
Quantum Mechanics II
Solution Sheet 4

FS 09
Prof. C. Anastasiou

Exercise 4.1 Formalism of time-dependent perturbation theory

a) Using the definition of the time-ordering in the integral we find
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where Θ(. . . ) is a generalized step-function which is 1 if the argument is true and 0
otherwise.
The integrand in the above equation contains n! terms (= number of ways to order
n times) and applying an appropriate transformation of coordinates one sees that
they’re all the same. Therefore, we can pick the first one and find
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This proves the first equality.

b) To show that
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really solves the Schrödinger equation, we need to use the definition of the time-
ordered exponential:
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On this expression, we can now easily apply a time derivation,
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Taking H(t) out of the brackets, we end up with the Schrödinger equation,

i!∂t|Ψ, t〉 = H(t)|Ψ, t〉. (5)
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c) For a closed system, the Hamiltonian is time-independent, ∂tH = 0. Therefore, we
can drop the time-ordering in eq. 2. The integrals are thus trivial and we find
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Exercise 4.2 Hydrogen atom in an electric field

The perturbing Hamiltonian is δH(t) = −eE0e−t/τ ẑΘ(t) with Θ(t) the Heaviside step-
function.

a) As we already saw for the Stark effect, δH(t) commutes with the angular momentum
operator Lz and thus only transitions between states with the same angular momen-
tum are allowed. Since we are starting from the ground state, |n = 1, l = 0, m = 0〉,
this means only transitions between the m = 0 states can occur. In addition, δH
changes the parity and therefore, only states with l odd are allowed.
Note: We will see later (using the so-called ’Wigner-Eckart-Theorem’) that actually
only transitions are allowed that change l by 1, i.e. l #→ l ± 1.

b) For the n = 2 state, this means that we can only find a transition to the state
|n = 2, l = 1, m = 0〉. The first-order expression for the probability of this transition
is
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For the matrix element we find
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where a0 is the Bohr radius.
Inserting this into the expression for the probability and performing the integration,
we obtain
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For times t ( τ , the probability that a transition has happened is
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