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Exercise 6.1 The one-dimensional Lippmann-Schwinger equation

a) The time-independent Schrödinger equation of the one-dimensional scattering problem
reads (

− !2

2m

d2

dx2
+ V (x)

)
ψk(x) = Ekψk(x). (1)

It is thus equivalent to
(

d2

dx2
+ k2

)
ψk(x) =

2m

!2
V (x)ψk(x) (2)

if we define k :=
√

2mE/!. Equation (2) is equivalent to the integral equation

ψk(x) = ψ(0)
k (x) +

∫

R
dy Gk(x− y)

2m

!2
V (y)ψk(y) (3)

if one choses an appropriate Green’s function Gk(x). Recall that there is no unique Green’s
function associated to the differential operator on the LHS of equation (2). Consequently,
once we have found a Green’s function (i.e., a “function” G(x) which satisfies

(
d2

dx2
+ k2

)
G(x) = δ(x) (4)

in the sense of distributions) we have to check that it satisfies our demand

ψk(x) ∼ eikx + f(k, k′)
eik|x|

|x| (5)

(k′ := k sgn(x)) as x → ±∞. The wave function ψ(0)
k (x) is a solution of the homogenous

version of equation (2) (i.e., RHS = 0). We chose ψ(0)
k (x) = eikx as in the lecture. For the

purpose finding of the right Green’s function we express Gk(x) by its Fourier transform,

Gk(x) =
1
2π

∫

R
dq Ĝk(q)eiqx (6)

and apply the operator (d/dx)2 + k2

(
d2

dx2
+ k2

)
Gk(x) =

1
2π

∫

R
dq

(
−q2 + k2

)
Ĝk(q)eiqx

= δ(x) =
1
2π

∫

R
dq eiqx (7)

(recall equation (4)1). We can satisfy equation (7) if we set

Ĝk(q) =
1

−q2 + k2
. (8)

Consequently, we have to evaluate the inverse Fourier transformation of Ĝk(q) which leads
to the integral

Gk(x) =
1
2π

∫

R
dq

eiqx

(k − q)(k + q)
(9)

1Warning: the following argumentation might be confusing from a mathematical point of view. Please don’t
be confused about it! It’s how it’s usually done in textbooks.
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which is not well defined because of the poles on the real axis. Consequently, we need
to specify the meaning of the integral in (9). This is done as follows: we complexify q
(q ∈ R '→ z ∈ C) and relate the unspecified integral to the limit of a family of integrals
along paths {γε}ε in the complex plane. In the end we have to check that the resulting
function Gk(x) really is a Green’s function that satisfies our demand (5). It turns out that
the choice

γε := lim
R→+∞

C1 ∪ Cε,1 ∪ C2 ∪ Cε,2 ∪ C3 (10)

with

Cε,1 := {z = −k + εe−iθ : θ ∈ [0, π)}
Cε,2 := {z = k + εeiθ : θ ∈ [π, 2π)}
C1 := [−R,−k − ε)
C2 := [−k + ε, k − ε)
C3 := [k + ε, R)

leads to physically meaningful results. We thus make the ansatz

Gk(x) = lim
ε→0

1
2π

∫

γε

dz
eizx

(k − z)(k + z)
. (11)

As usual we use the residue theorem to compute this integral. For that purpose we close
the path C1 ∪ Cε,1 ∪ C2 ∪ Cε,2 ∪ C3 with the upper half circle

C+
R := {z = Reiθ : θ ∈ [0, π)}

if x > 0 and with the lower half circle

C−R := {z = Reiθ : θ ∈ [π, 2π)}

if x < 0. We call the resulting closed contour γ+
ε,R and γ−ε,R , respetively. We conclude that

Gk(x) = lim
ε→0

lim
R→∞

1
2π

[∮

γ"
ε,R

...−
∫

C"
R

...

]
(12)

where ' is “+” if x > 0 and “-” if x < 0. The application of the residue theorem yields
∮

γ"
ε,R

... = −2πiResz=k(...) = −2πi
eik|x|

2k
(13)

independent of ' ∈ {+,−}. The CR-integral vanishes according to Jordan’s lemma as
R→∞. Therefore we get

Gk(x) = −i
eik|x|

2k
. (14)

and the Lippmann-Schwinger equation becomes

ψk(x) = eikx − 2im

!2

∫
dy

eik|x−y|

2k
V (y)ψk(y). (15)

b) With the attractive delta-potential,

ψk(x) = eikx +
2im

!2

eik|x|

2k

γ!2

2m
ψk(0) (16)

= eikx +
iγ

2k
eik|x|ψk(0) (17)
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This last equation can be solved for ψk(0) if we set x = 0. We immediately get

ψk(0) =
2k

2k − iγ
. (18)

We can consider the asymptotic forms (large |x|) of the above equation to obtain the
transmission and reflection amplitudes. First we look at the case where x→∞. This gives

ψk(x) = eikx +
iγ

2k
eikxψk(0) = eikx 2k

2k − iγ
= T (k)eikx. (19)

For x→ −∞ we deduce that

ψk(x) = eikx +
iγ

2k
e−ikxψk(0) = eikx +

iγ

2k − iγ
e−ikx = eikx + R(k)e−ikx (20)

It immediately follows that |T (k)|2 + |R(k)|2 = 1 for all k ∈ R.
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