Exercise 5.1 Measurements on bipartite systems

Consider a state ρ_{AB} in a composed system $\mathcal{H}_A \otimes \mathcal{H}_B$. Suppose you want to perform a measurement described by an observable O_A on subsystem \mathcal{H}_A . The operator O_A has eigenvalues (possible outcomes) $\{x\}_x$ and may be written by spectral decomposition as $O_A = \sum_x x P_x$ where $\{P_x\}_x$ are projectors—operators that only have eigenvalues 0 and 1. Show that the measurement statistics (probabilities of obtaining the different outcomes) are the same whether you apply $O_A \otimes \mathbb{1}_B$ on the joint state ρ_{AB} or first trace out the system \mathcal{H}_B and then apply O_A on the reduced state ρ_A .

Exercise 5.2 Distinguishing two quantum states

Suppose you know the density operators of two quantum states $\rho, \sigma \in \mathcal{H}_A$. Then you are given one of the states at random—it may either be ρ or σ with equal probability. The challenge is to perform a single measurement on your state and then guess which state that is.

- a) What is your best strategy? In which basis do you think you should perform the measurement? Can you express that measurement using a projector P?
- b) Show that the probability of guessing correctly is given by $\frac{1}{2}(1 + \text{Tr}[P(\rho \sigma)])$. Just like in the classical case, that is equivalent to $\frac{1}{2}[1+\delta(\rho,\sigma)]$, where $\delta(\rho,\sigma)$ is the trace distance between the two quantum states.

Exercise 5.3 Fidelity and Uhlmann's Theorem

Given two states ρ and σ on \mathcal{H}_A with fixed basis $\{|A\rangle_i\}_i$ and a reference Hilbert space \mathcal{H}_B with fixed basis $\{|B\rangle_i\}_i$, which is a copy of \mathcal{H}_A , Uhlmann's theorem claims that the fidelity can be written as

$$F(\rho,\sigma) = \max_{|\psi\rangle,|\phi\rangle} |\langle\psi|\phi\rangle|, \qquad (1)$$

where the maximum is over all purifications $|\psi\rangle$ of ρ and $|\phi\rangle$ of σ on $\mathcal{H}_A \otimes \mathcal{H}_B$. Let us introduce a state $|\psi\rangle$ as:

$$|\psi\rangle = (\sqrt{\rho} \otimes U_B) |\gamma\rangle, \qquad |\gamma\rangle = \sum_i |i\rangle_A \otimes |i\rangle_B,$$
(2)

where U_B is any unitary on \mathcal{H}_B .

- a) Show that $|\psi\rangle$ is a purification of ρ .
- b) Argue why every purification of ρ can be written in this form.
- c) Use the construction presented in the proof of Uhlmann's theorem to calculate the fidelity between $\sigma' = \mathbb{1}_2/2$ and $\rho' = p|0\rangle\langle 0| + (1-p)|1\rangle\langle 1|$ in the 2-dimensional Hilbert space with computational basis.
- d) Give an expression for the fidelity between any pure state and the completely mixed state $1_n/n$ in the n-dimensional Hilbert space.