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Exercise 11.1 About the one-particle interpretation of the Klein-Gordon
equation

a) Using the correspondence principle, the energy-momentum relation in relativistic classical
mechanics takes the form (—h202)¥ = (—c2h%V? + m2c*)¥ which can be written in the
covariant form (¢ =1 = h),

0,0" +m?|¥(z) =0, (1)

with o = (t,r), 0, = (04, V), and 0" = (0, —V). Note that this Klein-Gordon equation,
like the Schrodinger equation, is not an operator identity but a differential equation for
the wave function ¥(x).

Taking the classical relation ' = ic(pz—i—chQ)l/ 2 as a starting point for the corresponding
quantum theory would lead to the following differential equation

im0y (z) = \/—2h2V2 + m2ch U (z), (2)

which is not manifestly covariant; it does not treat the space and time coordinates in an
equivalent way. Note that the Schrédinger equation, accounting for nonrelativistic pheno-
mena, must only be invariant with respect to Galilei transformations where space and time
coordinates may enter differently. In addition, the expansion of the square root includes
derivatives V up to infinite order leading to non-locality and causality problems (for more
details see e.g. G. Baym Lectures on Quantum Mechanics).

The Klein-Gordon equation (2) has several unusual features. Unlike the nonrelativistic
Schrodinger equation, it is second order in time and thus twice as much informationdbout
the particle is needed in order to specify its state as nonrelativistically, i.e., both WU(#g,r)
and 0, ¥(tp,r) at some initial time ¢o. It turns out that this extra degree of freedom cor-
responds to specifying the charge (see below) of the particle; the Klein-Gordon equation
describes both a particle and its antiparticle in one fell swoop. Closely related to this is the
fact that Eq. (2) possesses free particle solutions o exp [i(p - r — Et)/h| with either sign of
the energy, E = +c(p? + m2c?)'/2.

With the substitutions £ — E — e®, p — p — eA/c, and the correspondence princi-
ple, one finds for the Klein-Gordon equation of a charged particle in the presence of an
electromagnetic field,

[~ (i, — eA,) (10" — eAM) + m?|¥(z) = 0, (3)
with the four-vector A* = (¥, A).
b) By straight-forward calculation one finds,

. h * * * *
dp+V-j :27;02 0,09, T + T2 — 0, T, T* — VO?T*|

+ Q,L[v\y* VU 4+ UV — VT - VI — UV
m

v et e ofat - v}
o b v [t ()
=0 (KG-Eq.) =0 (KG-Eq.)
=0, (4)



where in the last line we have made use of the fact that ¥ and ¥* are both solutions of
the Klein-Gordon equation. With result (4) follows immediately that

8,5/Vdr,0(t, r) :/Vdr&gp(t, r)
——/Vdrv-j(t,r)

= —/ dA -j(t,r)
v
=0, (5)

since the current density vanishes at the system boundary dV. Thus, we have fvdr p(t,r) =
const. Yet, this constant may be negative as can be seen by explicitly evaluating it for in-
stance for the negative energy solution of a free particle, (=) (t,r) = Nexp [i(p - r + Et)/H]
with the normalization factor N (up to the sign),

. _E B A
_ 2 —i(pr+Et)/h{ —~ i(pr+Et)/h _ _
/vdr p(t,r) = |N| /Vdre (2mc2 2mc2>e 1. (6)

Even though a negative probability density does not make sense the Klein-Gordon equati-
on still describes a consistent theory if the one-particle picture is abandoned; the quantities
p and j no longer represent the probability density and current but may be reinterpreted as
charge density p. and charge current j. where, depending on the specific system, the char-
ge stands for electromagnetic charge, the hypercharge, the strangeness,... The continuity
equation states the conservation law of this charge. Since particles and their corresponding
antiparticles are oppositely charged the theory allows for the creation and annihilation of
particle-antiparticle pairs. Within this formalism, the solutions with negative energy and
norm represent antiparticles with positive energy and norm.

Exercise 11.2 About the classical Klein-Gordon field and its quantization

a) The verification of the claims is absolutely straight forward if one recalls that a,a* =

2 2 2 2

b) Our goal is the proof of the equivalence of the quantization scheme

on the one hand and
[a, a;r(,] =k — k),
[ak, ax] = [aL,aL,} =0.

on the other hand.



Proof of “«=":

3k . ‘
[(b(t,x) m(t, y 271- / d3q\/u7q [akez(kxfwkt) —%—a};e*z(kxf“’kt),

— aqe! D™ wqt) +aT ay-wat)]
d®k ; ;
27T / RN (0 + e"Jak, ag] — ez'"[ali, aq| + 0)
— 3 —
2(%)3/@ P4y/g (¢0(k — a) + ¢ 3(q — k)

2@;P jzivak(aw@”+m—eﬂk@w+m>
- 2(2;)3 ((2m)*6(x —y) + (2m)°0(x —y))
=i0(x~y)
Proof of “=7: Define
filt, %) = meﬂkmkt). o
and F(H)05 G(t) == F(t) 8§§t> B azgit) - "

To show the “="-direction we first have to proof the following four claims:

Claim 1: [ d3x fre(t,x)i0y" f; (t,x) = —6(k — q)
Proof:

LHS =i / B fr(D0f) — Dofe) [

6i(kxfu.)kt) (iwq)efi(qxqut) - (_iwk)ei(kxfwkt)efi(qxqut)}

/dgx L [
2r) 2o

—/d3I 1 2wq z(k q)x z(wq wi)t /d3 2wk (qu)xei(wqfwk)t
(27)3 2w, V2 (2m)3 qu

= -4k —q)

Claim 2a: [ d®z fi(t,x)id5" f4(t,x) =0

Proof:
1 . . . .
LHS = Z/dSID W <(—wq)el(k+Q)x@71(wk+wq)t — (—wk)el(kJrq)Xe*Z(warwq)t)
q
- 1 —i(wk+w —i(wk+w
= i ()0l + @) — ()il + qereal)
q

=0

Claim 2b: [ d3x fe(t,x)idy” fy(t,x) =0
Proof: cf. proof of claim 2a.

Claim 3: aL = [ &3z ¢(t,%x)idy fr(t,x)



Proof:
rits = [ s ([ @a g0+ 5000 ) 05 e

- /d3q (/d% fq(t,x)iﬁfffk(t,xo aq +/d3q (/ d’x f;(t,X)iaffk(tX)) al,
/d3 /d3 </d3$fk (t,x)idy" fy (¢, X)) al

)a
T

= ak
In the last equation we have used claim 1 and 2a.

Claim 4: ax = [ &Pz f(t,x)idy ¢(t,x)
Proof:

RHS = / & £ ()i ( / B f,(t, x)aq + f;(t,x)ag)
/d3 /d?’a:fk x)id” f4(t,x)aq + 0
- / dq / >z f,(t,%)idy” fi(t,x)aq
- [ da(-da - b)aq

:ak

Here we have used claim 2b and claim 1.

Now we are ready to go back to the main statement:

[ak, a [/d?’m w(t,x)idy o(t,x /d3y¢ (t,y)idy fx(t,y)
/ B / Py 7, x)idy B, %), (1, y)i fu(t,y)]
== [ [ @yl5it0@00) 0% — @0F)E26(:2),0(0¥) @) (EY) — Q00 (E3) (6.3
/ dx / Ay Lf (6, x)7(t,%) — (B0 1) (5, X)6(E, %), 6t ¥) (00 f) (6 y) — 7t ) fylt, ¥)]
=~ [ [ @y x), 000, 3)] — 0 = 0+ Q)6 ) (3|68 ). w(t.5)
== [ [ @y RO 03 —%) + @of) R f (1 3)idex - )
=i [ i@y~ [ da@uf)xfi(x)

- [ @t mior )e2)
=d(a-k)=d(k—-q)
We have used the definition of 7 and the assumed commutation relations for ¢ and 7.

c) It suffices to discuss the claim ¢(¢,x)|0) = |z) because ¢f(t,x) = ¢(,x). Define

Ip) = \/2wpeiwptafp\0>. (11)



Then

t e—ilax—wqt) 0)

d3
o000 = [ ol
{ gmilax—vat)|g)

. d3q
= [ &Pk |k)(k / L —
/ ey k| (27)32wq ¢
. 3 .
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(27)32wq 2
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q

The observation

(0]axa]0) = (0][ax, al][0) = 6(k — q) (12)
then leads to .
_ 3 —igx _
01:3010) = g [ ke = ) (13)
Define
1 .
R a—— el DN 14
fr(t,%) TP (14)
such that
o(t,x) = / &k fit,x)ax + fi(t,x)al. (15)
We are now computing the Hamiltonian
1
H= /d3a: 4+ (V) + m?¢? (16)

by considering the contributions ¢2, ¢ and (V¢)? separately:

/d3x P = /d3xd3kd3q (fk(t x)ax + fr(t, X)ak) (fq(t X)aq + fy(t,x)a T). (17)

The terms f; fyaxaq and f} f,;kaTkaLl would lead to time-dependent terms (which we do not

have to consider in this exercise) in the following calculation. We thus set them to zero
right now such that the formulas are less cumbersome. We thus get

/d3x ¢* ~ /d3xd3kd3q (fkfgakag+f§fqaLGQ>

1 1 : . . )

— | Bard3kd® ( i(k—q)x ,i(—wktwq)t 1 + i(—k+aq)x i(wk—wq)t T
/ T q (27‘()3 \/m (& (& akaq (& (& akaq
/ ((5(k — q)ei(_“"‘Jr“’q)taka:f]l +0(q— k)ei(wk_“’q”a};aq)

wk wq

/d3/€ akak + aLak)

using
/ By e = (27)5(x). (18)
The starting point for the <]'§2—contribution is

/dgm P = /d3xd3kd3qiwk (—fk(t,x)ak + f,;‘(t,x)al;) iwq (—fq(t,x)aq + f;(t,x)aD .
(19)

)



Again we drop the same terms as before to get

/dgx gz'SQ ~ —/d3xd3kd3qwkwq ( fqu aka - fr fqakaq>

1 1
= / BrdPkd3q

(2m)3 | /2w 2wq “kq <e

1 1(—wk+w i (wg—w,
= /d?’kdgq mwkwq ((5(k — q)el(Twt ‘?l)takaj1 + 6(q — k)e'@x Q)ta;r{aq>

1
= /d?’k §wk (akaL + aLak)

The treatment of the (V¢)2-contribution is absolutely similar. One ends up with

/d3 (Vo)? /d3 k2 akaL+aLak) (20)

akail + ei(7k+q)xei(wk 7wq)ta/-lr{aq)

i(qu)xei(fwarwq)t

The combination of these results leads to (using wi = m? + k?)

H= 1/d3x7r + (V¢)? + m?¢?

N/d3l<:2w m? + wy +k2) (akaL+alT{ak)
k

=5 /dSk Wk (akaL + a;f(ak>

1
=5 /d3k Wk (2aLak + [ak, aL])

1
= /d3kwk (aLak + 25(0))



