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Exercise 4.1 Formalism of time-dependent perturbation theory

a) Using the definition of the time-ordering in the integral we find
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where ©O(...) is a generalized step-function which is 1 if the argument is true and 0
otherwise.

The integrand in the above equation contains n! terms (= number of ways to order
n times) and applying an appropriate transformation of coordinates one sees that
they’re all the same. Therefore, we can pick the first one and find
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This proves the first equality.
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really solves the Schrédinger equation, we need to use the definition of the time-

ordered exponential:
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On this expression, we can now easily apply a time derivation,
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b) To show that

Taking H(t) out of the brackets, we end up with the Schrodinger equation,



c)

For a closed system, the Hamiltonian is time-independent, 9,H = 0. Therefore, we
can drop the time-ordering in eq. 2. The integrals are thus trivial and we find
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Exercise 4.2 Hydrogen atom in an electric field

The perturbing Hamiltonian is 6H (t) = —e&ye/720(t) with O(t) the Heaviside step-
function.

a)

As we already saw for the Stark effect, d H(t) commutes with the angular momentum
operator L, and thus only transitions between states with the same angular momen-
tum are allowed. Since we are starting from the ground state, |n = 1,1 = 0,m = 0),
this means only transitions between the m = 0 states can occur. In addition, 0 H
changes the parity and therefore, only states with [ odd are allowed.

Note: We will see later (using the so-called "Wigner-Eckart-Theorem’) that actually
only transitions are allowed that change [ by 1, i.e. [ +— [+ 1.

For the n = 2 state, this means that we can only find a transition to the state
|n = 2,1 =1,m = 0). The first-order expression for the probability of this transition
is
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For the matrix element we find
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where ag is the Bohr radius.

Inserting this into the expression for the probability and performing the integration,
we obtain
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For times ¢ > 7, the probability that a transition has happened is
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