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Quick recap on maps

The maps we care about in quantum mechanics are TPCPMs (pages 40–45 of the script), trace preserving
completely positive maps. We like them because they map density operators to density operators and thus
can be used to describe the physical evolution of the state of a system. Formally, a map EA : HA 7→ HC is:

a) trace preserving if Tr(ρA) = Tr(EA(ρA)),

b) positive if EA(ρA) ≥ 0 for ρA ≥ 0,

c) completely positive if (EA ⊗ IB)(ρAB) ≥ 0 for ρAB ≥ 0.

At first glance one may think that b) and c) are equivalent. However, if ρAB is entangled then applying a
positive operator on HA may result in a non-positive operator, as we will see in exercise 7.2.

Exercise 7.1 Quantum operations can only decrease distance

You have to prove that the trace distance between two quantum states,

δ(ρ, σ) =
1

2
Tr |ρ− σ|

= max
P

Tr |P (ρ− σ)| ,

may only decrease after applying a TPM E . In the second definition the maximum is taken over projectors.
You will need to use the fact that for any two density operators ρ and σ, ρ− σ = R− S, with R,S positive
operators with orthogonal support (with TrR = TrS). Also handy is the fact that if P is a projector,
then Tr(PA) ≤ Tr(A) (think for instance of what a projector does to a matrix that is diagonalised in the
projector’s eigenbasis: it keeps only a few of the eigenvalues).
One example of a TPM is the partial trace. This exercise implies that if you have two bipartite states, ρAB

and σAB, and dismiss system B, the distance between the two states will not increase.

Exercise 7.2 A sufficient entanglement criterion

We have seen that two systems may share a quantum state in many different ways, from product states,
when local operations do not affect the other system, to a maximally entangled state, when applying an
operation on one of the systems is equivalent to applying its transpose on the other.
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Figure 1: Some types of bipartite states of composed system HA ⊗HB. Here {pk}k is a convex set (all pk
are non negative and sum up to one) and {|i〉A}i and {|i〉B}i are bases of HA and HB respectively.

Entangled states are useful in cryptography and computation, so it is important to find simple tests that
quantify the entanglement of a shared state. Finding those tests, sometimes called entanglement witnesses
is no easy task though—in fact it feeds a whole area of research. In this exercise we will tackle a very specific
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and small bit of that field: distinguishing between separable states and entangled states, for low dimensions
(apparently the problem is NP hard for systems with arbitrary dimensions).
Separable states have the form ρAB =

∑
k pkσ

k
A ⊗ σkB, where {pk}k is a classical probability distribution.

This kind of states may be interpreted as “product state σkA ⊗ σkB was prepared with probability pk”. Just
like in the case of product states, local operations on one of the systems do not change the reduced state of
the other—there is no entanglement.
The test we will use is simple: we will apply the (local) transpose operation T on one of the systems. If the
state we obtain is still a valid density operator (all eigenvalues are positive and sum up to one) then we had
a separable state. If some of the eigenvalues of the new state turn out to be negative—and we are no more
in the presence of a valid quantum state—then the original state was entangled,

(TA ⊗ 1B)ρAB

{
positive operator ⇒ ρAB separable,

non positive ⇒ ρAB entangled.

To prove that this method works we should show the following:

I . If ρAB is separable then (TA ⊗ 1B)ρAB is positive:

a) for positive local operators Λ and separable states ρAB, (ΛA ⊗ 1B)ρAB is positive;

b) the transpose is positive.

II . If ρAB is an entangled state of a two- or three-dimentional system then (TA ⊗ 1B)ρAB is non positive
(in this exercise you will not have to prove this, only to apply it to an example.)

As a curiosity you will also see that although the partial transpose is basis-dependent the eigenvalues of the
final state are invariant under local basis transformations.
Note that the transpose acts as T

∑
i,j aij |i〉〈j| =

∑
i,j aij |j〉〈i|. In part a) you have to show that the

transpose is positive and basis dependent. The latter should be trivial to get from the definition of transpose.
As for positivity, you know that density operators (for instance) may be diagonalisable as ρ = U∗DU , where
U is a unitary and and D a diagonal matrix. You know what diagonal matrices look like under transpose
transformations, so try applying Tρ and see what happens to the eigenvalues of ρ.
In part b) you are asked to prove I. a). Well, applying the operator directly and reasoning a little should
do it. In part c) you have to aplly the method to a particular state, the Werner state. I suggest that
before doing that you expand the state and check for what values of x it becomes separable. Then apply
the partial transpose and compute the eigenvalues of he resulting operator. You should get (1 +x)/4 (three
times degenerate) and (1− 3x)/4. The latter is positive only when x < 1/3, which has to be consistent with
when the Werner state is separable.
To solve part d) you have to apply a local change of basis to (TA ⊗ 1B)ρAB and think about what happens
to the eigenvalues of the resulting state. Note that local changes of basis act like (U∗

A ⊗U∗
B)ρAB(UA ⊗UB).
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Exercise 7.3 The Choi-Jamio lkowski Isomorphism

The CJ isomorphism gives a necessary and sufficient condition for CP: if

(EA ⊗ IA′)(|Ψ〉AA′) ≥ 0, |Ψ〉 =
1

|A|
∑
i

|i〉A|i〉A,

then EA is completely positive. The CJ isomorphism, τ , is the map from EA to the state above. We will
find an alternative way to derive τ that may clarify why it works.
First things first: notation. We use |x〉〉 to represent a non-normalised vector of a Hilbert space, just to
keep in mind that it is not a quantum state. We do the same for non-normalised bras, 〈〈x|. Now we
represent operators as vectors. We can do this arbitrarly, as long as we know how to go back to the matrix
representation. In this case we map the operators C =

∑
ij cij |i〉2〈j|1 as |C〉〉 =

∑
ij cij |i〉2|j〉1.
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Parts a) and b) are just to get tools that allows us to show why this would be interesting. It’s just linear
algebra. ,
In part a) we see how multiplying operators works in this picture. Here goes a little picture to keep track
of all the different operators and Hilbert spaces.
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In part b) we have only two operators, A and B, both from H1 to H2, and you have to show that
Tr1(|A〉〉〈〈B|) = AB∗. In case you are not tired of them yet, have another picture:
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Note: the pictures are really just to give an idea of what is happening. Please stick to the nice ket/bra
notation when solving the exercises; if you try to draw the matrices you will need a lot of paper and patience.
Now we will see how one can obtain the CJ isomorphism directly from the operator-sum representation of
an operator. First, in part c), you use the results from b) and a) to show that we can obtain a matrix, τ ,
from that representation. You should get τ =

∑
k |Ek〉〉〈〈Ek|.

For part c) we have to prove that the τ we obtained is the same from the CJ isomorphism. Hint: show that
|Ψ〉 = |1〉〉.
Finally, check how to get the TP and CP conditions of a map directly from τ . The script may help.
Another note: sorry for the notation mess. In the script τ is the CJ isomorphism itself, while in this
exercise τ is the outcome of that isomorphism.
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