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Exercise 5.1 Slow Turn-On of Perturbation

a) Up to first order the probability for the transition |i〉 → |f〉 is given by

Pi→f =
1

~2

∣∣∣∣∫ t

0

dt′ e
i
~ (Ef−Ei)t′〈ψf , V (t′)ψi〉

∣∣∣∣2 . (1)

Now we define

ωfi :=
Ef − Ei

~
and

Vfi := 〈ψf , V ψi〉, V †fi := 〈ψf , V †ψi〉
to compute the following:

Pi→f (t) =
1

~2

∣∣∣∣∫ t

0

dt′ ei(ωfi+ω)t′Vfi + ei(ωfi−ω)t′V †fi

∣∣∣∣2
=

1

~2

∣∣∣∣∣Vfi ei(ωfi+ω)t′

i(ωfi + ω)

∣∣∣∣t
0

+ V †fi
ei(ωfi−ω)t′

i(ωfi − ω)

∣∣∣∣t
0

∣∣∣∣∣
2

=
1

~2

∣∣∣∣∣ −iVfiωfi + ω
ei
ωfi+ω

2
t2i sin

(
ωfi + ω

2
t

)
−

iV †fi
ωfi − ω

ei
ωfi−ω

2
t2i sin

(
ωfi − ω

2
t

)∣∣∣∣∣
2

=
1

~2

4|Vfi|2

(ωfi + ω)2
sin2

(
ωfi + ω

2
t

)
+ (2)

+
1

~2

4VfiV
†
fi

ω2
fi − ω2

sin

(
ωfi + ω

2
t

)
sin

(
ωfi − ω

2
t

)
eiωt (3)

+
1

~2

4VfiV
†
fi

ω2
fi − ω2

sin

(
ωfi + ω

2
t

)
sin

(
ωfi − ω

2
t

)
e−iωt (4)

+
1

~2

4|V †fi|2

(ωfi − ω)2
sin2

(
ωfi − ω

2
t

)
(5)

The transition probability to a set {f} of final states is

Pi→{f}(t) =
∑
f∈{f}

Pi→f (t). (6)

The continuum limit of this last equation reads (for transitions to anywhere in the
continuous spectrum)

Pi→{f}(t) =
∑

Ef∈{Ej :j∈{f}}

Pi→f ·Degeneracy(Ef ) (7)

=
∑

Ef∈{Ej :j∈{f}}

[Pi→fρ](Ef ) · (Ef+1 − Ef ) (8)

→
∫
dEf [Pi→fρ](Ef ), (9)
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as supj{Ej+1 − Ej} → 0. Here we have defined the spectral density ρ(E) in the
discrete case such that

Degeneracy(Ef ) = ρ(Ef )(Ef+1 − Ef ).

We thus get

Γi→{f} =
dPi→{f}(t)

dt
=

∫
dEf ρ(Ef )

dPi→f (t)

dt
(10)

for the transition rate to any “state” in the continuum. Next we use our result (2) -
(5) for Pi→f (t) and assume that the contributions (3), (4) vanish after the evaluation
of the integral in (10) for large t (fast oscillations which average to zero):

Γi→{f} =
4

~2

∫
R
dEf ρ(Ef )

[ |Vfi|2

(ωfi + ω)2
2 sin

(
ωfi + ω

2
t

)
cos

(
ωfi + ω

2
t

)
ωfi + ω

2

+
|V †fi|2

(ωfi − ω)2
2 sin

(
ωfi − ω

2
t

)
cos

(
ωfi − ω

2
t

)
ωfi − ω

2

]
(11)

=
2

~2

∫
R
dEf ρ(Ef )

[
|Vfi|2

sin ((ωfi + ω)t)

ωfi + ω
+ |V †fi|

2 sin ((ωfi − ω)t)

ωfi − ω

]
(12)

=
2

~2

∫
R
dEf ρ(Ef )

[
|Vfi|2

sin
(
Ef−Ei+ω~

~ t
)

ωfi + ω
+ |V †fi|

2
sin
(
Ef−Ei−ω~

~ t
)

ωfi − ω

]
. (13)

Next we average the matrix elements over the continuous spectrum and put the
resulting scalar (notation: 〈|Vfi|2〉, 〈|V †fi|2〉) in front of the integral. This leads to
an approximation of the exact result. The substitutions

Ef 7→ u :=
Ef − Ei + ω~

~
, Ef 7→ v :=

Ef − Ei − ω~
~

in the first respectively second term and the application of the formula

lim
x→∞

sin[x(ω − ω0)]

ω − ω0

= πδ(ω − ω0) (14)

from exercise 5.3 give the result:

lim
t→∞

Γi→{f} =
2〈|Vfi|2〉

~
πδ0
(
ρ(~u+ Ei − ω~)

)
+

2〈|V †fi|2〉
~

πδ0
(
ρ(~u+ Ei + ω~)

)
(15)

=
2π

~

(
〈|Vfi|2〉ρ(Ei − ω~) + 〈|V †fi|

2〉ρ(Ei + ω~)
)
, (16)

or written in terms of this distribution this reads

lim
t→∞

Γi→{f}(ρ) =
2π

~

(
〈|Vfi|2〉 δEi−ω~(ρ) + 〈|V †fi|

2〉 δEi+ω~(ρ)
)

(17)

for ρ ∈ S(R).

b) You start with the equality

Pi→f = lim
t0→−∞

1

~2

∣∣∣∣∫ t

t0

dt′ e
i
~ (Ef−Ei)(t′−t0)〈ψf , V (t′)ψi〉

∣∣∣∣2 . (18)
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Afterwards the calculation is absolutely similar to the calculation in 5.3.a). In the
end you get

Γi→{f} =
2π

~

(
〈|Vfi|2〉ρ(Ei − ω~− ~δ) + 〈|V †fi|

2〉ρ(Ei + ω~− ~δ)
)

(19)

or written in terms of this distribution this reads

lim
t→∞

Γi→{f}(ρ) =
2π

~

(
〈|Vfi|2〉 δEi−ω~−~δ(ρ) + 〈|V †fi|

2〉 δEi+ω~−~δ(ρ)
)
. (20)

Note that the slow turn on of the potential has led to a shift −~δ.

Exercise 5.2 Sudden Constant Perturbation

a) We want to prove that the density of states ρ(Ef ) is normalized, i.e.∫ ∞
−∞

ρ(Ef ) dEf = 1 , (21)

ρ(Ef ) =
1

π

1

1 + E2
f

. (22)

The integrand corresponds (up to a factor of π−1) to the derivative of the arcus
tangent, and thus we can write∫ ∞

−∞
ρ(Ef ) dEf =

1

π

∫ ∞
−∞

d

dEf

(
arctan(Ef )

)
dEf (23)

=
1

π
lim
x→∞

[
arctanx− arctan−x

]
(24)

=
1

π

[π
2
−
(
−π

2

)]
= 1 (25)

b) Here we are interested in the transition of a system set up in a certain normalized
state |i〉 into a continuum of states |f〉. Note that in the case of a continuum, a
single state |f〉 is not a physical state due to its non-normalizability. If we consider
a physical situation, we must always integrate over a set of states weighted by a
probability distribution. This is well known for the case of physical wave-packets
constructed from unphysical plane waves.

In this exercise, we consider the transition into the entire continuum of state. In
order to get the transition probability (or transition rate) we have to “sum” the
probability (or rate) of transition into the individual states of the continuum.

According to the formalism of time-dependent perturbation theory, we know that
the (differential) probability δP for the transition from the state |i〉 into the state
|f〉 is given by

δPi→f =
1

~2
|Vfi|2

sin2 (ωfit/2)

(ωfi/2)2
. (26)

Here we have already used the information that we consider a potential of the form
V (t) = VΘ(t).

To get a physical probability we must integrate the differential probability over the
set of final states {f} we are interested in. Usually it is convenient to label the states
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by their energy and weight the integrand with the “states per energy”, the so-called
density of states ρ(Ef ). The integration is then taken over the energy interval D
where the states of interest are located,

Pi→{f} =

∫
D

dEf ρ(Ef ) δPi→f . (27)

Here we take {f} to be the entire continuum and find

Pi→{f} =
|λ|2

π

∫ ∞
−∞

dEf
1

1 + E2
f

sin2
(
(Ef − 1) t / 2~

)
(Ef − 1)2/4

, (28)

where we have used the informaltion that |Vfi|2 is given by |λ|2.
We could now perform the (complicated) integration directly, but it turns out that it
is convenient to first perform a time derivative to obtain the transition rate Γi→{f},
defined by

Γi→{f} =
dPi→{f}

dt
. (29)

After calculating the rate, we can get back to the probability by simple time inte-
gration. We find that the transition rate is defined by the following expression,

Γi→{f} =
|λ|2

π

∫ ∞
−∞

dEf
1

1 + E2
f

d

dt

sin2
(
(Ef − 1) t / 2~

)
(Ef − 1)2/4

(30)

=
2 |λ|2

π~

∫ ∞
−∞

dEf
1

1 + E2
f

sin
(
(Ef − 1) t / ~

)
Ef − 1

(31)

Now the integral that has to be solved is slightly less complicated but more impor-
tant, it can be compared with the integral which has to be solved in Exercise 5.3.
We will evaluate the integral with the residue theorem which is very useful when
the integration contour can be closed by a contour where the integrand identically
vanishes. For this we rewrite the sin as sum of exponential functions, which expo-
nentially decay on a large half circle in either the upper or the lower complex half
plane.

Γi→{f} =
|λ|2

iπ~

∫ ∞
−∞

dEf
1

1 + E2
f

ei(Ef−1)t/~ − e−i(Ef−1)t/~

Ef − 1
(32)

One cannot separate the integration into two different integrals without paying
attention to the fact that the original sin removes the singular behavior of the
(Ef − 1)−1 at Ef ≈ 1. Because the integrand in (31) is completely analytic on the
entire real axis we are free to deform the integration contour continuously. Hence,
we choose to take a contour that runs on a small half circle in the upper complex
plane around Ef = 1. Note that Ef = 1 the integrand (31) is regular and does not
have a pole and thus we could have also chosen a half circle in the lower complex
plane! Technically, this procedure can be conveniently performed by introducing an
infinitesimal imaginary part in the denominator of (Ef − 1)−1,

1

Ef − 1
→ 1

Ef − 1 + iε
. (33)
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In summary, we can express the transition rate from state |i〉 into the whole contin-
uum of states |f〉 as

Γi→{f} = lim
ε→0+

|λ|2

iπ~

∫ ∞
−∞

dEf
1

1 + E2
f

ei(Ef−1)t/~ − e−i(Ef−1)t/~

Ef − 1 + iε
. (34)

Now we can split up the integration into two parts that can be evaluated indepen-
dently, because the integrations are independently well defined

Γi→{f} = lim
ε→0+

|λ|2

iπ~

{ ∫ ∞
−∞

dEf
1

1 + E2
f

ei(Ef−1)t/~

Ef − 1 + iε

−
∫ ∞
−∞

dEf
1

1 + E2
f

e−i(Ef−1)t/~

Ef − 1 + iε

}
. (35)

Note that the limit cannot be performed independently for the two terms.

Now the independent integrals can be computed by the residue theorem. For the
first (second) integral we close the integration contour in the upper (lower) complex
plane on a large circle of radius that tends to infinity and thus gives no contribution
due to exponential suppression. The integrals can then be identified with the residue
of the poles inside the integration contour. Hence, we find

Γi→{f} = lim
ε→0+

2 |λ|2

~

{
ResEf=i

(
1

1 + E2
f

ei(Ef−1)t/~

Ef − 1 + iε

)

+ ResEf=−i

(
1

1 + E2
f

e−i(Ef−1)t/~

Ef − 1 + iε

)

+ ResEf=1−iε

(
1

1 + E2
f

e−i(Ef−1)t/~

Ef − 1 + iε

)}
. (36)

The first residue comes from the pole at Ef = i of the density of states enclosed by
the first integration contour. The second residue comes from the opposite pole of
ρ(Ef ) at Ef = −i in the lower complex plane while the last residue has its origin in
the pole that we uncover by splitting the original integral into two parts and shifting
this pole infinitesimally away from the real axis into the lower complex plane. Note
that the two residue from the integration contour in the lower complex plane acquire
a sign due to the clockwise direction of the integration contour. After computing
the residue we find

Γi→{f} = lim
ε→0+

2 |λ|2

~

{(
e−

t
~−

it
~

2(−1− i− ε)

)
+

(
e−

t
~ + it

~

2(−1 + i+ ε)

)
+

(
e−

εt
~

2− 2iε− ε2

)}
.

(37)

From this expression one can confirm that the result is as it should be real. The first
two terms are complex conjugates and the imaginary parts of the last term vanish
after taking the limit of ε→ 0, which gives

Γi→{f} =
|λ|2

~

(
1

2
+
i

2

)(
ie−

(1+i)t
h − e−

(1−i)t
h + (1− i)

)
=
|λ|2

~
(
1− e−t/~ (cos(t/~)− sin(t/~))

)
(38)
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Interestingly, we find a transition rate that is time-dependent, but the time depen-
dence also decays exponentially in time. Neglecting this exponentially suppressed
term, the probability Pi−{f} is then found by (then trivial) time integration, which
corresponds to a multiplication with the time t.

c) In the situation we consider in this exercise Fermi’s Golden Rule (FGR) can be
applied for the limit of large times1. Note that in order to deal with “large times”
we technically perform the limit t → ∞. Nevertheless, it should be kept in mind
that perturbation theory, and in deed Fermi’s Golden Rule conceptually corresponds
to first order perturbation theory, breaks down for very large times. Here we do not
want to give quantitate boundaries t for which FGR holds.

According to FGR, we get the rate for a transition from a state |i〉 into the entire
continuum of states |f〉 as

ΓFGR
i→{f} =

2π

~

∫ ∞
−∞

dEfρ(Ef )|λ|2δ(Ef − 1) =
2π

~
|λ|2ρ(1) =

|λ|2

~
. (39)

In order to compare this result to our calculation of part (b), we take the limit
t→∞ of Eq. (38), we arrive at the asymptotic expression for the transition rate,

lim
t→∞

Γi→{f} =
|λ|2

~
, (40)

which can be identified with the result of Fermi’s Golden Rule, Eq. (39).

As mentioned already in the end of part (b) of this exercise, the time dependence
is only given by an exponentially suppressed (in time) term. In the limit of large
times, this terms drops out very quickly and the results ΓFGR

i→{f} and (38) coincide.
This result is also consistent with the fact that we do not really want to consider
the limiting case of t =∞ but rather “intermediate large” times.

Exercise 5.3 The Delta Function

We want to show that in the sense of distributions the following equality holds

lim
x→∞

sin[(ω − ω0)x]

ω − ω0

= πδ(ω − ω0). (41)

In other words, we need to make sure that

lim
x→∞

∫ ∞
−∞

dω ρ(ω)
sin[(ω − ω0)x]

ω − ω0

= πρ(ω0), (42)

for any test-function ρ ∈ S(R), the Schwartz space over R. The elements of S(R) are
bounded on R and in particular, they don’t have a pole. Hence, the integrand on the left
hand side of Eq. (42) is analytic on the real axis. Note that sinx/x → 1 for x → 0 (i.e.,

1It is a topic of recent research under exactly which conditions FGR can be actually applied. The
problem is that in the mathematical derivation these conditions are much more restrictive than in real
life. Fermi’s Golden Rule is called “Golden Rule” because it is one of the most important relations in an
extremely wide range of experimental physics.
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x = 0 is a removable singularity).
We may thus write∫ ∞

−∞
dω ρ(ω)

sin[(ω − ω0)x]

ω − ω0

=

∫ ∞
−∞

dω ρ(ω) lim
ε→0+

sin[(ω − ω0)x]

ω − ω0 + iε

= lim
ε→0+

∫ ∞
−∞

dω ρ(ω)
sin[(ω − ω0)x]

ω − ω0 + iε

= lim
ε→0+

{
1

2i

∫ ∞
−∞

dω ρ(ω)
ei(ω−ω0)x

ω − ω0 + iε

− 1

2i

∫ ∞
−∞

dω ρ(ω)
e−i(ω−ω0)x

ω − ω0 + iε

}
. (43)

For the evaluation of these two integrals we make use of the residue theorem (and implicitly
assume that the test-function ρ possesses an analytic continuation on the whole complex
plane). With x > 0 (which surely holds in the limit x→∞), we close the contour with a
semicircle of radius R in the positive (negative) complex half-plane for the first (second)
integral and let R tend to ∞. We find∫ ∞
−∞

dω ρ(ω)
sin[(ω − ω0)x]

ω − ω0

=π lim
ε→0+

{∑
k

Resak

[
ρ(ω)

ei(ω−ω0)x

ω − ω0 + iε

]
+
∑
k

Resbk

[
ρ(ω)

e−i(ω−ω0)x

ω − ω0 + iε

]
+ Resω0−iε

[
ρ(ω)

e−i(ω−ω0)x

ω − ω0 + iε

]}

=π

{∑
k

Resak

[
ρ(ω)

ei(ω−ω0)x

ω − ω0

]
(44)

+
∑
k

Resbk

[
ρ(ω)

e−i(ω−ω0)x

ω − ω0

]
+ Resω0

[
ρ(ω)

e−i(ω−ω0)x

ω − ω0

]}
,

where the sets {ak} and {bk} denote the poles of the function ρ in the upper and lower
half-plane. In the limit x→∞, the residues of these poles vanish due to the exponential
suppression ei(ak−ω0)x ∝ e−Imakx and e−i(bk−ω0)x ∝ eImbkx, respectively. Note that Imak > 0
and Imbk < 0 for all k. Hence, only the residue at ω0 contributes. With

Resω0

[
ρ(ω)

e−i(ω−ω0)x

ω − ω0

]
= ρ(ω0), (45)

we arrive at

lim
x→∞

∫ ∞
−∞

dω ρ(ω)
sin[(ω − ω0)x]

ω − ω0

= πρ(ω0). (46)
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