.2 94 -0.74 15.7 0.065 24

Table 5.1: List of the parameters of the Fermi liquid theory for 3He at zero pressure and at a
pressure just below solidification.

The trends show obviously, that the higher the applied pressure is, the denser the liquid becomes
and the stronger the quasiparticles interact. Approaching the solidification the compressibility
is reduced, the quasiparticles become heavier (slower) and the magnetic response increases dras-
tically. Finally the heavy fermion systems are characterized by the extraordinary enhancements
of the effective mass which for many of these compounds lie between 100 and 1000 times higher
than the bare electron mass (e.g. CeAl3, UBe13, etc.). This large masses lead the notion of
almost localized Fermi liquids, since the large effective mass is induced by the hybridization of
itinerant conduction electrons with strongly interacting (localized) electron states in partially
filled 4f - or 5f -orbitals of Lanthanide and Actinide atoms, respectively.

5.3 Microscopic considerations

A rigorous derivation of Landau’s Fermi liquid theory requires methods of quantum field theory
and would go beyond the scope of these lectures. However, plain Rayleigh-Schrödinger theory
applied to a simple model allows to gain some insights into the microscopic fundament of this
phenomenologically based theory. In the following, we consider a model of fermions with contact

6I.J. Pomeranchuk, JETP 8, 361 (1958)
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interaction Uδ(r − r′), described by the Hamiltonian

H =
∑
k,s

εkĉ
†
ksĉks +

∫
d3r d3r′ Ψ̂↑(r)†Ψ̂↓(r

′)†Uδ(r − r′)Ψ̂↓(r
′)Ψ̂↑(r) (5.78)

=
∑
k,s

εkĉ
†
ksĉks +

U

Ω

∑
k,k′,q

ĉ†k+q↑ĉ
†
k′−q↓ĉk′↓ĉk↑. (5.79)

where εk = ~2k2/2m is a parabolic dispersion of non-interacting electrons. We previously
noticed that, in order to find well-defined quasiparticles, the interaction between the Fermions
has to be short ranged. This specially holds for the contact interaction.

5.3.1 Landau parameters

Starting form the Hamiltonian (5.78), we will determine Landau parameters for a corresponding
Fermi liquid theory. For a given momentum distribution nks = 〈c†kscks〉 = n

(0)
ks +δnks, we can ex-

pand the energy resulting form equation (5.79) following the Rayleigh-Schrödinger perturbation
method,

E = E(0) + E(1) + E(2) + · · · (5.80)

with

E(0) =
∑
k,s

εknks, (5.81)

E(1) =
U

Ω

∑
k,k′

nk↑nk′↓, (5.82)

E(2) =
U2

Ω2

∑
k,k′,q

nk↑nk′↓(1− nk+q↑)(1− nk′−q↓)
εk + εk′ − εk+q − εk′−q

. (5.83)

The second order term E(2) describes virtual processes corresponding to a pair of particle-hole
excitations. The numerator of this term can be split into four different contributions.

We first consider the term quadratic in nk and combine it with the first order term E(1), which
has the same structure,

Ẽ(1) = E(1) +
U2

Ω2

∑
k,k′,q

nk↑nk′↓
εk + εk′ − εk+q − εk′−q

≈ Ũ

Ω

∑
k,k′

nk↑nk′↓. (5.84)

In the last step, we defined the renormalized interaction Ũ through,

Ũ = U +
U2

Ω

∑
q

1
εk + εk′ − εk+q − εk′−q

. (5.85)

In principle, Ũ depends on the wave vectors k and k′. However, when the wave vectors are
restricted to the Fermi surface (|k| = |k′| = k

F
), and if the range of the interaction ` is small

compared to the mean electron spacing, i.e., k
F
`� 1,7 this dependency may be neglected.

Since the term quartic in nk vanishes due to symmetry, the remaining contribution to E(2) is
cubic in nk and reads

Ẽ(2) = − Ũ
2

Ω2

∑
k,k′,q

nk↑nk′↓(nk+q↑ + nk′−q↓)
εk + εk′ − εk+q − εk′−q

. (5.90)

7We should be careful with our choice of a contact interaction, since it would lead to a divergence in the large-q
range. A cutoff for q of order Qc ∼ `−1 would regularize the integral which is dominated by the large-q part.
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We replaced U2 by Ũ2, which is admissible at this order of the perturbative expansion. The
variation of the energy E in Eq.(5.80) with respect to δnk↑ can easily be calculated,

ε̃↑(k) = εk +
Ũ

Ω

∑
k′

nk′↓ −
Ũ2

Ω2

∑
k′,q

nk′↓(nk+q↑ + nk′−q↓)− nk+q↑nk′−q↓
εk + εk′ − εk+q − εk′−q

, (5.91)

and an analogous expression is found for ε↓(k). The coupling parameters fσσ′(k,k
′) may be

determined using the definition (5.26). Starting with f↑↑(kF
,k′

F
) with wave-vectors on the

Fermi surface (|k
F
| = |k′

F
| = k

F
), the terms contributing to the coupling can be written as

Ũ2

Ω2

∑
k′,q

nk+q↑
nk′−q↓ − nk′↓

εk + εk′ − εk+q − εk′−q

k+q→k′F−→ 1
Ω

∑
k′F

nk′F ↑
Ũ2

Ω

∑
k′

n
(0)

k′−q↓ − n
(0)

k′↓
εk′ − εk′−q

∣∣∣∣∣∣
q=k′F−kF

(5.92)

= − 1
Ω

∑
k′F

nk′F ↑
Ũ2

2
χ0(k

′
F
− k

F
), (5.93)

where we consider nk′F ↑
= n

(0)

k′F ↑
+δnk′F ↑

. Note that the part in this term which depends on n(0)

k′F ↑
will contribute the ground state energy in Landau’s energy functional. Here, χ0(q) is the static
Lindhard susceptibility as it was defined in (3.48). With the help of equation (5.26), it follows
immediately, that

f↑↑(kF
,k′

F
) = f↓↓(kF

,k′
F
) =

Ũ2

2
χ0(kF

− k′
F
). (5.94)

The other couplings are obtained in a similar way, resulting in

f↑↓(kF
,k′

F
) = f↓↑(kF

,k′
F
) = Ũ − Ũ2

2
[
2χ̃0(kF

+ k′
F
)− χ0(kF

− k′
F
)
]
, (5.95)

where the function χ̃0(q) is defined as

χ̃0(q) =
1
Ω

∑
k′

n
(0)

k′+q↑ + n
(0)

k′↓
2ε

F
− εk′+q − εk′

(5.96)

If the couplings are be parametrized by the angle θ between k
F

and k′
F
, they can be expressed

as

fσσ′(θ) =
Ũ

2

[(
1 +

ŨN(ε
F
)

2

(
2 +

cos θ
2 sin(θ/2)

ln
1 + sin(θ/2)
1− sin(θ/2)

))
δσσ′ (5.97)

−

(
1 +

ŨN(ε
F
)

2

(
1− sin(θ/2)

2
ln

1 + sin(θ/2)
1− sin(θ/2)

))
σσ′

]
. (5.98)

Thus we may use the following expansion,

1

Ω

X
q

1

εk + εk′ − εk+q − εk′−q

=
1

(2π)3

QcZ
o

dq q2
Z
dΩq

m

(k′ − k) · q − q2
(5.86)

=
m

(2π)2

Z
dq q

+1Z
−1

d cos θ

K cos θ − q
=

m

(2π)2

QcZ
0

dq q ln

˛̨̨̨
q −K

q +K

˛̨̨̨
(5.87)

= − m

(2π)2

„
Qc +

K2 −Q2
c

2K
ln

˛̨̨̨
Qc −K

Qc +K

˛̨̨̨«
(5.88)

≈ −2mQc

(2π)2

„
1− K2

Q2
c

+O

„
K4

Q4
c

««
, (5.89)

where we use K = |k′ − k| ≤ 2kF � Qc. From this we conclude that the momentum dependence of Ũ is indeed
weak.
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Finally, we are in the position to determine the most important Landau parameters by matching
the expressions (5.94) and (5.95) to the parametrization (5.97),

F s
0 = ũ

[
1 + ũ

[
1 +

1
6
(2 + ln(2))

]]
= ũ+ 1.449 ũ2, (5.99)

F a
0 = −ũ

[
1 + ũ

[
1− 2

3
(1− ln(2))

]]
= −ũ− 0.895 ũ2, (5.100)

F s
1 = ũ2 2

15
(7 ln(2)− 1) ≈ 0.514 ũ2, (5.101)

where ũ = ŨN(ε
F
) has been introduced for better readability. Since the Landau parameter F s

1

is responsible for the modification of the effective mass m∗ compared to the bare mass m, m∗

is enhanced compared to m for both attractive (U < 0) and repulsive (U > 0) interactions.
Obviously, the sign of the interaction U does not affect the renormalization of the effective mass
m∗. This is so, because the existence of an interaction (whatever sign it has) between the particles
enforces the motion of many particles whenever one is moved. The behavior of the susceptibility
and the compressibility depends on the sign of the interaction. If the interaction is repulsive
(ũ > 0), the compressibility decreases (F s

0 > 0), implying that it is harder to compress the
Fermi liquid. The susceptibility is enhanced (F a

0 < 0) in this case, so that it is easier to polarize
the spins of the electrons. Conversely, for attractive interactions (ũ < 0), the compressibility is
enhanced due to a negative Landau parameter F s

0 , whereas the susceptibility is suppressed with
a factor 1/(1 + F a

0 ), with F a
0 > 0. The attractive case is more subtle because the Fermi liquid

becomes unstable at low temperatures, turning into a superfluid or superconductor, by forming
so-called Cooper pairs. This represents another non-trivial Fermi surface instability.

5.3.2 Distribution function

Finally, we examine the effect of interactions on the ground state properties, using again
Rayleigh-Schrödinger perturbation theory. The calculation of the corrections to the ground
state |Ψ0〉, the filled Fermi sea can be expressed as

|Ψ〉 = |Ψ(0)〉+ |Ψ(1)〉+ · · · (5.102)

where

|Ψ(0)〉 = |Ψ0〉 (5.103)

|Ψ(1)〉 =
U

Ω

∑
k,k′,q

∑
s,s′

ĉ†k+q,sĉ
†
k′−q,s′

ĉk′,s′ ĉk,s

εk + εk′ − εk+q − εk′−q

|Ψ0〉. (5.104)

The state |Ψ0〉 represents the ground state of non-interacting fermions. The lowest order cor-
rection involves particle-hole excitations, depleting the Fermi sea by lifting particles virtually
above the Fermi energy. How the correction (5.104) affects the distribution function, will be
discussed next. The momentum distribution nks = 〈ĉ†ksĉks〉 is obtain as the expectation value,

nks =
〈Ψ|ĉ†ksĉks|Ψ〉

〈Ψ|Ψ〉
= n

(0)
ks + δn

(2)
ks + · · · (5.105)

where n(0)
ks is the unperturbed distribution Θ(k

F
− |k|), and

δn
(2)
ks =


−U

2

Ω2

∑
k1,k2,k3

(1− nk1
)(1− nk2

)nk3

(εk + εk3
− εk1

− εk2
)2
δk+k3,k1+k2

|k| < k
F

U2

Ω2

∑
k1,k2,k3

nk1
nk2

(1− nk3
)

(εk1
+ εk2

− εk − εk3
)2
δk+k3,k1+k2

|k| > k
F

. (5.106)
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This yields the modification of the distribution functions as shown in Figure 5.6. It allows us
also to determine the size of the discontinuity of the distribution function at the Fermi surface,

nkF
− − nkF

+ = 1−
(
UN(ε

F
)

2

)2

ln(2), (5.107)

where

nkF
± = lim

|k|−kF→0±

(
n

(0)
k + δn

(2)
k

)
. (5.108)

The jump of nk at the Fermi surface is reduced independently of the sign of the interaction.
The reduction is quadratic in the perturbation parameter UN(ε

F
). This jump is also a measure

for the weight of the quasiparticle state at the Fermi surface.

1D

F
k

F

n
k

n
k

k
k

3D

k

Figure 5.6: Momentum distribution functions of electrons for a three-dimensional (left panel)
and one-dimensional (right panel) Fermion system.

5.3.3 Fermi liquid in one dimension?

Within a perturbative approach the Fermi liquid theory can be justified for a three-dimensional
system and we recognize the one-to-one correspondence between bare electrons and quasipar-
ticles renormalized by (short-ranged) interactions. Now we would like to show that within the
same approach problems appear in one-dimensional systems, which are conceptional nature and
hint that interaction Fermions in one dimension would not form a Fermi liquid, but a Luttinger
liquid, as we will motivate briefly below.
The Landau parameters have been expressed above in terms of the response functions χ0(q =
kF − k′F ) and χ̃0(q = kF − k′F ). For the one-dimensional system, as given in Eqs.(5.94 - 5.96),
the relevant contributions come from two configurations, since there are two Fermi points only
(instead of a two-dimensional Fermi surface),

(kF , k
′
F ) ⇒ q = kF − k′F = 0,±2kF . (5.109)

We find that the response functions show singularities for some of these momenta,8 and we
obtain

f↑↑(±kF ,±kF ) = f↓↓(±kF ,∓kF ) →∞ (5.112)

8While χ0(q) is the Lindhard function given in Eq.(3.96) which diverges logarithmically at q = ±2kF , we
obtain for the other response function

χ̃0(q) =

8>>>>><>>>>>:
− 2m

~2
p

4k2
F − q2

ln

„√
2kF + q −

√
2kF − q√

2kF + q +
√

2kF − q

«
|q| < 2kF

2m

~2
p
q2 − 4k2

F

 
arctan

s
q + 2kF

q − 2kF
+ arctan

s
q − 2kF

q + 2kF

!
|q| > 2kF

(5.110)
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as well as
f↑↓(kF ,±kF ) = f↓↑(kF ,∓kF ) →∞ (5.113)

giving rise to the divergence of all Landau parameters. Therefore the perturbative approach to
a Landau Fermi liquid is not allowed for the one-dimensional Fermi system.
The same message is obtained when looking at the momentum distribution form which had in
three dimensions a step giving a measure for the (reduced but finite) quasiparticle weight. The
analogous calculation as in Sect.5.3.2 leads here to

n
(2)
ks ≈


1

8π2

U2

~2v2
F

ln
k+

k − k
F

k > k
F

− 1
8π2

U2

~2v2
F

ln
k−

k
F
− k

k < k
F

. (5.114)

Here, k± are cutoff parameters of the order of the Fermi wave vector k
F
. Apparently the

quality of the perturbative calculation deteriorates as k → kF±, since we encounter a logarithmic
divergence from both sides.

q=0

SpinLadung

q=−e S=0 S=1/2

Figure 5.7: Visualization of spin-charge separation. The dominant anti-ferromagnetic spin cor-
relation is staggered. A charge excitation is a vacancy which can move, while spin excitation
may be considered as domain wall. Both excitations move independently.

Indeed, a more elaborated approach shows that the distribution function is continuous at k = k
F

in one dimension, without any jump. Correspondingly, the quasiparticle weight vanishes and the
elementary excitations cannot be described by Fermionic quasiparticles but rather by collective
modes. Landau’s Theory of Fermi liquids is inappropriate for such systems. This kind of
behavior, where the quasiparticle weight vanishes, can be described by the so-called bosonization
of fermions in one dimension, a topic that is beyond the scope of these lectures. However,
a result worth mentioning, shows that the fermionic excitations in one dimensions decay into
independent charge and spin excitations, the so-called spin-charge separation. This behavior can
be understood with the naive picture of a half-filled lattice with predominantly antiferromagnetic
spin correlations. In this case both charge excitations (empty or doubly occupied lattice site)
and spin excitations (two parallel neighboring spins) represent different kinds of domain walls,
and are free to move at different velocities.

which diverges as

lim
q→0±

χ̃0(q) = − m

~2kF
ln(

q

2kF
) , lim

q→2kF−
χ̃0(q) =

m

~2kF
and lim

q→2kF+
χ̃0(q) =

πm

2~2
√
kF

1√
q − 2kF

. (5.111)
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Chapter 6

Transport properties of metals

The ability to transport electrical current is one of the most remarkable and characteristic
properties of metals. At zero temperature, a ideal pure metal is a perfect electrical conductor,
i.e., the resistivity is zero. However, disorder due to impurities and lattice defects influence the
transport and yield a finite residual resistivity, as found in real materials. At finite temperature,
electron-electron and electron-phonon scattering lead to a temperature-dependent resistivity.
Furthermore, an external magnetic field may influence the resistivity, a phenomenon called
magnetoresistance, which leads to the previously studied Hall effect. In this chapter, the effects
of a magnetic field will not be considered. Finally, heat transport, which is also mostly mediated
by electrons in metals, is going hand in hand with the electric transport. In this context,
transport phenomena such as thermoelectricity (Seebeck and Peltier effect) will be analyzed
here.

6.1 Electrical conductivity

In a normal metal, an electrical current density j(q, ω) (in q, ω-space) is induced by an applied
electrical field E(q, ω). For a homogeneous isotropic metal, we define the scalar1 electrical
conductivity σ(q, ω) within linear response, through

j(q, ω) = σ(q, ω)E(q, ω). (6.1)

The current density j(q, ω) is related to the charge density ρ(r, t) = −en(r, t), via the continuity
equation

∂

∂t
ρ(r, t) + ∇ · j(r, t) = 0, (6.2)

or, in Fourier transformed,

ωρ(q, ω)− q · j(q, ω) = 0. (6.3)

It is interesting to see that a relation between the conductivity σ(q, ω) and the dynamical
dielectric susceptibility χ0(q, ω) defined in equation (3.53) of chapter 3 arises from the equations
(6.1) and (6.3). For this, we can calculate

χ0(q, ω) = − ρ(q, ω)
eV (q, ω)

= −q · j(q, ω)
eωV (q, ω)

= −σ(q, ω)
ωe

q ·E(q, ω)
V (q, ω)

= −σ(q, ω)
ω

[iq2V (q, ω)]
e2V (q, ω)

. (6.4)

1In an anisotropic material, the conductivity σ̂ would be a full 3× 3 tensor.
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In the first line, we used the definition (3.53) of χ0(q, ω) and the continuity equation (6.3). To
the second line, we made use of the definition (6.1) of σ(q, ω) and then replaced E(q, ω) by
−iqV (q, ω), which is nothing else than the Fourier transform of the equation

−eE(r, t) = ∇rV (r, t). (6.5)

From this calculations we conclude that

χ0(q, ω) =
−iq2

e2ω
σ(q, ω), (6.6)

and thus

ε(q, ω) = 1− 4πe2

q2
χ0(q, ω) = 1 +

4πi
ω
σ(q, ω). (6.7)

In the limit of large wavelengths q � k
F
, we know from previous discussions2 that ε(0, ω) =

1− ω2
p/ω

2. Then the conductivity simplifies to

σ(ω) =
iω2

p

4πω
. (6.8)

One might conclude from this result that the conductivity is purely imaginary in the small-q
limit. However, this conclusion is wrong, since the real part of σ(ω) is related to its imaginary
part via the Kramers-Kronig relation. Defining σ1 (σ2) as the real (imaginary) part of σ, this
relation states that

σ1(ω) = − 1
π
P

 +∞∫
−∞

dω′
1

ω − ω′
σ2(ω

′)

 (6.9)

and

σ2(ω) =
1
π
P

 +∞∫
−∞

dω′
1

ω − ω′
σ1(ω

′)

 . (6.10)

A simple calculation with σ2 from equation (6.8), yields

σ1(ω) =
ω2

p

4
δ(ω), (6.11)

σ2(ω) =
ω2

p

4πω
. (6.12)

Obviously this metal is perfectly conducting (σ → ∞ for ω → 0), which comes from the fact
that we considered systems without dissipation so far.
An additional important property coming from complex analysis, is the existence of the so-called
f-sum rule,

∞∫
0

dω′ σ1(ω
′) =

1
2

+∞∫
−∞

dω′ σ1(ω
′) =

ω2
p

8
=
πe2n

2m
. (6.13)

This relation is valid for all electronic systems (including semiconductors).
2In the small-q limit we approximate χ0(q, ω) ≈ nq2/mω2 from equation (3.67).
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6.2 Transport equations and relaxation time

We introduce here Boltzmann’s transport theory as as rather simple and efficient way to deal
with dissipation and relaxation of non-stationary electronic states in metals.

6.2.1 The Boltzmann equation

In order to tackle the problem of a finite conductivity, it is suitable to use a formalism similar
to Landau’s Fermi liquid theory, based on a distribution function of quasiparticles. In transport
theory, the distribution function can be used to describe the deviation of the system from an
equilibrium. If the system is isolated from external influence, equilibrium is reached through
relaxation after some time, a process which is accompanied with an increase of entropy as
discussed in statistical physics. Analogously to the theory of transport phenomena, let us
introduce the distribution function3 f(k, r, t), where

f(k, r, t)
d3k

(2π)3
d3r (6.14)

is the number of particles in the infinitesimal phase space volume d3rd3k/(2π)3 centered at (k, r),
at time t. Such a description is only applicable if the temporal and spacial variations occur at
long wavelengths and small frequencies, respectively, i.e., if typically q � k

F
and ~ω � ε

F
. The

total number of particles N is given by

N =
∫

d3k

(2π)3
d3rf(k, r, t). (6.15)

The equilibrium distribution f0 for the fermionic quasiparticles is given by the Fermi-Dirac
distribution,

f0(k, r, t) =
1

e(εk−µ)/kBT + 1
, (6.16)

and is independent of space r and time t. The general distribution function f(k, r, t) obeys the
Boltzmann equation

D

Dt
f(k, r, t) =

(
∂

∂t
+ ṙ ·∇r + k̇ ·∇k

)
f(k, r, t) =

(
∂f

∂t

)
coll

, (6.17)

where the substantial derivative in phase space D/Dt is defined as the total temporal derivative
in a frame moving with the phase-space volume. The right-hand side is called collision integral
and describes the rate of change in f due to collision processes. Without scattering, the equation
(6.17) would represent a continuity equation for f . Now, consider the temporal derivatives of r
and k from a quasi-classical viewpoint. In absence of a magnetic field, we find

ṙ =
~k

m
, (6.18)

~k̇ = −eE, (6.19)

i.e., the force ~k̇, which is our central interest, originates from the electric field. The collision
integral may be expressed via the probability W (k,k′) to scatter a quasiparticle with wave
vector k to k′. For simple scattering on static potentials, the collision integral is given by(

∂f

∂t

)
coll

= −
∫

d3k′

(2π)3
[
W (k,k′)f(k, r, t)(1− f(k′, r, t)) (6.20)

−W (k′,k)f(k′, r, t)(1− f(k, r, t))
]
. (6.21)

3For simplicity we neglect spin the electron spin. In general there would be a distribution function fσ(k, r, t)
for each spin species σ.
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The first term, describing the scattering4 from k to k′, requires a quasiparticle at k, hence
the factor f(k, r, t), and the absence of a particle at k′, therefore the factor 1 − f(k′, r, t).
This process describes the scattering out of the phase space volume d3k/(2π)3, i.e., reduces the
number of particles in it. Therefore, it enters the collision integral with negative sign. The
second term describes the opposite process and, according to its positive sign, increases the
number of particles in the phase space volume d3k/(2π)3. For a system with time inversion
symmetry, we have W (k,k′) = W (k′,k). Assuming this, we can combine both terms and end
up with (

∂f

∂t

)
coll

=
∫

d3k′

(2π)3
W (k,k′)

[
f(k′, r, t)− f(k, r, t)

]
. (6.22)

The Boltzmann equation is a complicated integro-differential equation and suitable approxi-
mations are required. Usually, we study processes close to equilibrium, where the deviation
f(k, r, t) − f0(k, r, t) is small compared to f(k, r, t). Here, to generalize we assume f0(k, r, t)
to be a local equilibrium distribution for which the temperature T = T (r, t) and the chemical
potential µ = µ(r, t) vary slowly in r and t, such that f0(k, r, t) can still be expressed via the lo-
cal Fermi-Dirac distribution (6.16). At small deviations from equilibrium (or local equilibrium),
we can approximate the collision integral by the so-called relaxation-time approximation. For
simplicity, we assume that the system is isotropic, such that the quasiparticle dispersion εk only
depends on |k| and, furthermore, that the scattering probabilities are elastic and depend on the
angle between k and k′. Then, we make the Ansatz(

∂f

∂t

)
coll

= −
f(k, r, t)− f0(k, r, t)

τ(εk)
. (6.23)

The time scale τ(εk) is called relaxation time and gives the characteristic time within which the
system relaxes to equilibrium.

Consider the simplest case of a system at constant temperature subject to a small uniform electric
field E(t). With f(k, r, t) = f0(k, r, t) + δf(k, r, t), we can calculate the Fourier-transform of
Boltzmann equation (6.17) in relaxation-time approximation and find, after linearizing in δf ,

−iωδf(k, ω)− eE(ω)
~

∂f0(k)
∂k

= −δf(k, ω)
τ(εk)

. (6.24)

In order to come to this expression, we used that f(k, r, t) = f(k, t) for E = E(t), and assumed
for linearizing equation (6.24) that δf ∝ |E|. Thus, the equation (6.24) is consistent to linear
order in |E| and can be easily solved as

δf(k, ω) =
eτE(ω)

~(1− iωτ)
∂f0(k)
∂k

=
eτE(ω)

~(1− iωτ)
∂f0(ε)
∂ε

∂εk
∂k

. (6.25)

This result leads straightforwardly to the quasiparticle current j(ω),

j(ω) = −2e
∫

d3k

(2π)3
vkf(k, ω) = − e2

4π3

∫
d3k

τ(εk)[E(ω) · v]v
1− iωτ(εk)

∂f0(εk)
∂εk

, (6.26)

which in turn can be simplified to

jα(ω) =
∑
β

σαβ(ω)Eβ(ω), (6.27)

4Note that if spin was considered here, this collision term would account for scattering processes where spin is
conserved. However, there are in principle also scattering process where the electron spin can be transferred to
the lattice (spin-orbit coupling) or an impurity (Kondo effect) and would not be conserved independently.
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where the conductivity tensor σαβ reads

σαβ = − e2

4π3

∫
dε
∂f0(ε)
∂ε

τ(ε)
1− iωτ(ε)

∫
dΩkk

2
vαkvβk

~|vk|
. (6.28)

This corresponds to the Ohmic law. Note that σαβ = σδαβ in isotropic systems. We recover
in this case the expression (6.1) for the conductivity, which we introduced at the beginning of
this chapter. In the following, we consider the result (6.28) for an isotropic system in different
limiting cases.

6.2.2 The Drude form

For ωτ � 1 equation (6.28) becomes independent on the relaxation time. In an isotropic system
σαβ = σδαβ at low temperatures T � T

F
, this leads to

σ(ω) ≈ i
e2m2vF

4π3~3ω

∫
dΩkv

2
Fz = i

e2n

mω
= i

ω2
p

4πω
, (6.29)

which reproduces the result from equation (6.8). However now, this does not mean that our
system is a perfect conductor. We are actually interested in the static limit, where the ”dc
conductivity” (ω = 0) reduces to

σ = −e
2n

m

∫
dε
∂f0

∂ε
τ(ε) =

e2nτ̄

m
=
ω2

p τ̄

4π
. (6.30)

Since the function ∂f0/∂ε is strongly peaked around the Fermi energy ε
F
, we introduced a mean

relaxation time τ̄ . In the form (6.30), the result recovers the well-known Drude5 form of the
conductivity.

If the relaxation time τ depends only weakly on energy, we can simply calculate the optical
conductivity at finite frequency,

σ(ω) =
ω2

p

4π
τ̄

1− iωτ̄
=
ω2

p

4π

(
τ̄

1 + ω2τ̄2
+

īτ
2
ω

1 + ω2τ̄2

)
= σ1 + iσ2. (6.31)

Note that the real part satisfies the f -sum rule,

∞∫
0

dω σ1(ω) =

∞∫
0

dω
ω2

p

4π
τ̄

1 + ω2τ̄2
=
ω2

p

8
(6.32)

and that σ(ω) recovers the behavior of equation (6.12) in the limit τ̄ → 0. This form of the
conductivity yields the dielectric function

ε(ω) = 1−
ω2

p τ̄

ω(i+ ωτ̄)
= 1−

ω2
p τ̄

2

1 + ω2τ̄2
+
i

ω

ω2
p τ̄

1 + ω2τ̄2
, (6.33)

which can be used to discuss the optical properties of metals. The complex index of refraction
n+ ik is given through (n+ ik)2 = ε. Next, we discuss three important regimes of frequency.

5Note, that the phenomenological Drude theory of electron transport can be deduced from purely classical
considerations.
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Relaxation-free regime (ωτ̄ � 1 � ωpτ̄)

In this limit, the real (ε1) and imaginary (ε2) part of the dielectric function (6.33) read

ε1(ω) ≈ −ω2
p τ̄

2, (6.34)

ε2(ω) ≈
ω2

p τ̄

ω
. (6.35)

The real part ε1 is constant and negative, whereas the imaginary part ε2 becomes singular in
the limit ω → 0. Thus, the refractive index turns out to be dominated by ε2

n(ω) ≈ k(ω) ≈
√
ε2(ω)

2
≈

√
ω2

p τ̄

2ω
, (6.36)

As a result, the reflectivity R is practically 100%, since

R =
(n− 1)2 + k2

(n+ 1)2 + k2
, (6.37)

and n(ω) � 1. The absorption index k(ω) determines the penetration depth δ through

δ(ω) =
c

ωk(ω)
≈ c

ωp

√
2
ωτ̄

. (6.38)

With this, the skin depth of a metal with the famous relation δ(ω) ∝ ω−1/2 is reproduced
within the relaxation time approximation of the Boltzmann equation. While length δ(ω) is in
the centimeter range for frequencies of the order of 10− 100Hz, the Debye length c/ωp, is only
of the order of 100Å for ~ωp = 10 eV. (cf. Figure 6.1).

Figure 6.1: The frequency dependent reflectivity and penetration depth for ωpτ̄ = 500.

Relaxation regime (1 � ωτ̄ � ωpτ̄)

Here, we can expand the dielectric function (6.33) in (ωτ̄)−1, yielding

ε(ω) = 1−
ω2

p

ω2
+ i

ω2
p

ω3τ̄
. (6.39)

108



The real part ε1 ≈ −ω2
p/ω

2 is large and negative and dominates in magnitude over ε2. For the
optical properties, we obtain

k(ω) ≈
ωp

ω
(6.40)

n(ω) ≈
ωp

2ω2τ̄
. (6.41)

We find k(ω) � n(ω) � 1, which implies a large reflectivity of metals in this frequency range as
well. Note that visible frequencies are part of this regime (see Figures 6.2 and 6.3). The frequency
dependence of the penetration depth becomes weak, and its magnitude is approximately given
by the Debye length, δ ∼ c/ωp.
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Figure 6.2: Reflectance spectra for silver and copper. In both cases the drop of reflectance is due
to optical transitional between the completely filled d-band and the partially filled s-band. Note
the logarithmic scale for the reflectivity. (Source: An introduction to the optical spectroscopy of
inorganic solids, J. Garćıa Solé, L.E. Bausá and D. Jaque, Wiley (2005))

Ultraviolet regime (ω ≈ ωp and ω > ωp)

In this regime, the imaginary part of ε is approximately zero and the real part has the well
known form

ε1(ω) = 1−
ω2

p

ω2
, (6.42)

such that the reflectivity drops drastically, from close to unity towards zero (cf. Figure 6.1).
Metals become nearly transparent in the range ω > ωp. In Figure 6.1, one also notices the rapid
increase in the penetration depth δ, showing the transparency of the metal.

In all these considerations, we have neglected the contributions to the dielectric function due to
the ion cores (core electrons and nuclei). They do, however, influence the reflecting properties
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of metals; particularly, the value of ωp is reduced to ω′p = ωp/
√
ε∞, where ε∞ is the frequency-

independent part of the dielectric function due to the ions. With this, the reflectivity for
frequencies above ω′p approaches R∞ = (ε∞ − 1)2/(ε∞ + 1)2, and 0 < R∞ < 1 (see Figure 6.2
and 6.3).

Color of metals

The practically full reflectance for frequencies below ωp is a typical feature of metals. Since for
most metals, the plasma frequency lies well above the range of visible light (~ω = 1.5− 3.5eV ),
they appear shiny to our eye. While most polished metal surfaces appear shiny white, like
silver, there are some metals with a color, like gold which is yellow and copper which is reddish.
White shininess results from reflectance on the whole visible frequency range, while for colored
metals there is a certain threshold above which the reflectance drops and frequencies towards
blue are not or much weaker reflected. In most cases this drop is not connected with the plasma
frequency, but with light absorption due to interband transitions. Note that the single band
metal which was used for the Drude theory does not allow for optical absorption apart from the
plasma excitation. Interband transition play a particularly important role for the noble metals,
Cu, Ag and Au. For these metals, the reflectance drop is caused by the transition from the
completely occupied d-band to the partially filled s-band, 3d → 4s in case of Cu. For copper,
this drop appear below 2.5eV so that predominantly red light is reflected (see Figure 6.2). For
gold, this threshold frequency is slightly higher, but still in the visible, while for silver, it lies
beyond the visible range (see Figure 6.2). For all these cases, the plasma frequency is not so
easily recognizable in the reflectance. On the other hand, aluminum shows a reflectance rather
close to the expected behavior (see. Figure 6.3). Also here, there is a small reduction of the
reflection due to interband absorption. However, this effect is weak and the strong drop occurs
at the plasma frequency of ~ωp = 15.8eV . Like silver also polished aluminum is white shiny.
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Figure 4.5 The reflectivity spectrum of Aluminum (full line) compared with those predicted
from the ideal metal model with ltato : 15.8 eV (dotted line) and a damped oscillator with f :
1.25 x 16ta r-t (dashed line) (experimental data reproduced with permission from Ehrenreich
et al.,1962).

In Figure 4.5, the experimental reflectivity spectrum of aluminum is compared with
those predicted by the ideal metal and the damped metal models. Al has a free electron
density of ly' : 1 8. I x 1922 .*-3 (three valence electrons per atom) and so, according
toEquation(4.20),itsplasmaenergyisltc,;o: l5.SeV.Thus,thereflectivityspectrum
for the ideal metal can be now calculated. Compared to the experimental spectrum,
the ideal metal model spectrum is only slightly improved when taking into account
the damping terrn, with f : I.25 x 10la s-1, & value deduced from DC conductivity
measurements. The main differences between the two calculated spectra are that
damping produces a reflectivity slightly less than one below op and the ultraviolet
transmission edge is slightly smoothed out.

Finally, it should be mentioned that neither the ideal metal model nor the damped
metal model are able to explain why the actual reflectivity of aluminum is lower than
the calculated one (R ry 1) at frequencies lower than rt r. Also, these simple models
do not reproduce features such as the reflectivity dip observed around 1.5 eV. In order
to account for these aspects, and then to have a better understanding of real metals,
the band structure must be taken into account. This will be discussed at the end of
this chapter, in Section 4.8.

4.5 SEMICONDUCTORS AND INSULATORS

Unlike metals, semiconductors and insulators have bound valence electrons. This
aspect gives rise to interband transitions. The objective of this and the next section is

Figure 6.3: Reflectance spectrum of aluminum. The slight reduction of reflectivity below ωp is
due to interband transitions. The thin solid line is the theoretical behavior for τ = 0 and the
dashed line for finite τ . (Source: An introduction to the optical spectroscopy of inorganic solids,
J. Garćıa Solé, L.E. Bausá and D. Jaque, Wiley (2005))

6.2.3 The relaxation time

By replacing the collision integral the a relaxation time approximation, we implicitly introduced
a connection between the scattering rate W (k,k′) and the relaxation time τ . This relation,

f(k)− f0(k)
τ(εk)

=
∫

d3k′

(2π)3
W (k,k′){f(k)− f(k′)}, (6.43)
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will be studied for an isotropic system, with elastic scattering, and a small external field E. The
solution of equation (6.24) is of the form

f(k) = f0(k) +A(k)k ·E, (6.44)

such that

f(k)− f(k′) = A(k)(k − k′) ·E. (6.45)

Without loss of generality, we define ẑ ‖ k, and introduce the parametrization of the angles θ,
polar angle of E and θ′ (φ′) polar (azimuth) angle of k′), leading to

k ·E = kE cos θ, (6.46)
k · k′ = kk′ cos θ′, (6.47)
k′ ·E = k′E(cos θ cos θ′ + sin θ sin θ′ cosφ′). (6.48)

For elastic scattering, k = k′, we obtain

f(k)− f(k′) = A(k)kE
[
cos θ(1− cos θ′)− sin θ sin θ′ cosφ′

]
. (6.49)

Inserting this into the right-hand side of equation (6.43), the φ′-dependent part of the integration
vanishes for an isotropic system, and we are left with

f(k)− f0(k)
τ(εk)

=
∫
dΩk′ [f(k)− f(k′)]W (k,k′) (6.50)

= A(k)kE cos θ
∫
dΩk′(1− cos θ′)W (k,k′) (6.51)

= [f(k)− f0(k)]
∫
dΩk′(1− cos θ′)W (k,k′). (6.52)

The factor [f(k)− f0(k)] can be dropped on both sides of the equation, resulting in

1
τ(εk)

=
∫

d3k′

(2π)3
W (k,k′)(1− cos θ′), (6.53)

where one should remember that, for elastic scattering, the quasiparticle energy εk = εk′ is
conserved in the collision process. The scattering probability W (k,k′) accounts for this re-
striction. In the next few sections we discuss different scattering processes, looking at collision
probabilities, relaxation times and the resulting conductivity and resistivity contributions.

6.3 Impurity scattering

6.3.1 Potential scattering

Every deviation from the perfect periodicity of the ionic lattice is a source of quasiparticle
scattering, leading to the loss of their original momentum. Without translational invariance,
the conservation of momentum is lost, the energy, however, is still conserved. Possible static
scatterers are among others vacancies, dislocations, and impurity atoms. The scattering rate
W (k,k′) for a potential V̂ can be determined applying Fermi’s golden rule,6

W (k,k′) =
2π
~
nimp|〈k

′|V̂ |k〉|2δ(εk − εk′). (6.54)

6This corresponds to the first Born approximation in scattering theory. Note, that this approximation is
insufficient to describe resonant scattering.
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By nimp we denote the density of impurities, assuming only one species of them. For small densi-
ties nimp, it is reasonable to neglect interference effects between different impurities. According
to equation (6.53), the relaxation time τ of a quasiparticle with momentum ~k is given by

1
τ(εk)

=
2π
~
nimp

∫
d3k′

(2π)3
|〈k′|V̂ |k〉|2(1− k̂ · k̂′)δ(εk − εk′) (6.55)

= nimp(k̂ · vk)
∫

dσ

dΩ
(k,k′)(1− k̂ · k̂′)

dΩk′

4π
, (6.56)

with the differential scattering cross section dσ/dΩ and k̂ = k/|k|. Here, we used the connection7

between Fermi’s golden rule and the Born approximation. Note the difference in the expressions
for the relaxation time τ in equation (6.53) and for the lifetime τ̃ ,

1
τ̃

=
∫

d3k

(2π)3
W (k,k′), (6.60)

given by Fermi’s golden rule. The factor (1 − cos θ′) in equation (6.53) gives more weight to
backscattering (θ′ ≈ π) compared to forward scattering (θ′ ≈ 0), since the former has more
influence in impeding transport. This explains why τ is also termed transport lifetime.

Assuming defects in the form of point charges Ze, whose screened potential is

〈k′|V̂ |k〉 =
4πZe2

|k − k′|2 + k2
TF

. (6.61)

In the limit of very strong screening, kTF � k
F
, the differential cross section becomes inde-

pendent of the deviation8 (k − k′), the transport and the usual lifetime become equal, τ = τ̃ ,
and

1
τ
≈ π

~
N(ε

F
)nimp

(
4πZe2

k2
TF

)2

. (6.62)

With this, we are now able to determine the conductivity for scattering on Coulomb defects,
assuming s-wave scattering only. Then, since τ(ε) depends weakly on energy, equation (6.30)
yields

σ =
e2nτ(ε

F
)

m
, (6.63)

or, for the specific resistivity ρ = 1/σ,

ρ =
m

e2nτ(ε
F
)
. (6.64)

7The scattering of particles with momentum ~k into the solid angle dΩk′ around k′ yields

W (k,k′)dΩk′ =
2π

~Ω

X
k′∈dΩk′

|〈k′|bV |k〉|2δ(εk − εk′) (6.57)

=
2π

~
dΩk′

Z
k′∈dΩk′

d3k′

(2π)3
〈k′|bV |k〉|2δ(εk − εk′) =

2π

~
dΩk′N(ε)|〈k′|bV |k〉|2. (6.58)

The scattering per incoming particle current jindσ(k,k′) = W (k,k′)dΩk′ determines the differential cross section

k̂ · vk
dσ

dΩ
(k,k′) =

2π

~
N(ε)

4π
|〈k′|bV |k〉|2. (6.59)

leading to equation (6.56).
8In the context of partial wave expansion, one speaks of s-wave scattering, i.e., δl>0 → 0.
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Both σ and ρ are independent of temperature. This contribution is called the residual resis-
tivity of a metal, which approaches zero for a perfect material. The temperature dependence
of the resistivity is induced in other scattering processes like electron-phonon scattering and
electron-electron scattering, which will be considered below. The so-called residual resistance
ratio RRR = R(T = 300K)/R(T = 0) is an often used quantity to benchmark the quality of
a material. It is defined as the ratio between the resistance R at room temperature and the
resistance at zero temperature. The bigger the RRR, the better the quality of the material.
The typical value of RRR for common copper is 40-50, while the RRR for very clean aluminum
reaches values up to 20000.

6.3.2 Kondo effect

There are impurity atoms inducing so-called resonant scattering. If the resonance occurs close to
the Fermi energy, the scattering rate is strongly energy dependent, inducing a more pronounced
temperature dependence of the resistivity. An important example is the scattering off magnetic
impurities with a spin degree of freedom, yielding a dramatic energy dependence of the scattering
rate. This problem was first studied by Kondo in 1964 in order to explain the peculiar minima
in resistivity in some materials. The coupling between the local spin impurities Si at Ri and
the quasiparticle spin s has the exchange form

V̂
K

=
∑

i

(
V̂

K

)
i
= J

∑
i

Ŝi · ŝ(r)δ(r −Ri) (6.65)

= J
∑

i

(
Ŝz

i ŝ
z(r) +

1
2
Ŝ+

i ŝ
−(r) +

1
2
Ŝ−i ŝ

+(r)
)
δ(r −Ri) (6.66)

=
J~
2Ω

∑
k,k′,i

[
Ŝz

i (ĉ†k↑ĉk′↑ − ĉ†k↓ĉk′↓) + S+
i ĉ

†
k↓ĉk′↑ + S−i ĉk↑ĉk′↓

]
e−i(k−k′)·Ri . (6.67)

Here, it becomes important that spin flip processes, which change the spin state of the impurity
and that of the scattered electron, are enabled. The results for the scattering rate are presented
here without derivation,

W (k,k′) ≈ J2S(S + 1)
[
1 + 2JN(ε

F
) ln
( D

|εk − ε
F
|
)]
, (6.68)

where D is the bandwidth and we have assumed that JN(ε
F
) � 1. The relaxation time is found

to be

1
τ(εk)

≈ J2S(S + 1)
~

N(ε)
[
1 + 2JN(ε

F
) ln
( D

|εk − ε
F
|
)]
. (6.69)

Note that W (k,k′) does not depend on angle, meaning that the process is described by s-wave
scattering. The energy dependence is singular at the Fermi energy, indicating that we are not
dealing with simple resonant potential scattering, but with a much more subtle many-particle
effect involving the electrons very near the Fermi surface. The fact that the local spins Si

can flip, makes the scattering center dynamical, because the scatterer is constantly changing.
The scattering process of an electron is influenced by previous scattering events, leading to the
singularity at ε

F
. This cannot be described within the first Born approximation, but requires at

least the second approximation or the full solution.9 As mentioned before, the resonant behavior
9We refer to J.M. Ziman, Principles of the Theory of Solids, and A.C. Hewson, The Kondo Problem to Heavy

Fermions for more details.

113



induces a strong temperature dependence of the conductivity. Indeed,

σ(T ) =
e2k3

F

6π2m

∫
dε

1
4k

B
T cosh2(ε− ε

F
)/2k

B
T )
τ(ε) (6.70)

≈ e2n

8mk
B
T

∫
dε̃
J2S(S + 1)[1− 2JN(ε

F
) ln(D/ε̃)]

cosh2(ε̃/2k
B
T )

. (6.71)

A simple substitution in the integral leads to

σ(T ) ≈ e2n

2m
J2S(S + 1)

[
1− 2JN(ε

F
) ln
( D

k
B
T

)]
. (6.72)

Usual contributions to the resistance, like electron-phonon scattering discussed below, typically
decrease with temperature. The contribution (6.72) to the conductivity is strongly increas-
ing, inducing a minimum in the resistance, when we crossover from the decreasing behavior
at high temperatures to the low-temperature increase of ρ(T ). At even lower temperatures,
the conductivity would decrease and eventually even turn negative which is an artifact of our
approximation. In reality, the conductivity saturates at a finite value when the temperature is
lowered below a characteristic Kondo temperature T

K
,

k
B
T

K
= De−1/JN(εF ), (6.73)

a characteristic energy scale of this system. The real behavior of the conductivity at temperatures
T � T

K
is not accessible by simple perturbation theory. This regime, known as the Kondo

problem, represents one of the most interesting correlation phenomena of many-particle physics.

6.4 Electron-phonon interaction

Even in perfect metals, the conductivity becomes non-zero at finite temperature. The thermally
induced distortions of the lattice, phonons, act as fluctuating scattering centers. In the language
of electron-phonon interaction, electrons are scattered via absorption and emission of phonons,
which induce local fluctuations in volume (cf. Chapter 3). The corresponding coupling term
was given in equation (3.127) and simplifies with the definition (3.114) to

Hint = 2i
∑
k,q,s

Ṽq

√
~

2ρ0ωq

|q|(̂bq − b̂†−q)ĉ†k+q,sĉks. (6.74)

The interaction is similar to the interaction between electrons and photons. The dominant pro-
cesses consist of single-phonon processes, i.e., the absorption or emission of one phonon. Energy
and momentum are conserved, such that, for the scattering of an electron from momentum k to
k′ due to the emission of a phonon with momentum q, we have

k = k′ + q + G, (6.75)
εk = ~ωq + εk′ , (6.76)

Here, ωq = csq is the phonon spectrum, while the reciprocal lattice vector G allows for scat-
tering10 in nearby Brillouin zones. By this, the phase space available for scattering is strongly
reduced, especially near the Fermi energy. Note that ~ωq ≤ ~ω

D
� ε

F
. In order to calculate

10This so-called Umklapp phenomenon will be discussed in some more detail later in this chapter.
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the scattering rates, the matrix elements11 of the available processes,

〈k + q;Nq′ |(̂bq − b̂†−q)ĉ†k+q,sĉks|k;N ′
q′〉 = 〈k + q|ĉ†k+q,sĉks|k〉

(√
N ′

q′ δNq′ ,N
′
q′−1 δq,q′

−
√
N ′

q′ + 1 δNq′ ,N
′
q′+1 δq,−q′

)
,

(6.77)

need to be calculated. From Fermi’s golden rule we obtain(
∂f

∂t

)
coll

= −2π
~
∑

q

|g(q)|2
[[
f(k)(1− f(k + q))(N−q + 1)

− f(k + q)(1− f(k))N−q

]
δ(εk+q − εk + ~ω−q)

−
[
f(k + q)(1− f(k))(Nq + 1)

− f(k)(1− f(k + q))Nq

]
δ(εk+q − εk − ~ωq)

]
, (6.78)

where g(q) = Ṽq|q|
√

2~/ρ0ωq. Each of these four terms describes one of the single phonon
scattering processes depicted in Figure 6.4.

−q

k

k + q

k + q

k k

k + q

k + q

k

−q q q

Figure 6.4: The four single-phonon electron-phonon scattering processes.

The collision integral leads to a complicated integro-differential equation, whose solution is
very tedious. Instead of a full rigorous calculation including the non-equilibrium redistribution
of phonons, we will consider the behavior in various temperature regimes by an approximate
treatment of the phonons. The characteristic temperature of phonons, the Debye temperature
Θ

D
� T

F
, is much smaller than the Fermi temperature. Hence, the phonon energy is virtually

unimportant for the energy conservation, εk′=k+q ≈ εk. Therefore we are allowed to impose mo-
mentum conservation εk+q = εk and consider the lattice distortion as being essentially static, in
the sense of an adiabatic Born-Oppenheimer approximation. The approximate collision integral
then reads (

∂f

∂t

)
coll

=
2π
~
∑

q

|g(q)|22N(ωq)[f(k + q)− f(k)]δ(εk+q − εk), (6.79)

where we assume the occupation of phonon states according to the equilibrium distribution for
bosons,

N(ωq) =
1

e~ωq/kBT − 1
. (6.80)

This approximation includes all important aspects of the electron-phonon scattering we need to
derive the temperature dependence of ρ(T ).

11In analogy to the discussion on electromagnetic radiation, the phenomenon of spontaneous phonon emission
due to zero-point fluctuations appears. It is formally visible in the additional “+1” in the factors (N±q) + 1.
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In analogy to previous approaches, we obtain for with relaxation-time Ansatz

1
τ(εk)

=
2π
~

λ

N(ε
F
)

∫
d3q

(2π)3
~ωqN(ωq)(1− cos θ)δ(εk+q − εk), (6.81)

where |k| = |k + q| = k
F
, meaning that only the electrons in a thin shell close to the Fermi

surface are relevant. Furthermore, we parametrized g(q) according to

|g(q)|2 =
λ

2N(ε
F
)Ω

~ωq, (6.82)

where λ is a dimensionless electron-phonon coupling constant. In usual metals λ < 1. As in the
case of defect scattering, the relaxation time depends only weakly on the electron energy. But,
unlike previously, the direct temperature dependence enters via the dependence on temperature
of the phonon occupation N(ωq).

q

kF

k

k + q

γ

θ

Figure 6.5: The geometry of electron-phonon scattering.

In order to perform the integration in equation (6.81), we have to re-express δ(εk+q − εk) by
writing

δ(εk+q − εk) = δ

(
~2

2m
(q2 − 2k

F
q cos γ)

)
=

m

~2k
F
q
δ

(
q

2k
F

− cos γ
)
, (6.83)

where γ is defined in Figure 6.5. From there, we also see that 2γ + θ = π, and thus, find the
relation

1− cos θ = 1 + cos(2γ) = 2 cos2(γ). (6.84)

Obviously, we have to integrate q over the range [0, 2k
F
] on the right-hand side of equation

(6.81), which can be reformulated to

1
τ(εF , T )

=
−λ
N(ε

F
)

m

~2πk
F

2kF∫
0

dq qωqN(ωq)

π/2∫
0

dγ sin γ cos2(γ) δ
( q

2k
F

− cos γ
)

(6.85)

=
λ

4N(ε
F
)
mcs

~2πk3
F

2kF∫
0

q4dq

e~csq/kBT − 1
(6.86)

=
λ

4N(ε
F
)
mcsk

2
F

~2π

(
T

Θ
D

)5
2ΘD/T∫

0

y4dy

ey − 1
, (6.87)
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where we have approximated the Debye temperature by k
B
Θ

D
≈ 2~cskF

. We notice the two
distinct characteristic temperature regimes,

1
τ

=


6ζ(5)λπ

k
B
Θ

D

~

(
T

Θ
D

)5

, T � Θ
D
,

λπ
k

B
Θ

D

~

(
T

Θ
D

)
, T � Θ

D
.

(6.88)

The prefactors depend on the details of the approximation, whereas the qualitative temperature
dependence does not. We finally obtain the conductivity and resistivity from equation (6.28),

σ =
e2n

m
τ(T ), (6.89)

ρ =
m

e2n

1
τ(T )

, (6.90)

where we used the weak energy dependence of τ(ε ≈ ε
F
, T ). With this, we obtain the well-known

Bloch-Grüneisen form

ρ(T ) ∝

T 5, T � Θ
D
,

T, T � Θ
D
.

(6.91)

At high temperatures, ρ is determined by the occupation of phonon states

N(ωq) ≈
kBT

~ωq

(6.92)

which change the scattering strength (amplitude) of the lattice modulation linear in T . At low
temperature only the lowest phonon states are occupied ~ωq < kBT yield q < kBT/~cs. Thus, at
low temperatures only long-wave length modulations of the lattice generate a scattering poten-
tials which deflects electrons only slightly from their trajectories (forward scattering dominates).
This represents a restriction of the scattering phase space becoming ever smaller with decreasing
temperature.

6.5 Electron-electron scattering

In Chapter 5 we have learned, that, taking a short-ranged electron-electron interaction into
account, the lifetime of a quasiparticle strongly increases close to the Fermi surface. The basic
reason was the constraint of the scattering phase space due to the Pauli principle. The lifetime,
which we can identify with the relaxation time here, has the form

1
τ(ε)

∝ (ε− ε
F
)2. (6.93)

Note that this phase space reduction does not restrict the momentum transfer, so that in prin-
ciple 0 < q < 2kF is valid for all energies ε. This allows determining the conductivity from
equation (6.28), and we find

σ(T ) ∝ 1
T 2

(6.94)

The resistivity ρ ∝ T 2 increases quadratically in T . This is a key property of a Fermi liquid and
is often considered an identifying criterion.
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Umklapp process

An important point, kept quiet so far, requires some explanation. One could argue, that the
momentum of the Fermi liquid is conserved upon the collision of two electrons. With this
argument, it is not quite clear what causes a finite resistance. This argument, however, is based
on translational invariance and ignores the existence of the underlying lattice. In the sense that
the kinematics (momentum conservation) is also satisfied for electrons being scattered from the
Fermi surface of one Brillouin zone to the one of another Brillouin zone, while incorporating a
reciprocal lattice vector. The equation of momentum conservation,

k = k′ + G, (6.95)

where G is a reciprocal vector of the lattice, allows for scattering to other Brillouin zones (G 6= 0).
By this, the momentum is transferred to a static deformation of the lattice. Such processes are
termed Umklapp processes and play an important role in electron-phonon scattering as well (see
equation (6.75)).

6.6 Matthiessen’s rule and the Ioffe-Regel limit

Matthiessen’s rule states, that the scattering rates of different scattering processes can simply
be added, leading to

W (k,k′) = W1(k,k
′) +W2(k,k

′), (6.96)

or, expressed in the relaxation time approximation,

1
τ

=
1
τ1

+
1
τ2
, (6.97)

and

ρ =
m

ne2τ
=

m

ne2

(
1
τ1

+
1
τ2

)
= ρ1 + ρ2. (6.98)

This rule is not a theorem and corresponds effectively to a serial coupling of resistors in a clas-
sical circuit. It is applicable, if the different scattering processes are independent. Actually,
the assumption that the impurity scattering rate depends linearly on the impurity density nimp

is already an application of Matthiessen’s rule. Mutual influences of impurities, e.g., through
interference effects due to the coherent scattering of an electron at different impurities, would in-
validate this simplification. An example where Matthiessen’s rule is violated is a one-dimensional
system, where a single scatterer i induces a finite resistance Ri. Two serial scatterers then lead
to a total resistance

R = R1 +R2 +
2e2

h
R1R2 ≥ R1 +R2. (6.99)

The reason is, that in one-dimensional systems, the interference of backscattered waves is un-
avoidable and no impurity can be treated as isolated. Furthermore, every particle traversing the
whole system has to pass all scatterers. The more general Matthiessen’s rule,

ρ ≥ ρ1 + ρ2, (6.100)

is still valid. Another source of deviation from Matthiessen’s rule arises, if the relaxation time
depends on k, since then the averaging is not the same for all scattering processes. The electron-
phonon coupling can be modified by the scattering on impurities, most importantly in the
presence of anisotropic Fermi surfaces. For the analysis of resistance data of simple metals, we
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often assume the validity of Matthiessen’s rule. A typical example is the resistance minimum
explained by Kondo, where

ρ(T ) = ρ0 + ρe−p(T ) + ρ
K
(T ) + ρe−e(T ) (6.101)

= ρ0 + αT 5 + β(1 + 2JN(ε
F
) ln(D/k

B
T )) + γT 2, (6.102)

where α, β, and γ are numerical constants. Upon decreasing temperature, the Kondo term is
increasing, whereas the electron-phonon and electron-electron contributions decrease. Conse-
quently, there is a minimum.

We now turn to the discussion of resistivity in the high-temperature limit. Believing the previous
considerations entirely, the electrical resistivity would grow indefinitely with temperature. In
most cases, however, the resistivity will saturate at a finite limiting value. We can understand
this from simple considerations writing the mean free path ` = vF τ(εF

) as the mean distance an
electron travels freely between two collisions. The lattice constant a is a natural lower boundary
to ` in the crystal lattice. Furthermore, we assumed so far that scattering occurs between two
states with sharp momenta k and k′. If the de Broglie wavelength becomes comparable to the
mean free path, the framework becomes unfounded and k−1

F
would become a boundary for `. In

most systems a and k−1
F

are comparable lengths. Empirically, the resistivity is described via the
formula

1
ρ(T )

=
1

ρ
BT

(T )
+

1
ρmax

, (6.103)

corresponding to the parallel addition of two resistivities; on one hand, ρ
BT

(T ), which we have
investigated using the Boltzmann transport theory, and on the other hand the limiting value
ρmax. This is in clear disagreement to Matthiessen’s rule, which is to be expected, since for
k

F
` ∼ 1, complex interference effects will arise. The saturated resistivity ρmax can be estimated

from the Jellium model,

ρmax =
m

e2nτ(ε
F
)

=
3π2m

e2k3
F
τ(ε

F
)

=
h

e2
3π

2k2
F
`

(6.104)

∼ h

e2
3π
2k

F

, (6.105)

where we used `−1 ∼ k
F
. For a typical value k

F
∼ 108cm−1 of the Fermi wave vector, we find

ρmax ∼ 1mΩcm, which is called the Ioffe-Regel12 limit. Establishing a quantitative estimate of
ρmax for a given material is often difficult. There are even materials whose resistivity surpasses
the Ioffe-Regel limit.

6.7 General transport coefficients

Simultaneously with charge, electrons will also transport energy, i.e., heat and entropy. This is
why charge and heat transport are naturally interconnected. In the following, we generalize the
transport theory set up above to include this interplay.

12The saturated resistivity ρmax ∼ 1mΩcm= 1000µΩcm should be compared to the room-temperature resistivity
of good conductors,

metal Cu Au Ag Pt Al Sn Na Fe Ni Pb

ρ [µΩcm] 1.7 2.2 1.6 10.5 2.7 11 4.6 9.8 7 21

which are all well below ρmax.
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6.7.1 Generalized Boltzmann equation

We consider a metal with weakly space-dependent temperature T (r) and chemical potential
µ(r). The distribution function then reads

δf(k; r) = f(k; r)− f0(k, T (r), µ(r)), (6.106)

where

f0(k, T (r), µ(r)) =
1

e(εk−µ(r))/kBT (r) + 1
. (6.107)

In addition, we require the charge density to remain constant in space, i.e.,∫
d3k δf(k; r) = 0 (6.108)

for all r. In this section, we introduce the electrochemical potential η(r) = eφ(r)+µ(r) generat-
ing the general force field E = −∇(eφ+µ), where φ(r) denotes the electrostatic potential which
produces the electric field E = −∇φ. With this, the Boltzmann equation for the stationary
situation reads (

∂f

∂t

)
coll

= vk ·∇r f + k̇ ·∇k f (6.109)

= − ∂f

∂εk
vk ·

(
εk − µ

T
∇r T − E

)
. (6.110)
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Figure 6.6: Schematic view of the distribution functions δf(k) on a slice cut through the k-space
(kz = 0) with a circular Fermi surface for two situations. On the left panel (a), for an applied
electric field along the negative x-direction, on the right panel (b) for a temperature gradient in
x-direction.

In the relaxation time approximation for the collision integral, we obtain the solution

δf(k) = −
∂f0

∂εk
τ(εk)vk ·

(
E −

εk − µ

T
∇r T

)
, (6.111)

which allows us to calculate the charge and heat currents,

Je = 2
∫

d3k

(2π)3
evkδfk, (6.112)

Jq = 2
∫

d3k

(2π)3
(εk − µ)vkδfk, (6.113)
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respectively. Inserting the solution (6.111) into the two definitions above yields

Je = e2K̂(0)E +
e

T
K̂(1) (−∇T ) , (6.114)

Jq = eK̂(1)E +
1
T
K̂(2) (−∇T ) , (6.115)

where ∇ should be understood as ∇r and the tensors K̂(n) (n ∈ N0) are defined as

K
(n)
αβ = − 1

4π3

∫
dε

∂f0

∂ε
τ(ε)(ε− µ)n

∫
dΩk

v
FαvFβ

~|v
F
|
. (6.116)

In the case T � T
F

we can calculate the coefficients,13

K
(0)
αβ =

1
4π3~

τ(ε
F
)
∫
dΩk

v
FαvFβ

|v
F
|
, (6.119)

K̂(1) =
π2

3
(k

B
T )2

∂

∂ε
K̂(0)(ε)

∣∣∣∣
ε=εF

, (6.120)

K̂(2) =
π2

3
(k

B
T )2K̂(0)(ε

F
). (6.121)

We measure the electrical resistivity assuming thermal equilibrium, ∇T = 0 for all r. With
this, we find the expression

σ̂ = e2K̂(0). (6.122)

In order to determine the thermal conductivity κ̂ relating the heat current Jq to ∇T when no
external electric field E is applied, we set Je = 0 as for an open circuit. Then, the equations
(6.114) and (6.115) reveal the appearance of an electrochemical field

E =
1
T

(
K̂(0)

)−1
K̂(1)∇T. (6.123)

Thus, the heat current is given by

Jq = − 1
T

(
K̂(2) − K̂(1)

(
K̂(0)

)−1
K̂(1)

)
∇T = −κ̂∇T. (6.124)

In simple metals, the second term in (6.124) is often negligible as compared to the first one and
we obtain in this case

κ̂ =
1
T
K̂(2) =

π2k2
B

3
TK̂(0) =

π2

3
k2

B

e2
T σ̂, (6.125)

which is the well-known Wiedemann-Franz law. Note, that we can write the thermal conductivity
in the form

κ̂ =
C

e2N(ε
F
)
σ̂, (6.126)

where C = π2k2
B
T/3 denotes the electronic specific heat.

13If a function g(ε) depends only weakly on ε in the vicinity of εF , we can use the Taylor expansion to derive a
general approximation for following integrals

−
Z
dεg(ε)

∂f0
∂ε

= g(εF ) +
π2

6
(kBT )2

∂2g(ε)

∂ε2

˛̨̨̨
ε=εF

+ . . . (6.117)

and

−
Z
dεg(ε)(ε− εF )

∂f0
∂ε

=
π2

3
(kBT )2

∂g(ε)

∂ε

˛̨̨̨
ε=εF

+ . . . , (6.118)

in the limit T → 0. We used that µ→ εF in that asymptotic case.
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6.7.2 Thermoelectric effect

Equation (6.123) shows, that a temperature gradient induces an electric field. For a simple,
isotropic system, this relation reduces to

E = Q∇T, (6.127)

with the so-called Seebeck coefficient

Q = − π2

3
k2

B
T

e

σ′(ε)
σ(ε)

∣∣∣∣
ε=εF

. (6.128)

Using σ(ε) = n(ε)e2τ(ε)/m, we investigate σ′(ε),

σ′(ε) =
τ ′(ε)
τ(ε)

σ(ε) +
n′(ε)
n(ε)

σ(ε) =
τ ′(ε)
τ(ε)

σ(ε) +
N(ε)
n(ε)

σ(ε), (6.129)

and obtain an additional contribution to Q, if the relaxation time depends strongly on energy.
This is most prominent in collision processes in which resonant scattering is involved (e.g., the
Kondo effect). In the opposite situation, namely, when the first term is irrelevant, the Seebeck
coefficient

Q = −π
2

3
k2

B
T

e

N(ε
F
)

n(ε
F
)

= − S

ne
(6.130)

is simply reduced to the entropy per electron. For simple metals such as the alkali metals we
may estimate the low-temperature values using equation (6.130)

Q = −π
2

2
k2

BT

eεF
= −π

2

2
kBT

eTF

(6.131)

which for TF (Na,K) ≈ 3 × 104K leads to Q = −14mVK−1 × T [K]. A comparison with
experiments in Fig.6.7 shows that the order of magnitude works reasonably well for Na and K.
However, for Li and Cs even the sign is different. Differences occur through phonon effects, such
as the so-called phonon drag which we have neglected here.
In the following, we consider two different types of thermoelectric effects.

Seebeck effect

The first is the Seebeck effect, where a thermoelectric voltage appears in a bi-metallic system
(cf. Figure 6.8). With equation (6.127), a temperature gradient across metal B induces an
electromotive force14

U
EMF

=
∫
dl · E (6.132)

= Q
A

T1∫
T0

dl ·∇T +Q
B

T2∫
T1

dl ·∇T +Q
A

T0∫
T2

dl ·∇T (6.133)

= (Q
B
−Q

A
)(T2 − T1). (6.134)

The resulting voltage Vtherm = U
EMF

appears between the two ends of a second metal A, whose
contacts are kept at the same temperature T0. Here, a bi-metallic configuration was chosen to
reveal voltage differences across the contacts which are absent in a single metal.

14The term electromotive force, first introduced by Alessandro Volta, is misleading in the sense, that it measures
a voltage instead of a force. For further explanations on this ambiguity consult [Neal Graneaum, In the grip of
the distant universe, World Scientific (2006), page 191, ISBN 9812567542]. This is why we term it UEMF.
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Figure 6.7: Seebeck coefficient for the Alkali metals Li, Na, K, and Cs at low temperatures. The
dashed line represents the estimate for Na and K following Eq.(6.131). (adapted from D.K.C.
MacDonald, Thermoelectricity: an introduction to the principles, Dover (2006).)

Peltier effect

The second phenomenon, termed Peltier effect, emerges in a system kept at the same temper-
ature everywhere. Here, an electric current Je between the two contacts of the metal A (see
Figure 6.8) induces a heat current in the bi-metallic system, such that heat is transferred from
one reservoir (top) to another (bottom). This follows from the equations (6.114) and (6.114) by
assuming ∇T = 0, where 

Je = e2K(0)E

Jq = eK(1)E

(6.135)

implies

Jq =
K(1)

eK(0)
Je = ΠJe. (6.136)

The coupling Π = TQ between Jq and Je is called Peltier coefficient. According to Figure 6.8,
a contribution to the heat current is to be expected from both metals A and B,

Jq = (Π
A
−Π

B
)Je = T0(QA

−Q
B
)Je. (6.137)

This means, that the heat transfer between reservoirs can be controlled by electrical current.
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Figure 6.8: Schematics of thermoelectric effects. On the left panel (a) a representation of Seebeck
effect is given, where the symbol E is used instead of E . On the right panel (b) the Peltier effect
is represented. In our analysis, both systems were effectively one-dimensional.

It has to be emphasized here that the bi-metal design of the devices in Fig. 6.8 serves the
observation of the two effects which both represent bulk effects of the two metals A and B. By
no means, it should be mistaken as an effect originating from the inter-metal contacts.

6.8 Anderson localization in one-dimensional systems

Transport in one spatial dimension is very special, since there are only two different directions
to go: forward and backward. We introduce the transfer matrix formalism and use it to express
the conductivity through the Landauer formula. We will then investigate the effects of multiple
scattering at different obstacles, leading to the so-called Anderson localization, which turns a
metal into an insulator.

6.8.1 Landauer Formula for a single impurity

The transmission and reflection at an arbitrary potential with finite support15 in one dimension
can be described by a transfer matrix T .

x

I1 I2

a1+ a2+

V

a1− a2−

T

Figure 6.9: Transfer matrices are sufficient to describe potential scattering in one dimension.

In this situation, a suitable choice for a basis of the electron states is the set of plane waves
{e±ikx} (cf. Figure 6.9) moving in the positive (negative) x-direction with wave vector +k (−k).
Only plane waves with the same |k| on the left (I1) and right (I2) side of the scatterer are
interconnected. Therefore, we write

ψ1(x) = a1+e
ikx + a1−e

−ikx, (6.138)

ψ2(x) = a2+e
ikx + a2−e

−ikx, (6.139)

15The support (dt. Träger) of a function is the set of all points, where the function takes non zero values.
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where ψ1 (ψ2) is defined in the area I1 (I2). The vectors ai = (ai+, ai−) i ∈ {1, 2} are connected
via the linear relation,

a2 = T̂ a1 =
(
T11 T12

T21 T22

)
a1, (6.140)

with the 2 × 2 transfer matrix T̂ . The conservation of current (J1 = J2) requires that T̂ is
unimodular, i.e., detT = 1. Here,

J =
i~
2m

(
dψ∗(x)
dx

ψ(x)− ψ∗(x)
dψ(x)
dx

)
, (6.141)

such that, for a plane wave ψ(x) = (1/
√
L)eikx in a system of length L, the current results in

J = v/L (6.142)

with the velocity v defined as v = ~k/m. Time reversal symmetry implies that, simultaneously
with ψ(x), the complex conjugate ψ∗(x) is a solution of the stationary Schrödinger equation.
From this, we find T11 = T ∗22 and T12 = T ∗21, such that

T̂ =
(
T11 T12

T ∗12 T ∗11

)
. (6.143)

It is easily shown that a shift of the scattering potential by a distance x0 changes the coefficient
T12 of T̂ by a phase factor ei2kx0 . Meanwhile, the coefficient T11 remains unchanged.

With the Ansatz for a right moving incoming wave (∝ eikx), producing a reflected (∝ re−ikx)
and transmitted (∝ teikx) part, the wave functions on both sides of the scatterer read

ψ1(x) =
1√
L

(
eikx + re−ikx

)
, (6.144)

ψ2(x) =
1√
L

(
teikx

)
. (6.145)

The coefficients of T̂ can be determined explicitly in this situation, resulting in

T̂ =

(
1
t∗ − r∗

t∗

− r
t

1
t

)
. (6.146)

Here, the conservation of currents imposes the condition 1 = |r|2+|t|2. Furthermore, we can find
a relation between the parameters (r, t) of the potential barrier and the electric resistivity. For
this, we notice that the incoming current density J0 is split into a reflected Jr and transmitted
Jt part, all given by

J0 = − 1
L
ve = −n0ve, (6.147)

Jr = −|r|
2

L
ve = −nrve, (6.148)

Jt = −|t|
2

L
ve = −ntve, (6.149)

with the velocity v = ~k/m, the electron charge −e, and the particle densities n0, nr, and nt

corresponding to the incoming, reflected and transmitted particles respectively. The electron
density on the two sides of the barrier is given by

n1 = n0 + nr =
1 + |r|2

L
, (6.150)

n2 = nt =
|t|2

L
. (6.151)
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From this consideration, a density difference δn = n1−n2 = (1+ |r|2− |t|2)/L = 2|r|2/L results
between the left and the right side of the scatterer. The resistance R of the barrier is defined
by the ratio between the voltage drop over the resistor δV and the transmitted current Jt, i.e.

R =
δV

Jt

(6.152)

Consequently, a relation between δV and the electron density δn remains to be established to
determine R. The connection is easily found via the existing energy difference δE = −eδV
between the two sides of the resistor, such that the expression

δn =
dn

dE
δE (6.153)

=
dn

dE
(−eδV ) (6.154)

produces the wished relation. Here, dn
dEdE is the number of states per unit length in the energy

interval [E,E + dE] and we find

dn

dE
=

1
L

∑
k,s

δ

(
E − ~2k2

2m

)
= 2

∫
dk

2π
δ

(
E − ~2k2

2m

)
=

1
π~v(E)

. (6.155)

The resistance R is finally obtained from the equations (6.152), (6.153), and (6.155), leading to

R =
h

e2
|r|2

|t|2
, (6.156)

The Klitzing constant R
K

= h/e2 ≈ 25.8kΩ is a resistance quantum named after the discoverer
of the Quantum Hall Effect. The result (6.156) is the famous Landauer formula, which is
valid for all one-dimensional systems and whose application often extends to the description of
mesoscopic systems and quantum wires.

6.8.2 Scattering at two impurities

We consider now two spatially separated scattering potentials, represented by T̂1 and T̂2 each
determined by r1, t1 and r2, t2 respectively.

T T
1 2

Figure 6.10: Two spatially separated scattering potentials with transmission matrices T̂1 and T̂2

respectively.

The particles are multiply scattered at these potentials in a unknown manner, but the global
result can again be expressed via a simple transfer matrix T̂ = T̂1T̂2, given by the matrix
multiplication of each transfer matrix. All previously found properties remain valid for the new
matrix T̂ , given by

T̂ =

 1
t∗1t∗2

+ r∗1r2

t∗1t2
− r∗2

t∗1t∗2
− r∗1

t∗1t2

− r1
t1t∗2

− r2
t1t2

1
t1t2

+ r1r∗2
t1t∗2

 =

(
1
t∗ − r∗

t∗

− r
t

1
t

)
. (6.157)
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For the ratio between reflection and transmission probability we find

|r|2

|t|2
=

1
|t|2

− 1 (6.158)

=
1

|t1|2|t2|2

∣∣∣∣1 +
r1r

∗
2t2
t∗2

∣∣∣∣2 − 1 (6.159)

=
1

|t1|2|t2|2

(
1 + |r1|

2|r2|
2 +

r1r
∗
2t2
t∗2

+
r∗1r2t

∗
2

t2

)
− 1. (6.160)

Assuming a (random) distance d = x2 − x1 between the two potential barriers, we may average
over this distance. Note, that for x1 = 0, we find r2 ∝ e−2ikd, while r1, t1, and t2 are independent
on d. Consequently, all terms containing an odd power of r2 or r∗2 vanish after averaging over
d. The remainders of equation (6.160) can be collected to

|r|2

|t|2

∣∣∣∣
avg

=
1

|t1|2|t2|2
(
1 + |r1|

2|r2|
2
)
− 1 (6.161)

=
|r1|2

|t1|2
+
|r2|2

|t2|2
+ 2

|r1|2

|t1|2
|r2|2

|t2|2
. (6.162)

Even though two scattering potentials are added in series, an additional non-linear combination
emerges beside the sum of the two ratios |ri|2/|ti|2. It results from the Landauer formula applied
to two scatterers, that resistances do not add linearly to the total resistance. Adding R1 and
R2 serially, the total resistance is not given by R = R1 +R2, but by

R = R1 +R2 + 2
R1R2

R
K

> R1 +R2, (6.163)

with R
K

= h/e2 This result is a consequence of the unavoidable multiple scattering in one
dimensions. This effect is particularly prominent if Ri � h/e2 for i ∈ {1, 2}, where resistances
are then multiplied instead of summed.

6.8.3 Anderson localization

Let us consider a system with many arbitrarily distributed scatterers, and let ρ be a mean
resistance per unit length. R(`) shall be the resistance between points 0 and `. The change in
resistance by advancing an infinitesimal δ` is found from equation (6.163), resulting in

dR = ρd`+ 2
R(`)
R

K

ρd`, (6.164)

which yields

`∫
0

ρd` =

R(`)∫
0

dR

1 + 2R/R
K

, (6.165)

and thus,

ρ` =
h

2e2
ln
(
1 + 2R(`)/R

K

)
. (6.166)

Finally, solving this equation for R(`), we find

R(`) =
R

K

2

(
e2ρ`/RK − 1

)
. (6.167)
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Obviously, R grows almost exponentially fast for increasing `. This means, that for large `, the
system is an insulator for arbitrarily small but finite ρ > 0. The reason for this is that, in one
dimension, all states are bound states in the presence of disorder. This phenomenon is called
Anderson localization. Even though all states are localized, the energy spectrum is continuous,
as infinitely many bound states with different energy exist. The mean localization length ξ of
individual states, related to the mean extension of a wave function, is found from equation (6.167)
to be ξ = ρ/R

K
. The transmission amplitude is reduced16 on this length scale, since |t| ≈ 2e−`/ξ

for ` � ξ. In one dimension, there is no linearly increasing electric resistance, R(`) ≈ ρ`.
For non-interacting particles, only two extreme situations are possible. Either, the potential
is perfectly periodic and the states correspond to Bloch waves. Then, coherent constructive
interference produces extended states17 that propagate freely throughout the system, resulting
in a perfect conductor without resistance. On the other hand, if the scattering potential is
disordered, all states are strictly localized. In this case, there is no propagation and the system
is an insulator. In three-dimensional systems, the effects of multiple scattering are far less drastic
and the Ohmic law is applicable. Localization effects in two dimensions is a very subtle topic
and part of today’s research in solid state physics.

16For an expanded discussion of this topic, the article [P.W. Anderson, D.J. Thouless, E. Abrahams, and D.S.
Fisher, New method for a scaling theory of localization, Physical Review B 22, 3519 (1980)] is recommended.

17We have also seen in the context of chiral edge states in the Quantum Hall state, that perfect conductance in
a one-dimensional channel is obtained if there is no backscattering due to the lack of states moving in the opposite
direction. In chiral states, particle move only in one direction.
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Chapter 7

Magnetism in metals

Magnetic ordering in metals can be viewed as an instability of the Fermi liquid state. We enter
this new behavior of metals through a detailed description of the Stoner ferromagnetism. The
discussion of antiferromagnetism and spin density wave phases will be only brief here. In Stoner
ferromagnets the magnetic moment is provided by the spin of itinerant electrons. Magnetism
due to localized magnetic moments will be considered in the context of Mott insulators which
are subject of the next chapter.
Well-known examples of elemental ferromagnetic metals are iron (Fe), cobalt (Co) and nickel
(Ni) belonging to the 3d transition metals, where the 3d-orbital character is dominant for the
conduction electrons at the Fermi energy. These orbitals are rather tightly bound to the atomic
cores such that the electron mobility is reduced, enhancing the effect of interaction which is
essential for the formation of a magnetic state.
Other forms of magnetism, such as antiferromagnetism and the spin density wave state are found
in the 3d transition metals Cr and Mn. On the other hand, 4d and 5d transition metals within
the same columns of the periodic system are not magnetic. Their d-orbitals are more extended,
leading to a higher mobility of the electrons, such that the mutual interaction is insufficient to
trigger magnetism. It is, however, possible to find ferromagnetism in ZrZn2 where zink (Zn) may
act as a spacer reducing the mobility of the 4d-electrons of zirconium (Zr). The 4d-elements
Pd and Rh and the 5d-element Pt are, however, nearly ferromagnetic. Going further in the
periodic table, the 4f -orbitals appearing in the lanthanides are nearly localized and can lead
to ferromagnetism, as illustrated by the elements going from Gd through Tm in the periodic
system.
Magnetism appears through a phase transition, meaning that the metal is non-magnetic at
temperatures above a critical temperature Tc, the Curie-temperature (cf. Table 7.1). In many
cases, magnetism appears at Tc as a continuous, second order phase transition involving the
spontaneous violation of symmetry. This transition is lacking latent heat (no discontinuity in
entropy and volume) but instead features a discontinuity in the specific heat.

element Tc (K) type element Tc (K) type
Fe 1043 ferromagnet (3d) Gd 293 ferromagnet (4f)
Co 1388 ferromagnet (3d) Dy 85 ferromagnet (4f)
Ni 627 ferromagnet (3d) Cr 312 spin density wave (3d)

ZrZn2 22 ferromagnet α-Mn 100 antiferromagnet
Pd – paramagnet Pt – paramagnet

HfZn2 – paramagnet

Table 7.1: Selection of (ferro)magnetic materials with their respective form of magnetism and
the critical temperature Tc.
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7.1 Stoner instability

In the following section, we study the emergence of the metallic ferromagnetism originating from
the Stoner mechanism. In close analogy to the first Hund’s rule, the exchange interaction among
the electrons plays a crucial role here. The alignment of the electronic spins in a favored direction
allows the system to reduce the energy contribution due to Coulomb repulsion. According
to Landau’s theory of Fermi liquids, the interaction between electrons renormalizes the spin
susceptibility χ0 to

χ =
m∗

m

χ0

1 + F a
0

, (7.1)

which obviously diverges for F a
0 → −1 and leads to a correlation driven instability of the Fermi

liquid, as we will discuss here.

7.1.1 Stoner model within the mean field approximation

Consider a model of conduction electrons with a repulsive contact interaction,

H =
∑
k,s

εkĉ
†
ksĉks + U

∫
d3r d3r′ ρ̂↑(r)δ(r − r′)ρ̂↓(r

′), (7.2)

where we use the electron density ρ̂s(r) = Ψ̂†
s(r)Ψ̂s(r) and the field operator Ψ̂†

s (Ψ̂s) follows
from the definition (3.12) [(3.13)]. Due to the Pauli exclusion principle, the contact interaction is
only active between electrons with opposite spins. This is a consequence of the exchange hole in
the two-particle correlation between electrons of identical spin (cf. Figure 3.1). The derivation
of the full solution of this model goes beyond the scope of this lecture. However, a mean field
approximation will already provide very useful insights 1. We rewrite,

ρ̂s(r) = ns + [ρ̂s(r)− ns], (7.3)

where

ns = 〈ρ̂s(r)〉, (7.4)

and 〈 ˙〉 represents the expectation value of the argument. We stipulate that the deviation from
the mean value ns shall be small. In other words

〈[ρ̂s(r)− ns]
2〉 � n2

s. (7.5)

Inserting equation (7.3) into the Hamiltonian (7.2), we obtain

Hmf =
∑
k,s

εkĉ
†
ksĉks + U

∫
d3r [ρ̂↑(r)n↓ + ρ̂↓(r)n↑ − n↑n↓] (7.6)

=
∑
k,s

(
εk + Un−s

)
ĉ†ksĉks − UΩn↑n↓, (7.7)

the so-called mean field Hamiltonian, describing electrons which move in the uniform background
of electrons of opposite spin coupling via the spin dependent exchange interaction. Fluctuations
are ignored here. The advantage of this approximation is, that the many-body problem is now
reduced to an effective one-particle problem, where only the mean electron interaction is taken

1Note that the following mean field calculation is equivalent to a variational approach using simple many-body
wavefunction (Slater determinant) with different concentrations of up and down spins.
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into account. This is equivalent to a generalized Hartree-Fock approximation and enables us to
calculate certain expectation values, such as the density of one spin species

n↑ =
1
Ω

∑
k

〈ĉ†k↑ĉk↑〉 =
1
Ω

∑
k

f(εk + Un↓) (7.8)

=
∫
dε

1
Ω

∑
k

δ(ε− εk − Un↓)f(ε) (7.9)

=
∫
dε

1
2
N(ε− Un↓)f(ε). (7.10)

An analogous result is found for the opposite spin direction. These mean densities are determined
self-consistently, namely such that the insertion of ns in into the mean field Hamiltonian (7.7)
provides the correct output according to the expectation values given in equation (7.8). Fur-
thermore, the constraint that the total number of electrons is conserved, must be implemented.
The real magnetization M = µ

B
m is proportional to m defined via

ns =
1
2
[
(n↑ + n↓) + s(n↑ − n↓)

]
=
n0 + sm

2
, (7.11)

where n0 is the total particle density. This leads to the two coupled equations

n0 =
1
2

∫
dε
(
N(ε− Un↓) +N(ε− Un↑)

)
f(ε), (7.12)

m =
1
2

∫
dε
(
N(ε− Un↓)−N(ε− Un↑)

)
f(ε), (7.13)

or equivalently

n0 =
1
2

∑
s

∫
dεN

(
ε−

Un0

2
− s

Um

2

)
f(ε), (7.14)

m = −1
2

∑
s

s

∫
dεN

(
ε−

Un0

2
− s

Um

2

)
f(ε), (7.15)

which usually can not be solved analytically and must be treated numerically.

7.1.2 Stoner criterion

An approximate solution can be found if m� n0. In this limit, the equations (7.14) and (7.15)
are solved by adapting the chemical potential µ. For low temperatures and small magnetization
we can expand µ as

µ(m,T ) = ε
F

+ ∆µ(m,T ). (7.16)

The constant energy shift −Un0/2 appearing in the equations (7.14) and (7.15) has been ab-
sorbed into ε

F
. The Fermi-Dirac distribution takes the form

f(ε) =
1

eβ[ε−µ(m,T )] + 1
, (7.17)

where β = (k
B
T )−1. After expanding equation (7.14) for small m, one obtains

n0 ≈
∫
dεf(ε)

[
N(ε) +

1
2

(
Um

2

)2

N ′′(ε)

]
(7.18)

≈
εF∫
0

dε
[
N(ε)

]
+N(ε

F
)∆µ+

π2

6
(k

B
T )2N ′(ε

F
) +

1
2

(
Um

2

)2

N ′(ε
F
), (7.19)
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where we introduced the abbreviations N ′(ε) = dN(ε)/dε and N ′′(ε) = d2N(ε)/dε2. Since the
first term on the right side of equation (7.19) is identical to n0, ∆µ(m,T ) is immediately found
to be given by

∆µ(m,T ) ≈ −
N ′(ε

F
)

N(ε
F
)

[
π2

6
(k

B
T )2 +

1
2

(
Um

2

)2
]
. (7.20)

Analogously, the expansion of equation (7.15) in m and T , results in

m ≈
∫
dεf(ε)

[
N ′(ε)

Um

2
+

1
3!
N ′′′(ε)

(
Um

2

)3
]

(7.21)

≈

[
N(ε

F
) +

π2

6
(k

B
T )2N ′′(ε

F
) +

1
3!

(
Um

2

)2

N ′′(ε
F
) + ∆µN ′(ε

F
)

](
Um

2

)
, (7.22)

and finally, inserting the result for ∆µ from (7.20) into (7.22), we find

m = N(ε
F
)
[
1− π2

6
(k

B
T )2Λ 2

1 (ε
F
)
](

Um

2

)
−N(ε

F
)Λ 2

2 (ε
F
)
(
Um

2

)3

, (7.23)

where

Λ 2
1 (ε

F
) =

(
N ′(ε

F
)

N(ε
F
)

)2

−
N ′′(ε

F
)

N(ε
F
)
, and Λ 2

2 (ε
F
) =

1
2

(
N ′(ε

F
)

N(ε
F
)

)2

−
N ′′(ε

F
)

3!N(ε
F
)
. (7.24)

The structure of equation (7.23) is m = am + bm3, where b is assumed to be negative. Thus,
two types of solutions emerge

m2 =


0, a < 1,

1− a

b
, a ≥ 1.

(7.25)

With this, a = 1 corresponds to a critical value.

UN(ǫF ) > 2

µ

m

UN(ǫF ) < 2

Um

N(ǫ)am + bm2

E

N(ǫ)

Figure 7.1: Graphical solution of equation (7.23) and the resulting magnetization. The Fermi
sea of each spin configuration is shifted by ±Um/2, resulting in a finite total magnetization.

In our situation, this condition corresponds to

1 =
1
2
UN(ε

F
)
[
1− π2

6
(k

B
T

C
)2Λ 2

1 (ε
F
)
]
, (7.26)

yielding

k
B
T

C
=

√
6

πΛ1(εF
)

√
1− 2

UN(ε
F
)
∝
√

1−
Uc

U
(7.27)

132



for U > Uc = 2/N(ε
F
). This is an instability condition for the nonmagnetic Fermi liquid state

with m = 0, and T
C

is the Curie temperature, below which the ferromagnetic state appears (see
Figure 7.1). The temperature dependence of the magnetization M of the ferromagnetic state
(T < T

C
) is given by

M(T ) = µ
B
m(T ) ∝

√
T

C
− T , (7.28)

close to the phase transition (T
C
− T � T

C
). Note that the Curie temperature T

C
is nonzero

for UN(ε
F
) > 2, and T

C
→ 0 in the limit UN(ε

F
) → 2+. For UN(ε

F
) < 2 no phase transition

occurs. This condition for a finite transition temperature T
C

is known as the Stoner criterion.
This simple model also describes a so-called quantum phase transition, i.e., a phase transition
that appears at T = 0 as a function of system parameters, which in our case are the density
of states N(ε

F
) and the Coulomb repulsion U . While thermal fluctuations destroy the ordered

state at some finite temperature via entropy increase, entropy is irrelevant at T = 0. The order
is now suppressed by quantum fluctuations (Heisenberg’s uncertainty principle).

2

T

Ferromagnet
Paramagnet

Druckε
FUN(    )

T

Paramagnet Ferromagnet

Figure 7.2: Phase diagram of a Stoner ferromagnet in the T -UN(ε
F
) and T -p plane, respectively.

The density of states as an internal parameter can, for example be changed by applying an
external pressure. By reducing the lattice constant, pressure may facilitate the motion of the
conduction electrons and increase the Fermi velocity. Consequently, the density of states is
reduced (cf. Figure 7.2). Indeed, pressure is able to destroy ferromagnetism in weakly ferromag-
netic materials as ZrZn2, MnSi, and UGe2. In other materials, the Curie temperature is high
enough, such that the technologically applicable pressure is insufficient to suppress magnetism.
It is, however, possible, that pressure leads to other transitions, such as structural phase tran-
sitions, that eventually destroy magnetism. This is seen in iron (Fe), where a pressure of about
12 GPa induces a transition from magnetic iron with body-centered crystal (bcc) structure to a
nonmagnetic, hexagonal close packed (hcp) structure (cf. Figure 7.3).
While this structural transition is a quantum phase transition as well, it appear as a discontin-
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Figure 7.3: Phase diagrams of UGe2 and Fe.
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uous, first order2 transition. In some cases, pressure can also induce an increase in N(ε
F
), for

example in metals with multiple bands, where compression leads to a redistribution of charge.
One example is the ruthenate Sr3Ru2O7 for which uniaxial pressure along the z-axis leads to
magnetism.

εF
εF

N(  )ε

CuNi

4s

3d

ε

Figure 7.4: The position of the Fermi energy of Cu and Ni, respectively.

Let us eventually turn to the question, why Cu, being a direct neighbor of Ni in the 3d-row of
the periodic table, is not ferromagnetic, even though both elemental metals share the same fcc
crystal structure. The answer is given by the Stoner instability criterion UN(ε

F
) = 2. While

the conduction electrons at the Fermi level of Ni have 3d-character and belong to a narrow
band with a large density of states, the Fermi energy of Cu is situated in the broad 4s-band
and constitutes a much smaller density of states (cf. Figure 7.4). With this, the Cu conduction
electrons are much less localized and feature a weaker tendency towards ferromagnetic order.
Copper is known to be a better conductor than Ni for the same reason.

7.1.3 Spin susceptibility for T > TC

Next, we study the response of a metallic system to an external perturbation. For this purpose,
we apply an infinitesimal magnetic field H along the z-axis, which induces a spin polarization
due to the Zeeman coupling. From the self-consistency equations (7.14) and (7.15) we obtain

m = −1
2

∫
dεf(ε)

∑
s

s N

(
ε− µ

B
sH − s

Um

2

)
(7.29)

≈
∫
dεf(ε)N ′(ε)

(
Um

2
+ µ

B
H

)
(7.30)

= N(ε
F
)
[
1− π2

6
(k

B
T )2Λ1(εF

)2
](

Um

2
+ µ

B
H

)
(7.31)

to lowest order in m and H. Solving this equation for m yields

M = µ
B
m =

χ0(T )
1− Uχ0(T )/2µ2

B

H, (7.32)

2The Stoner instability is a simplification of the quantum phase transition. In most cases, a discontinuous
phase transition originates in the band structure or in fluctuation effects, which were ignored here, For more
details consult [D. Belitz and T.R. Kirkpatrick, Phys. Rev. Lett. 89, 247202 (2002)].
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and consequently, the magnetic susceptibility χ reads

χ =
M

H
=

χ0(T )
1− Uχ0(T )/2µ2

B

, (7.33)

where the bare susceptibility χ0 is given by

χ0(T ) = µ2
B
N(ε

F
)
[
1− π2

6
(k

B
T )2Λ1(εF

)2
]
. (7.34)

We see, that the denominator of the susceptibility χ(T ) vanishes exactly when the Stoner insta-
bility criterion is fulfilled. The diverging susceptibility

χ(T ) ≈
χ0(TC

)
T 2

C
T 2 − 1

, (7.35)

indicates the instability. Note that for T → T
C

from above, the susceptibility diverges like
χ(T ) ∝ |T

C
− T |−1 corresponding to the mean field behavior, since the mean field critical

exponent γ for the susceptibility takes the value γ = 1.

7.2 General spin susceptibility and magnetic instabilities

The ferromagnetic state is characterized by a uniform magnetization. There are, however,
magnetically ordered states which do not feature a nonzero net magnetization. Examples are
spin density wave (SDW) states, antiferromagnets and spin spiral states. In this section, we
analyze general instability conditions for metallic systems.

7.2.1 General dynamic spin susceptibility

We consider a magnetic field, oscillating in time and with spacial modulation

H(r, t) = H0e
iq·r−iωteηt, (7.36)

and calculate the resulting magnetization, for the corresponding Fourier component. For that,
we proceed analogously as in Chapter 3 and define the spin density operator Ŝ(r) in real space,

Ŝ(r) =
~
2

∑
s,s′

Ψ̂†
s(r)σss′Ψ̂s′(r) =

~
2

 Ψ̂†
↑(r)Ψ̂↓(r) + Ψ̂†

↓(r)Ψ̂↑(r)
−iΨ̂†

↑(r)Ψ̂↓(r) + iΨ̂†
↓(r)Ψ̂↑(r)

Ψ̂†
↑(r)Ψ̂↑(r)− Ψ̂†

↓(r)Ψ̂↓(r)

 (7.37)

with momentum space representation

Ŝq =
∫
d3rŜ(r)e−iq·r =

~
2Ω

∑
k,s,s′

c†k,sσss′ck+q,s′ =
1
Ω

∑
k

Ŝk,q, (7.38)

where Ŝk,q = (~/2)c†k+q,sσss′ck,s′ . The Hamiltonian of the electronic system with contact
interaction is given by

H = H0 +H
Z

+Hint, (7.39)

where

H0 =
∑
k,s

εkĉ
†
ksĉks, (7.40)

H
Z

= −
gµ

B

~

∫
d3rH(r, t) · Ŝ(r), (7.41)

Hint = U

∫
d3rρ̂↑(r)ρ̂↓(r). (7.42)
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The operator H
Z

describes the Zeeman coupling between the electrons of the metal and the
perturbing field. We investigate a magnetic field

H =
1
2
H+(q, ω)e−iωteηt

 1
−i
0

 (7.43)

in the xy-plane. The Zeeman term then simplifies to

H
Z

= −
gµ

B

~Ω

∑
k

H+(q, ω)Ŝ−k,−qe
iq·r−iωt+ηt + h.c., (7.44)

where the Hermitian conjugate (h.c.) is ignored in the following. We see immediately that only
Ŝ−k,−q couples to the field H+(q, ω). In the framework of linear response theory, this coupling
will induce a magnetization M+

ind = (µ
B
/~)〈S+

ind(q, ω)〉. Using the same equations of motion as
in Section 3.2,

i~
∂

∂t
Ŝ+

k,q = [Ŝ+
k,q,H], (7.45)

we can determine this induced magnetization, first without the interaction term (U=0). We
obtain for the given Fourier component,

i~
∂

∂t
Ŝ+

k,q(t)k,q = (εk+q − εk)Ŝ+
k,q(t) + g~µ

B
(ĉ†k+q↑ĉk+q↑ − ĉ†k↓ĉk↓)H

+(q, ω)e−iωt. (7.46)

Performing the Fourier transform from frequency space to real time, and applying the thermal
average we obtain,

(εk+q − εk − ~ω + i~η)〈S+
k,q〉 = −g~µ

B
(nk+q↑ − nk↓)H

+(q, ω), (7.47)

which then leads to the induced spin density (∝ magnetization),

〈S+
ind(q, ω)〉 =

1
Ω

∑
k

〈S+
k,q〉 =

~
µ

B

χ0(q, ω)H+(q, ω), (7.48)

with

χ0(q, ω) = −
gµ2

B

Ω

∑
k

nk+q↑ − nk↓
εk+q − εk − ~ω + i~η

. (7.49)

Note that the form of the bare susceptibility χ0(q, ω) is similar to the Lindhard function (3.48).
The result (7.48) describes the induced spin density within linear response approximation.
In the next step, we want included the effects of the interaction. Analogously to the charge
density wave state found in Section 3.2, the induced spin density generates in turn an effective
field. The induced spin polarization appears in the exchange interaction as an effective magnetic
field. We rewrite the contact interaction term in equation (7.39) in the form

Hint =
U

Ω

∑
k,k′,q′

ĉ†k+q′↑ĉk↑ĉ
†
k′−q′↓ĉk′↓

= −U
Ω

∑
k,k′,q′

ĉ†k↑ĉk+q′↓ĉ
†
k′↓ĉk′−q′↑ + const. (7.50)

= − U

Ω~2

∑
q′

Ŝ+
q′Ŝ

−
−q′ .
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The induced spin polarization 〈S+
ind(q, ω)〉 acts through the exchange interaction as an effective

(local) field, as can be seen by replacing Ŝ+
q′ → 〈S+

ind(q, ω)〉δq,q′ in Eq.(7.51) ,

− U

Ω~2

∑
q′

Ŝ+
q′Ŝ

−
−q′ → −U

~2
〈S+(q, ω)〉Ŝ−−q = −

gµ
B

~
H+

ind(q, ω)Ŝ−−q (7.51)

where the effective magnetic field H+
ind(q, ω) finally reads

H+
ind(q, ω) =

U

gµ
B
~
〈S+(q, ω)〉. (7.52)

This induced field acts on the spins as well, such that the total response of the spin density on
the external field becomes

M+(q, ω) =
µ

B

~
〈S+(q, ω)〉

= χ0(q, ω)[H+(q, ω) +H+
ind(q, ω)]

= χ0(q, ω)H+(q, ω) + χ0(q, ω)
U

gµ
B
~
〈S+(q, ω)〉 (7.53)

= χ0(q, ω)H+(q, ω) + χ0(q, ω)
U

gµ2
B

M+(q, ω).

With the definition

M+(q, ω) = χ(q, ω)H+(q, ω) (7.54)

of the susceptibility in the random phase approximation (RPA) (see Section 3.2), we find

χ(q, ω) =
χ0(q, ω)

1− U
2µ2

B
χ0(q, ω)

. (7.55)

This form of the susceptibility is found to be valid for all field directions, as long as spin-orbit
coupling is neglected and the spin is isotropic (Heisenberg model). Within the random phase
approximation, the generalization of the Stoner criterion for the appearance of an instability of
the system at finite temperature reads

1 =
U

2µ2
B

χ0(q, ω). (7.56)

For the limiting case (q, ω) → (0, 0) corresponding to a uniform, static external field, we obtain
for the bare susceptibility

χ0(q, 0) =−
2µ2

B

Ω

∑
k

nk+q↑ − nk↓
εk+q − εk

q→0−→−
2µ2

B

Ω

∑
k

∂f(εk)
∂εk

= χ0(T ), (7.57)

which corresponds to the Pauli susceptibility (g = 2). Then, χ(T ) from equation (7.58) is again
cast into the form (7.33) and describes the instability of the metal with respect to ferromagnetic
spin polarization, when the denominator vanishes. Similar to the charge density wave, the
isotropic deformation for q = 0 is not the leading instability, when χ0(Q, 0) > χ0(0, 0) for a
finite Q. Then, another form of magnetic order will occur.
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7.2.2 Instability with finite wave vector Q

In order to show that, indeed, the Stoner instability does not always prevail among all possible
magnetic instabilities, we first go through a simple argument based on the local susceptibility.
For that, we define the local magnetic moment along the z-axis, M(r) = µ

B
〈ρ̂↑(r)− ρ̂↓(r)〉, and

consider the nonlocal relation

M(r) =
∫
d3r′ χ̃0(r − r′)Hz(r

′), (7.58)

within the linear response approximation. In Fourier space, the same relation reads

Mq = χ0(q)Hq, (7.59)

with

χ0(q) =
∫
d3r χ̃0(r)e−iq·r. (7.60)

Figure 7.5: R0, the ratio between the local susceptibility and the static susceptibility, plotted
for a box-shaped band with width 2D. Depending where the Fermi energy lies η = ε

F
/D, the

susceptibility is dominated by the contribution χ0(q = 0) or by the susceptibility at finite q.

Now, compare χ0(q = 0) with χ(q) = χ̃0(r = 0), i.e., the uniform and the local susceptibility
at T = 0. The local susceptibility appears to be the average of χ0(q) over all q,

χ0(q) =
2µ2

B

Ω2

∑
k,q

nk+q − nk

εk − εk+q

=
µ2

B

2

∫
dεN(ε)

∫
dε′N(ε′)

f(ε)− f(ε′)
ε′ − ε

, (7.61)

and must be compared to χ0(q = 0) = µ2
B
N(ε

F
) (f(ε) = Θ(εF − ε)). The local susceptibility

depends on the density of states and the Fermi energy of the system. A very good qualitative
understanding can be obtained by a very simple form

N(ε) =


1
D
, −D ≤ ε ≤ D,

0, |ε| > D,

(7.62)

for the density of states. N(ε) forms a band with the shape of a box with band width 2D. With
this rough approximation, the integral in equation (7.65) is easily evaluated. The ratio between
χ(q) and χ0(q = 0) is then found to be

R0 =
χ0(q)

χ0(q = 0)
= ln

(
4

1− η2

)
+ η ln

(
1− η

1 + η

)
, (7.63)
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with η = ε
F
/D. For both small and large band fillings (ε

F
close to the band edges), the tendency

towards ferromagnetism dominates (cf. Figure 7.5), whereas when ε
F

tends towards the middle
of the band, the susceptibility χ0(q) will cease to be maximal at q = 0, and magnetic ordering
with a well-defined finite q = Q becomes more probable.

7.2.3 Influence of the band structure

Whether magnetic order arises at finite q or not depends strongly on the details of the band
structure. The argument given above, comparing the local (r = 0) to the uniform (q = 0)
susceptibility is nothing more than a vague indicator for a possible instability at nonzero q. A
crucial ingredient for the appearance of magnetic order at a given q = Q is the so-called nesting
of the Fermi surface, i.e. within extended areas in close proximity to the Fermi surface the
energy dispersion satisfies the nesting condition,

ξk+Q = −ξk (7.64)

where ξk = εk − ε
F

and Q is some fixed vector. If the Fermi surface of a material features
such a nesting trait, the susceptibility will be dominated by the contribution from this vector
Q. In order to see this, let us investigate the static susceptibility χ0(q) for q = Q under the
assumption, that equation (7.68) holds for all k. Thus,

χ0(Q;T ) =
2µ2

B

Ω

∑
k

nk+Q − nk

ξk − ξk+Q

= µ2
B

∫
d3k

(2π)3
f̃(−ξk)− f̃(ξk)

ξk
, (7.65)

where f̃(ξ) = f(ξ + ε
F
) = f(ε) and f is the Fermi-Dirac distribution. Under the further

assumption that ξk is weakly angle dependent, we find

χ0(Q;T ) = µ2
B

∫
d3k

(2π)3
tanh(ξk/2kB

T )
ξk

=
µ2

B

2

∫
dξN(ξ + ε

F
)
tanh(ξ/2k

B
T )

ξ
. (7.66)

In order to approximate this integral properly, we notice that the integral only converges if a
cutoff ε0 is introduced which we take at half the bandwidth D, i.e. ε0 ∼ D. Furthermore, the
leading contribution comes from the immediate vicinity of the Fermi energy (ξ ≈ 0), so that,
within the integration range, a constant density of states N(ε

F
) can be assumed. Finally, the

susceptibility reads

χ0(Q;T ) ≈ −µ2
B
N(ε

F
)

ε0∫
0

dξ
tanh(ξ/2k

B
T )

ξ
(7.67)

= µ2
B
N(ε

F
)
(

ln
(

ε0
2k

B
T

)
+ ln

(
4eγ

π

))
≈ µ2

B
N(ε

F
) ln
(

1.14ε0
2k

B
T

)
, (7.68)

where we assumed ε0 � k
B
T , and where γ ≈ 0.57721 is the Euler constant. The bare sus-

ceptibility χ0 diverges logarithmically at low temperatures. Inserting the result (7.72) into the
generalized Stoner relation (7.59), results in

0 = 1−
UN(ε

F
)

2
ln
(

1.14ε0
2k

B
Tc

)
, (7.69)

with the critical temperature

k
B
Tc = 1.14ε0e

−2/UN(εF ). (7.70)

A finite critical temperature persists for arbitrarily small positive values of UN(ε
F
). The nesting

condition for a given Q leads to a maximum of χ0(q, 0;T ) at q = Q and triggers the relevant
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instability in the system. The latter finally stabilizes in a magnetic ordered phase with wave
vector Q, the so-called spin density wave. The spin density distribution takes, for example, the
form

S(r) = ẑS cos(Q · r), (7.71)

without a uniform component. In comparison, the charge density wave was a modulation of the
charge density with a much smaller amplitude than the height of the uniform density, i.e.,

ρ(r) = ρ0 + δρ cos(Q · r), (7.72)

with δρ� ρ0. The spin density state frequently appear in low-dimensional systems like organic
conductors, or in transition metals such as chrome (Cr) for example. In all cases, nesting plays
an important role (cf. Figure 7.6).

Γ

H

Q
Q Q

lochartige
Fermifläche

elektronartige
Fermifläche

eindimensional quasi−eindimensional

BZ BZ

BZ

Chrom

Figure 7.6: Sketch of Fermi surfaces favorable for nesting. In purely one-dimensional systems
(left panel) there is a well-defined nesting vector pointing from one end of the Fermi surface to
the other one. In quasi-one-dimensional systems nesting is almost perfect (central panel). In
special cases (e.g. Cr) the Fermi surface(s) of three-dimensional systems show nesting properties
(right panel) promoting an instability of the susceptibility at finite q.

In quasi-one-dimensional electron systems, a main direction of motion dominates over two other
directions with weak dispersion. In this case, the nesting condition is very probable to be
fulfilled, as it is schematically shown in the center panel of Figure 7.6. Chromium is a three-
dimensional metal, where nesting occurs between a electron-like Fermi surface around the Γ-point
and a hole-like Fermi surface at the Brillouin zone boundary (H-point). These Fermi surfaces
originate in different bands (right panel in Figure 7.6). Chromium has a cubic body centered
crystal structure, where the H-point at (π/a, 0, 0) leads to the nesting vector Qx ‖ (1, 0, 0) and
equivalent vectors in y- and z-direction, which are incommensurable with the lattice.

The textbook example of nesting is found in a tight-binding model of a simple cubic lattice with
nearest-neighbor hopping at half filling. The band structure is given by

εk = −2t[cos(kxa) + cos(kya) + cos(kza)], (7.73)

where a is the lattice constant and t the hopping term. Because of half filling, the chemical
potential µ lies at µ = 0. Obviously, εk+Q = −εk holds for all k, for the nesting vector
Q = (π/a)(1, 1, 1). This full nesting trait is a signature of the total particle-hole symmetry.
Analogously to the Peierls instability, the spin density wave induces the opening of a gap at the
Fermi surface. This is another example of a Fermi surface instability. In this situation, the gap
is confined to the areas of the Fermi surface obeying the nesting condition. Contrarily to the
ferromagnetic order, the material can become insulating when forming the spin density wave
state.
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7.3 Stoner excitations

In this last section, we discuss the elementary excitations of the ferromagnetic ground state,
including both particle-hole excitations and collective modes. We focus on spin excitations, for
which we make the Ansatz

|ψq〉 =
∑
k

fkĉ
†
k+q,↓ĉk↑|ψg〉. (7.74)

In this excitation, an electron is extracted from the ground state |ψg〉 and is replaced by an
electron with opposite spin. We limit ourselves to excitations with a fixed momentum transfer
q. A selection factor nk↑(1 − nk+q,↓) ensures that an electron with (k, ↓) is available to be
removed, and that the state (k + q, ↑) is unoccupied. We solve the Schrödinger equation

H|ψq〉 = (Eg + ~ωq)|ψq〉. (7.75)

After some calculations, the eigenvalue condition takes the form

1
U

=
1
Ω

∑
k

nk↓ − nk+q↑
~ωq − εk+q↓ + εk↑

, (7.76)

corresponding to a root of the generalized RPA Stoner criterion (7.59). During the derivation
of equation (7.80), one notices that a subset of the eigenvalues corresponds to the continuum of
electron-hole excitations with the spectrum

~ωq = εk+q,↓ − εk↑ = εk+q − εk + U(n↑ − n↓), (7.77)

where we use the definition εks = εk + Un−s. In addition to these single particle excitations,
collective modes exist. Similar to the excitons, these modes can be interpreted as a bound state
of an electron and a hole. In the limit q → 0, the equation (7.80) simplifies to

1
U

=
n↓ − n↑

~ω0 − U(n↑ − n↓)
, (7.78)

meaning that ~ω0 = 0 is a particular solution which we will interpret later. Before, we expand
the right-hand side of equation (7.80) for ~ω − εk+q + εk � ∆ = U(n↑ − n↓),

1
U

=
1

∆Ω

∑
k

nk+q↑ − nk↓

1− ~ω
∆ + 1

∆(εk+q − εk)
, (7.79)

using εk+q,↓ − εk↑ = εk+q − εk + ∆. Together with equation (7.82), we find

0 =
U

∆

∑
k

(nk+q↓ − nk↑)
[(

~ωq + εk+q − εk

)
− 1

∆

(
~ωq + εk+q − εk

)2
]

+ . . . (7.80)

≈ ~ωq −
U

∆

∑
k

nk↑ + nk↓
2

(q ·∇k )2εk −
U

∆2

∑
k

(nk↓ − nk↑)(q ·∇k εk)2 +O(q4) (7.81)

up to second order in q. The assumption of a simple parabolic form for the band energies
εk = ~2k2/2m∗, and a weak magnetization n↑ − n↓ � n0 allows the explicit evaluation of the
condition (7.85). Few calculation steps lead to

~ωq =
~2q2

2m∗
1
∆

(
Un0 −

4ε
F

3

)
= vq2. (7.82)
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Note, that v is positive, since the instability criterion for this case reads Uc = 4ε
F
/3n0 = 2/N(ε

F
)

and

~ωq

q2
=

~2

2m∗
n0

3
√

3

√
1
−
UcU ≥ 0. (7.83)

This collective excitation features a q2-dependent dispersion, vanishing in the limit q → 0. This
effect is a consequence of the ferromagnetic state breaking a continuous symmetry. The rotation
symmetry is broken by the choice of a given direction of magnetization. A uniform q = 0
rotation of the magnetization does not cost any energy ω0 = 0. This result was already found
in equation (7.82) and is predicted by the so-called Goldstone theorem.3 Such an infinitesimal
rotation is induced by a global spin rotation,∑

k

ĉ†k↓ĉk↑ = Ŝ−tot. (7.84)

Since the elementary excitations have an energy gap of the order of ∆ at small q, the collective
excitations, which are termed magnons, are well-defined quasiparticles describing propagating
spin waves. When these modes enter the particle-hole continuum, they are damped in the same
way as plasmons (cf. Figure 7.7). Being a bound state composed of an electron and a hole,
magnons are bosonic quasiparticles.

∆

hω

q

Magnon

Kontinuum
Elektron−Loch

Figure 7.7: Elementary particle-hole excitation spectrum (light gray) and collective modes
(magnons, solid line) of the Stoner ferromagnet.

3The Goldstone theorem states that, in a system with a short-ranged interaction, a phase which is reached
by the breaking of a continuous symmetry features a collective excitation with arbitrarily small energy, so-called
Goldstone modes. These modes have bosonic character. In the case of the Stoner ferromagnet, these modes are
the magnons or spin waves.
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Chapter 8

Magnetism of localized moments

Up to now, we have mostly assumed that the interaction between electrons leads to secondary
effects. This was, essentially, the message of the Fermi liquid theory, the standard model of
condensed matter physics. There, the interactions of course renormalize the properties of a
metal, but their description is still possible by using a language of nearly independent fermionic
quasiparticles with a few modifications. Even in connection with the magnetism of itinerant
electrons, where interactions proved to be crucial, the description in terms of extended Bloch
states. Many properties were determined by the band structure of the electrons in the lattice,
i.e., the electrons were preferably described in k-space.
However, in this chapter, we will consider situations, were it is less clear wether we should
describe the electrons in momentum or in real space. The problem becomes obvious with the
following Gedanken experiment: We look at a regular lattice of H-atoms. The lattice constant
should be large enough such that the atoms can be considered to be independent for now. In the
ground state, each H-atom contains exactly one electron in the 1s-state, which is the only atomic
orbital we consider at the moment. The transfer of one electron to another atom would cost the
relatively high energy of E(H+)+E(H−)−2E(H) ∼ 15eV, since it corresponds to an ionization.
Therefore, the electrons remain localized on the individual H-atoms and the description of the
electron states is obviously best done in real space. The reduction of the lattice constant will
gradually increase the overlap of the electron wave functions of neighboring atoms. In analogy
to the H2 molecule, the electrons can now extend on neighboring atoms, but the cost in energy
remains that of an “ionization”. Thus, transfer processes are only possible virtually, there are
not yet itinerant electrons in the sense of a metal.

Überlapp
starkerschwacher

Überlapp

Figure 8.1: Possible states of the electrons in a lattice with weak or strong overlap of the electron
wave functions, respectively.

On the other hand, we know the example of the alkali metals, which release their outermost ns-
electron into an extended Bloch state and build a metallic (half-filled) band. This would actually
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work well for the H-atoms for sufficiently small lattice constant too.1 Obviously, a transition
between the two limiting behaviors should exist. This metal-insulator transition, which occurs,
if the gain of kinetic energy surpasses the energy costs for the charge transfer. The insulating
side is known as a Mott insulator.
While the obviously metallic state is reliably described by the band picture and can be sufficiently
well approximated by the previously discussed methods, this point of view becomes obsolete
when approaching the metal-insulator transition. According to band theory, a half-filled band
must produce a metal, which definitely turns wrong when entering the insulating side of the
transition. Unfortunately, no well controlled approximation for the description of this metal-
insulator transition exists, since there are no small parameters for a perturbation theory.
Another important aspect is the fact, that in a standard Mott insulator each atom features
an electron in the outermost occupied orbital and, hence, a degree of freedom in the form of
a localized spin s = 1/2, in the simplest case. While charge degrees of freedom (motion of
electrons) are frozen at small temperatures, the same does not apply to these spin degrees of
freedom. Many interesting magnetic phenomena are produced by the coupling of these spins.
Other, more general forms of Mott insulators exist as well, which include more complex forms
of localized degrees of freedom, e.g., partially occupied degenerate orbital states.

8.1 Mott transition

First, we investigate the metal-insulator transition. Its description is difficult, since it does
not constitute a transition between an ordered and a disordered state in the usual sense. We
will, however, use some simple considerations which will allow us to gain some insight into the
behavior of such systems.

8.1.1 Hubbard model

We introduce a model, which is based on the tight-binding approximation we have introduced in
chapter 1. It is inevitable to go back to a description based on a lattice and give up continuity.
The model describes the motion of electrons, if their wave functions on neighboring lattice sites
only weakly overlap. Furthermore, the Coulomb repulsion, leading to an increase in energy, if a
site is doubly occupied, is taken into account. We include this with the lattice analogue of the
contact interaction. The model, called Hubbard model, has the form

H = −t
∑
〈i,j〉,s

(ĉ†isĉjs + h.c.) + U
∑

i

n̂i↑n̂i↓, (8.1)

where we consider hopping between nearest neighbors only, via the matrix element −t. Note,
that ĉ(†)is are real-space field operators on the lattice (site index i) and n̂is = ĉ†isĉis is the density
operator. We focus on half filling, n = 1, one electron per site on average. There are two obvious
limiting cases:

• Insulating atomic limit: We put t = 0. The ground state has exactly one electron on
each lattice site. This state is, however, highly degenerate. In fact, the degeneracy is 2N

(number of sites N), since each electron has spin 1/2, i.e.,

|ΦA0{si}〉 =
∏

i

ĉ†i,si
|0〉, (8.2)

where the spin configuration {si} can be chosen arbitrarily. We will deal with the lifting
of this degeneracy later. The first excited states feature one lattice site without electron

1In nature, this can only be induced by enormous pressures metallic hydrogen probably exists in the centers
of the large gas planets Jupiter and Saturn due to the gravitational pressure.
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and one doubly occupied site. This state has energy U and its degeneracy is even higher,
i.e., 2N−2N(N − 1). Even higher excited states correspond to more empty and doubly
occupied sites. The system is an insulator and the density of states is shown in Figure 8.2.

• Metallic band limit: We set U = 0. The electrons are independent and move freely
via hopping processes. The band energy is found through a Fourier transform of the
Hamiltonian. With

ĉis =
1√
N

∑
k

ĉkse
ik·ri , (8.3)

we can rewrite

−t
∑
〈i,j〉,s

(ĉ†isĉjs + h.c.) =
∑
k,s

εkĉ
†
ksĉks, (8.4)

where

εk = −t
∑
a

eik·a = −2t
(
cos kxa+ cos kya+ cos kza

)
, (8.5)

and the sum runs over all vectors a connecting nearest neighbors. The density of states is
also shown in Figure 8.2. Obviously, this system is metallic, with a unique ground state

|ΦB0〉 =
∏
k

Θ(−εk)ĉ†k↑ĉ
†
k↓|0〉. (8.6)

Note, that ε
F

= 0 at half filling, whereas the bandwidth 2D = 12t.

atomischer Limes  metallischer Limes

E

N(E) N(E)

E

U

Figure 8.2: Density of states of the Hubbard model in the atomic limit (left) and in the free
limit (right).

8.1.2 Insulating state

We consider the two lowest energy sectors for the case t � U . The ground state sector α has
already been defined: one electrons sits on each lattice site. The lowest excited states create the
sector β with one empty and one doubly occupied site (cf. Figure 8.3). With the finite hopping
matrix element, the empty (holon) and the doubly occupied (doublon) site become “mobile”. A
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fraction of the degeneracy (2N−2N(N−1)) is herewith lifted and the energy obtains a momentum
dependence,

Ek,k′ = U + εk + εk′ > U − 12t. (8.7)

Even though ignoring the spin configurations here is a daring approximation, we obtain a qual-
itatively good picture of the situation.2 One notices that, with increasing |t|, the two energy
sectors approach each other, until they finally overlap. In the left panel Figure8.2 the holon-
doublon excitation spectrum is depicted by two bands, the lower and upper Hubbard bands,
where the holon is a hole in the lower and the doublon a particle in the upper Hubbard band.
The excitation gap is the gap between the two bands and we may interpret this system as an
insulator, called a Mott insulator. (Note, however, that this band structure depends strongly on
the correlation effects (e.g. spin correlation) and is not rigid as the band structure of a semicon-
ductor.) The band overlap (closing of the gap) indicates a transition, after which a perturbative
treatment is definitely inapplicable. This is, in fact, the metal-insulator transition.

βα −Sektor −Sektor

Figure 8.3: Illustration of the two energy sectors, α and β.

8.1.3 The metallic state

On the metallic side, the initial state is better defined since the ground state is a filled Fermi sea
without degeneracy. The treatment of the Coulomb repulsion U turns out to become difficult,
once we approach the Mott transition, where the electrons suffer a strong impediment in their
mobility. In this region, there is no straight-forward way of a perturbative treatment. The so-
called Gutzwiller approximation, however, provides a qualitative and very instructive insights
into the properties of the strongly correlated electrons.
For this approximation we introduce the following important densities:

1: electron density

s↑: density of the singly occupied lattice sites with spin ↑

s↓: density of the singly occupied lattice sites with spin ↓

d: density of the doubly occupied sites

h: density of the empty sites

It is easily seen, that h = d and s↑ = s↓ = s/2, as long as no uniform magnetization is present.
Note, that d determines the energy contribution of the interaction term to Ud, which we regard
as the index of fixed interaction energy sectors. Furthermore,

1 = s+ 2d (8.8)

holds. The view point of the Gutzwiller approximation is based on the renormalization of the
probability of the hopping process due to the correlation of the electrons,exceeding restrictions

2Note that the motion of an empty site (holon) or doubly occupied site (doublon) is not independent of the
spin configuration which is altered through moving these objects. As a consequence, the holon/doublon motion
is not entirely free leading to a reduction of the band width. Therefore the band width seen in Figure8.2 (left
panel) is smaller than 2D, in general. The motion of a single hole was in detail discussed by Brinkman and Rice
(Phys. Rev. B 2, 1324 (1970).

146



due to the Pauli principle. With this, the importance of the spatial configuration of the electrons
is enhanced. In the Gutzwiller approximation, the latter is taken into account statistically by
simple probabilities for the occupation of lattice sites.
We fix the density of the doubly occupied sites d and investigate the hopping processes which
keep d constant. First, we consider an electron hopping from a singly occupied to an empty
site (i → j). Hopping probability depends on the availability of the initial configuration. We
compare the probability to find this initial state for the correlated (P ) and the uncorrelated (P0)
case and write

P (↑ 0) + P (↓ 0) = gt[P0(↑ 0) + P0(↓ 0)]. (8.9)

The factor gt will eventually appear as the renormalization of the hopping probability and, thus,
leads to an effective kinetic energy of the system due to correlations. We determine both sides
statistically. In the correlated case, the joint probability for i to be singly occupied and j to be
empty is obviously

P (↑ 0) + P (↓ 0) = sh = sd = d(1− 2d). (8.10)

where we used equation (8.8). In the uncorrelated case (where d is not fixed), we have

P0(↑ 0) = ni↑(1− ni↓)(1− nj↑)(1− nj↓) =
1
16
. (8.11)

The case for ↓ follows accordingly. In order to collect the total result for hopping processes which
keep d constant, we have to do the same calculation for the hopping process (↑↓, ↑) → (↑, ↑↓),
which leads to the same result. Processes of the kind (↑↓, 0) → (↑, ↓) leave the sector of fixed
d and are ignored.3 With this, we obtain in all cases the same renormalization factor for the
kinetic energy,

gt = 8d(1− 2d), (8.12)

i.e., t → gtt. We consider the correlations by treating the electrons as independent but with a
renormalized matrix element gtt. The energy in the sector d becomes

E(d) = gtεkin + Ud = 8d(1− 2d)εkin + Ud, εkin =
1
N

0∫
−D

dε N(ε)ε. (8.13)

For fixed U and t, we can minimize this with respect to d (note that this in not a variational
calculation in a strict sense, the resulting energy is not an upper bound to the ground state
energy), and find

d =
1
4

(
1− U

Uc

)
and gt = 1−

(
U

Uc

)2

, (8.14)

with the critical value

Uc = 8|εkin| ≈ 25t ∼ 4D. (8.15)

For u ≥ Uc, double occupancy and, thus, hopping is completely suppressed, i.e., electrons
become localized. This observation by Brinkman and Rice [Phys. Rev. B 2, 4302 (1970)]
provides a qualitative description of the metal-insulator transition to a Mott insulator, but

3This formulation is based on plausible arguments. A more rigorous derivation can be found in the
literature, e.g., in D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984); T. Ogawa et al., Prog. Theor.
Phys. 53, 614 (1975); S. Huber, Gutzwiller-Approximation to the Hubbard-Model (Proseminar SS02,
http://www.itp.phys.ethz.ch/proseminar/condmat02).
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takes into account only local correlations, while correlations between different lattice sites are not
considered. Moreover, correlations between the spin degrees of freedom are entirely neglected.
The charge excitations contain contributions between different energy scales: (1) a metallic part,
described via the renormalized effective Hamiltonian

Hren =
∑
k,s

gtεkĉ
†
ksĉks + Ud, (8.16)

and (2) a part with higher energy, corresponding to charge excitations on the energy scale U ,
i.e., to excitations raising the number of doubly occupied sites by one (or more).
We can estimate the contribution to the metallic conduction. Since in the tight-binding descrip-
tion the current operator contains the hopping matrix element and is thus subject to the same
renormalization as the kinetic energy, we obtain

σ1(ω) =
ω∗2p

4
δ(ω) + σhigh energy

1 (ω), (8.17)

where we have used equation (6.12) for a perfect conductor (no residual resistivity in a perfect
lattice). There is a high-energy part which we do not specify here. The plasma frequency is
renormalized, ω∗2p = gtω

2
p, such that the f -sum rule in equation (6.13) yields

I =

∞∫
0

dωσ1(ω) =
ω2

p

8
gt + Ihigh energy =

ω2
p

8
. (8.18)

For U → Uc, the coherent metallic part becomes weaker and weaker,

ω2
p

8
gt =

(
1−

(
U

Uc

)2
)
ω2

p

8
. (8.19)

According to the f -sum rule, the lost weight must gradually be transferred to the “high-energy”
contribution.

8.1.4 Fermi liquid properties of the metallic state

The just discussed approximation allows us to discuss a few Fermi liquid properties of the metallic
state close to metal-insulator transition in a simplified way. Let us investigate the momentum
distribution. According to the above definition,

εkin =
∑

k∈FS

εk, (8.20)

where the sum runs over all k in the Fermi sea (FS). One can show within the above approxi-
mation, that the distribution is a constant within (nin) and outside (nout) the Fermi surface for
finite U , such that, for k in the first Brillouin zone,

1
2

=
1
N

∑
k∈FS

nin +
1
N

∑
k/∈FS

nout =
1
2
(nin + nout) (8.21)

and

gtεkin =
1
N

∑
k∈FS

ninεk +
1
N

∑
k/∈FS

noutεk. (8.22)

Taking into account particle-hole symmetry, i.e.,∑
k

εk =
∑

k∈FS

εk +
∑

k/∈FS

εk = 0, (8.23)
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we are able to determine nin and nout,

nin + nout = 1
nin − nout = gt

}
⇒

{
nin = (1 + gt)/2
nout = (1− gt)/2

. (8.24)

With this, the jump in the distribution at the Fermi energy is equal to gt, which, as previously,
corresponds to the quasiparticle weight (cf. Figure 8.4). For U → Uc it vanihes, i.e., the
quasiparticles cease to exist for U = Uc.

kF

nk

g
t

k

Figure 8.4: The distribution function in the Gutzwiller approximation, displaying the jump at
the Fermi energy.

Without going into the details of the calculation, we provide a few Fermi liquid parameters. It
is easy to see that the effective mass

m

m∗ = gt, (8.25)

and thus

F s
1 = 3

(
g−1
t − 1

)
=

3U2

U2
c − U2

, (8.26)

where t = 1/2m and the density of states N(ε
F
)∗ = N(ε

F
)g−1

t . Furthermore,

F a
0 = −

UN(ε
F
)

4
2Uc + U

(U + Uc)2
Uc, ⇒ χ =

µ2
B
N(ε

F
)∗

1 + F a
0

, (8.27)

F s
0 =

UN(ε
F
)

4
2U

C
− U

(U − Uc)2
Uc, ⇒ κ =

N(ε
F
)∗

n2(1 + F s
0 )
. (8.28)

It follows, that the compressibility κ vanishes for U → Uc as expected, since it becomes more and
more difficult to compress the electrons or to add more electrons, respectively. The insulator is, of
curse, incompressible. The spin susceptibility diverges because of the diverging density of states
N(ε

F
)∗. This indicates, that local spins form, which exist as completely independent degrees of

freedom at U = Uc. Only the antiferromagnetic correlation between the spins would lead to a
renormalization, which turns χ finite. This correlation is, as mentioned above, neglected in the
Gutzwiller approximation. The effective mass diverges and shows that the quasiparticles are
more and more localized close to the transition, since the occupation of a lattice site is getting
more rigidly fixed to 1.4 As a last remark, it turns out that the Gutzwiller approximation is
well suited to describe the strongly correlated Fermi liquid 3He (cf. [D. Vollhardt, Rev. Mod.
Phys. 56, 99 (1984)]).

4This can be observed within the Gutzwiller approximation in the form of local fluctuations of the particle
number. For this, we introduce the density matrix of the electron states on an arbitrary lattice site,

ρ̂ = h|0〉〈0|+ d|↑↓〉〈↑↓|+ s

2
(|↑〉〈↑|+ |↓〉〈↓|) , (8.29)
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8.2 The Mott insulator as a quantum spin system

One of the most important characteristics of the Mott insulator is the presence of spin degrees of
freedom after the freezing of the charge. This is one of the most profound features distinguishing
a Mott insulator from a band insulator. In our simple discussion, we have seen that the atomic
limit of the Mott insulator provides us with a highly degenerate ground state, where a spin-1/2
degree of freedom is present on each lattice site. We lift this degeneracy by taking into account
the kinetic energy term Hkin (t � U). In this way new physics appears on a low-energy scale,
which can be described by an effective spin Hamiltonian. Prominent examples for such spin
systems are transition-metal oxides like the cuprates La2CuO4, SrCu2O3 or vanadates CaV4O9,
NaV2O5.

8.2.1 The effective Hamiltonian

In order to employ our perturbative considerations, it is sufficient to observe the spins of two
neighboring lattice sites and to consider perturbation theory for discrete degenerate states. Here,
this is preferably done in real space. There are 4 degenerate configurations, {| ↑, ↑〉, | ↑, ↓〉, | ↓, ↑
〉, | ↓, ↓〉}. The application of Hkin yields

Hkin| ↑, ↑〉 = Hkin| ↓, ↓〉 = 0, (8.31)
Hkin| ↑, ↓〉 = −Hkin| ↓, ↑〉 = −t| ↑↓, 0〉 − t|0, ↑↓〉, (8.32)

where, in the last two cases, the resulting states have an energy higher by U and lie outside the
ground state sector. Thus, it becomes clear that we have to proceed to second order perturbation,
where the states of higher energy will appear only virtually (cf. Figure 8.5).

oder

virtuell 

−t −t
E = U

Figure 8.5: Illustration of the origin of the superexchange.

We obtain the matrix elements

Ms1,s2;s′1,s′2
= −

∑
n

〈s1, s2|Hkin|n〉
1

〈n|HCoul|n〉
〈n|Hkin|s

′
1, s

′′
2〉, (8.33)

where |n〉 = | ↑↓, 0〉 or |0, ↑↓〉, such that the denominator is always U . We end up with

M↑↓;↑↓ = M↓↑;↓↑ = −M↑↓;↓↑ = −M↓↑;↑↓ = −2t2

U
. (8.34)

from which we deduce the variance of the occupation number,

〈n2〉 − 〈n〉2 = 〈n2〉 − 1 = tr(ρ̂n2)− 1 = 4d+ s− 1 = 2d. (8.30)

The deviation from single occupation vanishes with d, i.e., with the approach of the metal-insulator transition.
Note that the dissipation-fluctuation theorem connects 〈n2〉 − 〈n〉2 to the compressibility.
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Note that the signs originates from the anti-commutation properties of the Fermion operators.
In the subspace {| ↑, ↓〉, | ↓, ↑〉} we find the eigenstates of the respective secular equations,

1√
2
(| ↑, ↓〉+ | ↓, ↑〉)E = 0, (8.35)

1√
2
(| ↑, ↓〉 − | ↓, ↑〉)E = −4t2

U
. (8.36)

Since the states | ↑, ↑〉 and | ↓, ↓〉 have energy E = 0, the sector with total spin S = 1 is
degenerate (spin triplet). The spin sector S = 0 with the energy −4t2/U is the ground state
(spin singlet).
An effective Hamiltonian with the same energy spectrum for the spin configurations can be
written with the help of the spin operators Ŝ1 and Ŝ2 on the two lattice sites

Heff = J

(
Ŝ1 · Ŝ2 −

~2

4

)
, J =

4t2

U~2
> 0. (8.37)

This mechanism of spin-spin coupling is called superexchange and introduced by P.W. Anderson
[Phys. Rev. 79, 350 (1950)].
Since this relation is valid between all neighboring lattice sites, we can write the total Hamilto-
nian as

H
H

= J
∑
〈i,j〉

Ŝi · Ŝj + const. (8.38)

This model, reduced to spins only, is called Heisenberg model. The Hamiltonian is invariant
under a global SU(2) spin rotation,

Us(θ) = e−ibS·θ, Ŝ =
∑

j

Ŝj . (8.39)

Thus, the total spin is a good quantum number, as we have seen in the two-spin case. The
coupling constant is positive and favors an antiparallel alignment of neighboring spins. The
ground state is therefore not ferromagnetic.

8.2.2 Mean field approximation of the anti-ferromagnet

There are a few exact results for the Heisenberg model, but not even the ground state energy
can be calculated exactly (except in the case of the one-dimensional spin chain which can be
solved by means of a Bethe Ansatz). The difficulty lies predominantly in the treatment of
quantum fluctuations, i.e., the zero-point motion of coupled spins. It is easiest seen already with
two spins, where the ground state is a singlet and maximally entangled. The ground state of
all antiferromagnetic systems is a spin singlet (S − tot = 0). In the so-called thermodynamic
limit (N →∞) there is long-ranged anti-ferromagnetic order in the ground state for dimensions
D ≥ 2. Contrarily, the fully polarized ferromagnetic state (ground state for a model with J < 0)
is known exactly, and as a state with maximal spin quantum number S2 it features no quantum
fluctuations.
In order to describe the antiferromagnetic state anyway, we apply the mean field approximation
again. We can characterize the equilibrium state of the classical Heisenberg model (spins as
simple vectors without quantum properties) by splitting the lattice into two sublattices A and
B, where each A-site has only B-sites as neighbors, and vice-versa.5 On the A-(B-)sublattice,
the spins point up (down). This is unique up to a global spin rotations. Note, that this spin

5Lattices which allow for such a separation are called bipartite. There are lattices, where this is not possible,
e.g., triangular or cubic face centered lattices. There, frustration phenomena appear, a further complication of
anti-ferromagnetically coupled systems.
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configuration doubles the unit cell.
We introduce the respective mean field,

Ŝz
i =


m+ (Ŝz

i −m) i ∈ A

−m+ (Ŝz
i +m) i ∈ B

. (8.40)

This leads to the mean field Hamiltonian

Hmf = H
A

+H
B

= −Jzm
∑
i∈A

Ŝz
i + Jzm

∑
i∈B

Ŝz
i + Jz

m2

2
N + · · · , (8.41)

with the coordination number z, the number of nearest neighbors (z = 6 in a simple cubic
lattice). It is simple to calculate the partition sum of this Hamiltonian,

Z = tr
(
e−βHmf

)
=
[(
eβJmz~/2 + e−βJmz~/2

)
e−βJzm2/2

]N
. (8.42)

The free energy per spin is consequently given by

F (m,T ) = − 1
N
k

B
T lnZ = Jz

m2

2
− k

B
T ln (2 cosh(βJzm~/2)) . (8.43)

At fixed temperature, we minimize the free energy with respect to m to determine the thermal
equilibrium state,6 i.e., set ∂F/∂m = 0 and find

m =
~
2
tanh

(
Jzm~
2k

B
T

)
. (8.44)

This is the self-consistency equation of the mean field theory. It provides a critical temperature
T

N
(Nel temperature), below which the mean moment m is finite. For T → TN−, m approaches

0 continuously. Thus, T
N

can be found from a linearized self-consistency equation,

m =
Jzm~2

4k
B
T

∣∣∣∣
T=TN

, (8.45)

and thus

T
N

=
Jz~2

4k
B

. (8.46)

This means, that T
N

scales with the coupling constant and with z. The larger J and the more
neighbors are present, the more stable is the ordered state.7 For T close to T

N
, we can expand

the free energy in m,

F (m,T ) = F0 +
Jz

2

[(
1−

T
N

T

)
m2 +

2
3~2

(
T

N

T

)3

m4 · · ·

]
. (8.47)

This is a Landau theory for a phase transition of second order, where a symmetry is spon-
taneously broken. The breaking of the symmetry (from the high-temperature phase with high
symmetry to the low-temperature phase with low symmetry) is described by the order parameter
m. The minimization of F with respect to m yields (cf. Figure 8.6)

m(T ) =


0, T > T

N
,

~
2

√
3(T

N
/T − 1), T ≤ T

N
.

(8.48)

6Actually, a magnetic field pointing into the opposite direction on each site would be another equilibrium
variable (next to the temperature). We set it to zero.

7At infinite z, the mean field approximation becomes exact.
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Figure 8.6: The free energy and magnetization of the anti-ferromagnet above and below T
N
.

8.3 Collective modes – spin wave excitations

Besides its favorable properties, the mean field approximation also has a number of insufficien-
cies. Quantum and some part of thermal fluctuations are neglected, and the insight into the
low-energy excitations remains vague. As a matter of fact, as in the case of the ferromagnet,
collective excitations exist here. In order to investigate these, we write the Heisenberg model in
its spin components, i.e.,

H
H

= J
∑
〈i,j〉

(
Ŝz

i Ŝ
z
j +

1
2

(
Ŝ+

i Ŝ
−
j + Ŝ−i Ŝ

+
j

))
. (8.49)

In the ordered state, the moments shall be aligned along the z-axis.
To observe the dynamics of a flipped spin, we apply the operator Ŝ−l on the ground state |Φ0〉,
and determine the spectrum, by solving the resulting eigenvalue equation

(H
H
− E0)Ŝ

−
l |Φ0〉 = [H

H
, Ŝ−l ]|Φ0〉 = ~ωŜ−l |Φ0〉, (8.50)

with the ground state energy E0. Using the spin-commutation relations[
Ŝ+

j , Ŝ
−
j

]
= 2Ŝz

j δij , (8.51)[
Ŝz

j , Ŝ
±
j

]
= ±Ŝ±j δij , (8.52)

then yields the equation−J∑
j

′
Ŝz

j Ŝ
−
l + J

∑
j

′
Ŝ−j Ŝ

z
l − ~ωŜ−l

 |Φ0〉 = 0, (8.53)

where
∑′

j runs over all neighbors of l. We decouple this complicated problem by replacing
the operators Ŝz by their mean fields. Therefore, we have to distinguish between A and B
sublattices, such that we end up with two equations,(

JmzŜ−l + Jm
∑
a

Ŝ−l+a − ~ωŜ−l

)
|Φ0〉 = 0, l ∈ A, (8.54)(

−JmzŜ−l′ − Jm
∑
a

Ŝ−l′+a − ~ωŜ−l′

)
|Φ0〉 = 0, l′ ∈ B. (8.55)
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We introduce the operators

Ŝ−l =

√
2
N

∑
q

â†qe
iq·rl , (8.56)

Ŝ−l′ =

√
2
N

∑
q

b̂†qe
iq·rl′ , (8.57)

with l ∈ A and l′ ∈ B, and, vice versa,

â†q =

√
2
N

∑
l∈A

Ŝ−l e
−iq·rl , (8.58)

b̂†q =

√
2
N

∑
l′∈B

Ŝ−l′ e
−iq·rl′ , (8.59)

and insert them into the equation and obtain,(
(Jmz − ~ω)

∑
l∈A

Ŝ−l e
−iq·rl + Jm

∑
a

eiq·a
∑
l′∈B

Ŝ−l′ e
−iq·rl′

)
|Φ0〉 = 0, (8.60)(

(−Jmz − ~ω)
∑
l′∈B

Ŝ−l′ e
−iq·rl′ − Jm

∑
a

eiq·a
∑
l∈A

Ŝ−l e
−iq·rl

)
|Φ0〉 = 0. (8.61)

From this follows that (
(Jmz − ~ω)â†q + Jmγq b̂

†
q

)
|Φ0〉 = 0, (8.62)(

(−Jmz − ~ω)̂b†q − Jmγqâ
†
q

)
|Φ0〉 = 0, (8.63)

with γq =
∑

a e
iq·a = 2(cos qxa + cos qya + cos qza). This eigenvalue equation is easily solved

leading to the description of spin waves in the antiferromagnet. The energy spectrum is given
by

~ωq = ±Jm
√
z2 − γ2

q. (8.64)

Note, that only the positive energies make sense. It is interesting to investigate the limit of
small q,

z2 − γ2
q → z2q2 +O(q4), (8.65)

where

~ωq = Jmz|q|+ · · · . (8.66)

This means that, in contrast to the ferromagnet, the spin waves of the antiferromagnet have a
linear low-energy spectrum (cf. Figure 8.7). The same applies here if we expand the spectrum
around Q = (1, 1, 1)π/a (folding of the Brillouin zone due to the doubling of the unit cell).
After a suitable normalization, the operators âq and b̂q are of bosonic nature; this comes about
since, due to the mean field approximation, the Ŝ±l are bosonic as well,

[Ŝ+
l , Ŝ

−
j ] = 2Ŝz

l δlj ≈ ±2mδlj , (8.67)

where the sign depends on the sublattice. The zero-point fluctuations of these bosons yield quan-
tum fluctuations, which reduce the moment m from its mean field value. In a one-dimensional
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Figure 8.7: Spectrum of the spin waves in the antiferromagnet.

spin chain these fluctuations are strong enough to suppress antiferromagnetically order even for
the ground state. The fact that the spectrum starts at zero has to do with the infinite degener-
acy of the ground state. The ordered moments can be turned into any direction globally. This
property is known under the name Goldstone theorem, which tells that each ordered state that
breaks a continuous symmetry has collective excitations with arbitrary small (positive) energies.
The linear spectrum is normal for collective excitations of this kind; the quadratic spectrum of
the ferromagnet has to do with the fact that the state breaks time-inversion symmetry.
These spin excitations show the difference between a band and a Mott insulator very clearly.
While in the band insulator both charge and spin excitations have an energy gap and are inert,
the Mott insulator has only gapped charge excitation. However, the spin degrees of freedom for
a low-energy sector which can even form gapless excitations as shown just above.
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