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Exercise 8.1 Charge Density and Current Density Operators

a) (i) We simply express the expectation value 〈 ρ̂(r) 〉ψ as an integration over the
entire coordinate space by using the special form of the unity operator,

II =

∫
dr′ | r′ 〉 〈 r′| , (1)

as well as the definition

〈 r |ψ 〉 ≡ ψ(r) . (2)

Then with ρ̂(r) ≡ δ(r− r̂) we have

〈 ρ̂(r) 〉ψ ≡〈ψ | ρ̂(r) |ψ 〉

=

∫
dr′ 〈ψ | r′ 〉 〈 r′ | δ(r− r̂) |ψ 〉

=

∫
dr′ δ(r− r′) 〈ψ | r′ 〉 〈 r′ |ψ 〉 = |ψ(r)|2 . (3)

(ii) One can do the same for 〈 ĵ(r) 〉ψ,

〈 ĵ(r) 〉ψ =
1

2m

∫
dr′
(
〈ψ | p̂ | r′ 〉 〈 r′ | δ(r− r̂) |ψ 〉

+ 〈ψ | δ(r− r̂) | r′ 〉 〈 r′ | p̂ |ψ 〉
)

=
1

2m

(
i~
[
∇ψ(r)

]
ψ(r)− i~ψ(r)

[
∇ψ(r)

])
. (4)

b) In the Heisenberg-picture, and arbitrary operator ÔH is given by

ÔH(r, t) = Û †(t) Ô(r) Û(t) , (5)

where Û(t) is the unitary time evolution operator corresponding to the Hamiltonian
Ĥ(t). We know that Heisenberg-picture operators follow the Heisenberg equation
of motion,

i~
d

dt
ÔH(t) = [ÔH(t), ĤH(t)] + i~

(
d

dt
ÔS(t)

)
H

. (6)

The potential term V (r̂, t) of the Hamiltonian commutes with the density and thus
drops out of the commutator.

Thus, we can write

∂

∂t
ρ̂H(r, t) = Û(t)†

i

~
[Ĥ(t), δ(r− r̂)] Û(t)

= Û(t)†
i

2~m

{[
p̂− e

c
A(r̂), δ(r− r̂)

]
·
(
p̂− e

c
A(r̂)

)
+
(
p̂− e

c
A(r̂)

)
·
[
p̂− e

c
A(r̂), δ(r− r̂)

]}
Û(t)
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Now we have to evaluate the commutator[
p̂− e

c
A(r̂), δ(r− r̂)

]
. (7)

First note that the eA(r̂)/c term drops out because it does only depend on r̂ which
commutes with ρ(r̂). The remaining commutator can be evaluated within coordinate
space representation of the operators p̂ and r̂.

[ p̂ , δ(r− r̂) ] ∼
[

~
i
∇x , δ(r− x)

]
=
(~
i

[
∇x δ(r− x)

]
+

~
i
δ(r− x)∇x

)
− ~
i
δ(r− x)∇x

=
~
i

[
∇x δ(r− x)

]
= −~

i

[
∇r δ(r− x)

]
∼ −~

i

[
∇r δ(r− r̂)

]
(8)

Note that the gradient only acts on the delta distribution and not on anything else,
indicated by the rectangular brackets. Thus, we find

∂

∂t
ρ̂H(r, t) = −Û(t)†

1

2m

{[
∇r δ(r− r̂)

]
·
(
p̂− e

c
A(r̂)

)
+
(
p̂− e

c
A(r̂)

)
·
[
∇r δ(r− r̂)

]}
Û(t)

= −Û(t)†
1

2m

{[
∇r δ(r− r̂)

]
· p̂ + p̂ ·

[
∇r δ(r− r̂)

]}
Û(t)

+ Û(t)†
e

mc
A(r̂) ·

[
∇r δ(r− r̂)

]
Û(t)

= −Û(t)†∇r j(r) Û(t)

+ Û(t)†
e

mc
A(r̂) ·

[
∇r δ(r− r̂)

]
Û(t) , (9)

where we have used the definition of the current operator, Eq. (5) and (6) on the
exercise sheet.

Here we have to be very careful how to interpret the last term. In the end we
want to relate this expression to the divergence of Ĵ(r). By comparing (9) with the
definition of the current operator, we note that we have to transform A(r̂) into A(r)
which can be done by using the intriguing identity of the delta function1:

f(r′) ∇rδ(r− r′) = f(r)
(
∇rδ(r− r′)

)
+ δ(r− r′)

(
∇rf(r)

)
(11)

1This can be shown by using an arbitrary Schwartz-space function φ(r)∫
dr
{
f(r′) ∇rδ(r− r′)

}
φ(r) = −

∫
dr
{
f(r′) δ(r− r′)

}
∇rφ(r)

= −
∫

dr
{
f(r) δ(r− r′)

}
∇rφ(r)

= +
∫

dr
{
f(r)

(
∇rδ(r− r′)

)
+ δ(r− r′)

(
∇rf(r)

)}
φ(r) . (10)

The argument is valid for any test function φ and, hence, the terms in curly brackets are equal. Note
that we have used a scaler function f(r′) for simplicity. The argument naturally generalizes for vectors
f(r′) by applying for every term of the scalar product f(r′) ·∇rδ(r− r′) individually.
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With this we can continue to evaluate the second term in (9):

Û(t)†
e

mc
A(r̂) ·∇r δ(r− r̂) Û(t) = Û(t)†

{ e

mc
A(r) ·∇r δ(r− r̂)

+
e

mc
δ(r− r̂)∇r ·A(r)

}
Û(t)

= Û(t)†∇r ·
( e

mc
A(r) δ(r− r̂)

)
Û(t)

= −Û(t)†∇r ·
(
− e

mc
A(r) δ(r− r̂)

)
Û(t) (12)

Using Eqs. (9) and (12) we have found

∂

∂t
ρ̂H(r, t) = −Û(t)†∇r ·

{
j(r)−

(
− e

mc
A(r) δ(r− r̂)

)}
Û(t)

= −∇r · ĴH(r, t) (13)

In the last calculation, the operators have to be interpreted as operator-valued
distributions.

From this result it follows that for a charged particle, Ĵ(r) and not ĵ(r) corresponds
to the current operator of the system. The same result can be found if one introduces
the coupling to the vector potential A(r) in terms of “minimal substitution” (the
replacement p̂ → p̂ − eA(r̂)/c) in the definition of the current density operator of
the chargeless particle in part (a).

c) With some simple algebra, we can relate off-diagonal matrix elements of some op-
erator Ô to its diagonal matrix elements in some other basis,

4〈ψ | Ô |φ 〉 = 〈ψ + φ | Ô |ψ + φ 〉 − 〈ψ − φ | Ô |ψ − φ 〉
− i〈ψ + iφ | Ô |ψ + iφ 〉+ i〈ψ − iφ | Ô |ψ − iφ 〉 . (14)

In consequence, it is sufficient to study diagonal matrix elements.

It is now convenient to use the relations derived in part (a) of this exercise.

We first compute expectation value of the paramagnetic part (∝ ĵ ) of the total
current operator Ĵ(r) = ĵ(r) − A(r)ρ̂(r) e/mc. After a gauge transformation, we
find

〈 eieχ(r)/~cψ | ĵ(r) | eieχ(r)/~cψ 〉

=
~

2mi

[
e−ieχ(r)/~cψ(r)∇

(
eieχ(r)/~cψ(r)

)
− e−ieχ(r)/~cψ(r)∇

(
e−ieχ(r)/~cψ(r)

)]
=

~
2mi

[
ψ(r)∇ψ(r)− ψ(r)∇ψ(r)

]
+

~
2mi

2ie

~c
|ψ(r)|2∇χ(r)

= 〈ψ | ĵ(r) |ψ 〉+ |ψ(r)|2 e

mc
∇χ(r) . (15)

For the second (diamagnetic) term (∝ A(r)ρ̂(r) ), we find after a gauge transfor-
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mation

〈 eieχ(r)/~cψ |
(
A(r) + [∇χ(r)]

)
ρ̂(r)

e

mc
| eieχ(r)/~cψ 〉

=
e

mc

(
A(r) + [∇χ(r)]

)
〈 eieχ(r)/~cψ | ρ̂ | eieχ(r)/~cψ 〉

=
e

mc

(
A(r) + [∇χ(r)]

)
〈ψ | ρ̂ |ψ 〉

=
e

mc
A(r)|ψ(r)|2 +

e

mc
[∇χ(r)] |ψ(r)|2 . (16)

Now if we subtract (16) from (15), we obtain the matrix elements of the charge-
current density operator and we find that the additional terms in (16) and (15)
induced by the gauge transformation drop out. Hence, the matrix elements of the
current operator remain invariant with respect to gauge transformations.

In contrast to classical electrodynamics, where the physics remains invariant under
a gauge transformation of the vector potential, in quantum mechanics the wave
function must acquire a phase (in addition to the shift of the vector potential) in
order to render the physics gauge invariant. Usually, the phase of the wave function,
remains a feature that cannot be observed and one could neglect the difference
between gauge transformations in quantum mechanics and classical physics. An
exciting case where this difference plays a crucial role is given by the Aharonov-
Bohm effect (discussed in QM-I). Here, gauging away the vector potential does not
only leave us with an overall phase of the wave function but, due to the special
geometry, with a phase difference that indeed is observable.

Exercise 8.2 Quantum Dot Coupled to an Electromagnetic Field

a) The position and momentum operator are expressed in terms of the creation and
annihilation operators of the three harmonic oscillators as follows:

r̂ =

√
~

2ωdm

(
âx + â†x , ây + â†y , âz + â†z

)
, (17)

p̂ =− i
√

~ωdm
2

(
âx − â†x , ây − â†y , âz − â†z

)
. (18)

(i) We will first consider the case of a linearly polarized electromagnetic field
e = ex = (1, 0, 0). For this case we find (note that [p̂i, r̂j] = 0 if i 6= j)

ĵ(−k) · e =
1

2

[ p̂x
m
eikr̂z + eikr̂z

p̂x
m

]
= eikr̂z

p̂x
m

= eikr0(â†z+âz) p0

m
(âx − â†x)

= eikr0â
†
z eikr0âz e−

(kr0)2

2
p0

m
(âx − â†x) (19)

where we have defined r0 =
√

~
2ωdm

and p0 = −i
√

~ωdm
2

.

We will now begin to evaluate the matrix elements

〈n | ĵ(−k) · e |0 〉 = 〈nx, ny, nz | ĵ(−k) · e | 0, 0, 0 〉 (20)
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From the definition of the creation and annihilation operators of the three
harmonic oscillators, we immediately find

(âx − â†x) | 0, 0, 0 〉 = −| 1, 0, 0 〉 , (21)

eikr0âz | 1, 0, 0 〉 = | 1, 0, 0 〉 . (22)

Hence, we have to evaluate the matrix elements

〈nx, ny, nz| eikr0â
†
z | 1, 0, 0 〉 = 〈nx, ny, nz|

∞∑
n=0

(ikr0)
n

n!
(â†z)

n | 1, 0, 0 〉 (23)

= 〈nx, ny, nz|
(ikr0)

nz

√
nz!
| 1, 0, nz 〉 (24)

With this expression, the final result reads

〈n| ĵ(−k) · e |0 〉 =

{
− (ikr0)nz
√
nz !

e−
(kr0)2

2
p0
m

if 〈nx, ny, nz| = 〈 1, 0, nz|
0 else

(ii) For polarization in y direction, e = eY, we get the same result by simply
exchanging nx ↔ ny.

(iii) In the case of circular polarization, we use the fact that e± = (eX ± ieY)/
√

2.
With the results of (i) and (ii) we get

〈n| ĵ(−k) · e |0 〉 =


− 1√

2

(ikr0)nz
√
nz !

e−
(kr0)2

2
p0
m

if 〈nx, ny, nz| = 〈 1, 0, nz|

− ±i√
2

(ikr0)nz
√
nz !

e−
(kr0)2

2
p0
m

if 〈nx, ny, nz| = 〈 0, 1, nz|
0 else

b) The total absorption rate is defined as the sum over the partial absorption rates for
the individual transitions |0 〉 to |n 〉,

Γ(ω) =
∑

nx,ny ,nz

Γ0→(nx,ny ,nz) (25)

=
∑

nx,ny ,nz

2π

~
δ(En − E0 − ~ω)

e2

L3c2
|A|2

∣∣∣〈nx, ny, nz| ĵ(−k) · e | 0, 0, 0 〉
∣∣∣2 .

At first we note that due to the sum over all |n 〉 the total absorption rate Γ(ω) is
the same for all three different types of polarization. It is therefore convenient to
consider e = eX, linear polarization in x-direction. This lets us evaluate the sum
over nx and ny extremely simple by setting nx = 1 and ny = 0.

Γ(ω) =
∑
nz

2π

~
δ
(
~ωd
(
nz + 1− ω

ωd

)) e2

L3c2
|A|2

(
(kr0)

2nz

nz!
e−(kr0)2 |p0|2

m

)
(26)

=
e2π

L3c2m~
|A|2

∑
nz

δ
(
nz + 1− ω

ωd

)( ω2

ωdωm

) ω
ωd
−1

Γ
[ ω
ωd

]−1

e
− ω2

ωdωm (27)

where we have used k = ω
c
, ωm = 2c2m

~ and n! = Γ[n+ 1].
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