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Exercise 12.1 Many-Body Perturbation Theory

a) We first consider the case N = 1:

Ĥ0,F |p 〉 = Ĥ0,F b̂
†(p, t) | 0 〉

=

∫
d3k

~2 |k|2

2m
b̂†(k, t) b̂(k, t) b̂†(p, t) | 0 〉

)
=±

∫
d3k

~2 |k|2

2m
b̂†(k, t) b̂†(p, t) b̂(k, t) | 0 〉︸ ︷︷ ︸

=0

+

∫
d3k

~2 |k|2

2m
b̂†(k, t) δ(3)(p− k) | 0 〉

=
~2 |p|2

2m
b̂†(p, t) | 0 〉

=
~2 |p|2

2m
|p 〉 (1)

Next, we assume the statement to be valid for the case of N−1 particles and consider
the step from N−1 to N , where we denote the N−1 particle state |p2,p3, . . . ,pN 〉
by |N− 1 〉:

Ĥ0,F |p,p2, . . . ,pN 〉 = Ĥ0,F b̂
†(p, t) |N− 1 〉

=

∫
d3k

~2 |k|2

2m
b̂†(k, t) b̂(k, t) b̂†(p, t) |N− 1 〉

=±
∫

d3k
~2 |k|2

2m
b̂†(k, t) b̂†(p, t) b̂(k, t) |N− 1 〉

+

∫
d3k

~2 |k|2

2m
b̂†(k, t) δ(3)(p− k) |N− 1 〉

= b̂†(p, t)

∫
d3k

~2 |k|2

2m
b̂†(k, t) b̂(k, t) |N− 1 〉

+
~2 |p|2

2m
b̂†(p, t) |N− 1 〉

= b̂†(p, t) Ĥ0,F |N− 1 〉

+
~2 |p|2

2m
b̂†(p, t) |N− 1 〉 (2)

Now we can use the induction hypothesis,

Ĥ0,F |N− 1 〉 =
N∑

i=2

~2 |pi|2

2m
|N− 1 〉 , (3)
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which then leads to

Ĥ0,F |p,p2, . . . ,pN 〉 = b̂†(p, t)
N∑

i=2

~2 |pi|2

2m
|N− 1 〉

+
~2 |p|2

2m
b̂†(p, t) |N− 1 〉

=

(
~2 |p|2

2m
+

N∑
i=2

~2 |pi|2

2m

)
b̂†(p, t)|N− 1 〉

=

(
~2 |p|2

2m
+

N∑
i=2

~2 |pi|2

2m

)
|p,p2, . . . ,pN 〉 (4)

Note that in this exercise we explicitly denote operators by a “hat”. The momenta
p, p2, etc. are numbers and thus commute with b̂(p, t) and b̂†(p, t).

b) (i)

〈p |k 〉 = 〈 0 |b̂(p, t)b̂†(k, t)| 0 〉
= 〈 0 |δ(3)(k− p)± b̂†(k, t)b̂(p, t)| 0 〉 = δ(3)(k− p)

(ii)

〈k1,k2 |p1,p2 〉 = 〈 0 |b̂(k2, t)b̂(k1, t)b̂
†(p1, t)b̂

†(p2, t)| 0 〉

= 〈 0 |b̂(k2, t)
(
δ(3)(p1 − k1)± b̂†(p1, t)b̂(k1, t)

)
b̂†(p2, t)| 0 〉

= δ(3)(p2 − k2)δ
(3)(p1 − k1)

±δ(3)(p2 − k1)〈 0 |b̂(k2, t)b̂
†(p1, t)| 0 〉

= δ(3)(p2 − k2)δ
(3)(p1 − k1)± δ(3)(p2 − k1)δ

(3)(p1 − k2)

where the plus (minus) signs corresponds to bosons (fermions).

(iii) The interaction term V̂F has two destruction operators to the right and thus,
applying it to a one particle state such as |p 〉 necessarily destroys the state.
This makes sense since it describes the interaction between two particles and
can not describe the interaction of a particle with itself.

(iv) We first examine that the effect of two destruction operators on the state
|p1,p2 〉 is basically described in (ii) and yields

b̂(k2 − q)b̂(k1 + q)b̂†(p1)b̂
†(p2)| 0 〉

=
(
δ(3)(k1 + q− p1)δ

(3)(k2 − q− p2)± δ(3)(k1 + q− p2)δ
(3)(k2 − q− p1)

)
| 0 〉

Integration over d3k1 and d3k2 then yields∫
d3q

(2π)3/2
Ṽ (q)

(
b̂†(p1 − q)b̂†(p2 + q)± b̂†(p1 + q)b̂†(p2 − q)

)
| 0 〉

=

∫
d3q

(2π)3/2
Ṽ (q)

(
|p1 − q,p2 + q 〉 ± |p1 + q,p2 − q 〉

)
.

Again, the plus (minus) sign corresponds to bosons (fermions).
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Exercise 12.2 Transition Amplitudes

We start by writing the three particle to three particle transition amplitude in terms of
the operators b̂ and b̂†. We shorten notation by introducing the abbreviations b̂p ≡ b̂(p, t).

〈k1,k2,k3 |
1

2
V̂F |p1,p2,p3 〉

=

∫
d3l1 d3l2 d3q(√

2π
)3 Ṽ (q)

(
〈 0 | b̂k3 b̂k2 b̂k1

)
b̂†l1 b̂

†
l2
b̂l2−q b̂l1+q

(
b̂†p1

b̂†p2
b̂†p3
| 0 〉
)

(5)

The strategy is to use the commutation relations of the operators b̂ and b̂† in order to
move the annihilation operators to the right and the creation operators to the left. By
use of the relation

b̂p b̂
†
p′ = δ(3)(p− p′)± b̂†p′ b̂p , (6)

every change of the order of an annihilation operator with a creation operator thus gives
rise (apart from a minus sign for fermions) to an additional term where the two operators
have annihilated themselves leading to a δ-funtion. In the end we want to use this pro-
cedure to eliminate all the operators leaving only terms where an annihilation operator
is acting on the vacuum state | 0 〉. We will demonstrate one such step on the vacuum
expectiation value by changing the order of the two operators b̂l1+q and b̂†p1

in Eq. (5)

〈 0 | b̂k3 b̂k2 b̂k1 b̂
†
l1
b̂†l2 b̂l2−q b̂l1+q b̂

†
p1
b̂†p2

b̂†p3
| 0 〉

= 〈 0 | b̂k3 b̂k2 b̂k1 b̂
†
l1
b̂†l2 b̂l2−q b̂

†
p2
b̂†p3
| 0 〉 δ(3)(l1 + q− p1)

±〈 0 | b̂k3 b̂k2 b̂k1 b̂
†
l1
b̂†l2 b̂l2−q b̂

†
p1
b̂l2−q b̂

†
p2
b̂†p3
| 0 〉 (7)

Keeping only the δ-function, we say that we have “contracted” the operators b̂l1+q and

b̂†p1
and denote this by a bracket connecting the two operators,

〈 0 | b̂k3 b̂k2 b̂k1 b̂
†
l1
b̂†l2 b̂l2−q b̂l1+q b̂

†
p1
b̂†p2

b̂†p3
| 0 〉 = 〈 0 | b̂k3 b̂k2 b̂k1 b̂

†
l1
b̂†l2 b̂l2−q b̂

†
p2
b̂†p3
| 0 〉 δ(3)(l1+q−p1).

(8)
Since commutating a destruction operator to the right such that it destroys the vacuum
state leads to 0, the total vacuum expectation value is given by all possible contractions
of destruction operators with a creation operator to their right, e.g. terms of the form,

〈 0 | b̂k3 b̂k2 b̂k1 b̂
†
l1
b̂†l2 b̂l2−q b̂l1+q b̂

†
p1
b̂†p2

b̂†p3
| 0 〉

= δ(l1 + q− p1) δ(l2 − q− p2) δ(l1 − k1) δ(l2 − k2) δ(k3 − p3). (9)

The expectation value in (7) is then simply a sum over terms of this form that can now be
obtained by simply permuting the three creation operators belonging to the ket-state and
the three destruction operators of the bra-state independently, giving rise to 36 = 3!× 3!
terms in the sum. Since fermions pick up a minus sign for every commutation performed,
we additionally find a factor (−1)p1(−1)p2 for every term with p1, p2 ∈ S3, permutations
of three elements.
After performing the integrations, the final result can thus be written in a compact form
as∑
p1,p2∈S3

(∓1)p1(∓1)p2Ṽ (kp2(2) − pp1(2)) δ(kp2(1) + kp2(2) − pp1(2) − pp1(1)) δ(kp2(3) − pp1(3))(10)
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where the minus (plus) sign corresponds to fermions (bosons).
Obviously, this procedure is very cumbersome, especially if we now wanted to go on to
four-particle states. It is thus not surprising that better techniques to calculate these
kinds of expectation values were invented, cf. Feynman diagrams.
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