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Exercise 9.1 Non-interacting spin-1/2-particles in a harmonic trap

Since we are considering a system of spin-1/2-particles, we have to deal in this exercise
with Fermions obeying Pauli’s exclusion principle.

(i) For a system of non-interacting particles, we can write the total Hamiltonian as a
sum of the single particle Hamiltonians,

H =
N∑
i=1

H0(xi) (1)

where xi = (ri, si) with ri and si the coordinate and spin variables, respectively and

H0(x) =
p2

2m
+
mω2r2

2
(2)

is the (spin-independent, single-particle) Hamiltonian for the harmonic trap with
eigenenergies εn = ~ω(n + 1/2). In addition, we can write any many-particle state
as an anti-symmetrized sum of product-wave-functions (’Slater determinant’),

Ψa =
1√
N !

∑
p∈SN

(−1)pϕε1σ1(xp(1)) . . . ϕεNσN
(xp(N)) (3)

where SN is the symmetric group of N elements and ϕεiσi
(xi) is the single-particle

wave-function of the harmonic trap,

Hϕεiσi
(xi) = εiϕεiσi

(xi) (4)

(coordinate and spin part).
The total energy of this non-interacting system factorizes such that it is simply
given by the sum of the single-particle energies of all the occupied states,

E =
∑

n∈{States occupied}

εn. (5)

In the ground state, the particles occupy the N lowest lying levels and since we have
a spin degeneracy, every energy-level of the harmonic trap can be occupied twice.
It is therefore necessary to distinguish between even and odd numbers of particles:

α) If N is even, the first N/2 states are occupied and thus, the Fermi energy is
εF = ~ω(N − 1)/2. For the ground-state energy, we find

Egs = 2

N/2−1∑
n=0

εn = 2

N/2−1∑
n=0

~ω(n+ 1/2) =
N2

4
~ω. (6)
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β) For N odd, we fill the first (N − 1)/2 states doubly and the (N + 1)/2th state
is filled only with one particle. Therefore, the Fermi energy is εF = ~ωN/2
and the ground-state energy is

Egs = 2

(N−3)/2∑
n=0

εn + ε(N−1)/2 =
N2 + 1

4
~ω. (7)

(ii) If we fix the maximal energy and ask for the number of particles, we see that we
always find an even number of particles in the trap. The first two enter as soon as
an energy of ~ω/2 is reached, the next two at 3~ω/2 and so on (solid line of Fig.).
The picture changes qualitatively when we introduce a weak Coulomb repulsion (e.g.
through a charging term ∼ N2e2/2C with C the capacitance of the trap): Now, the
levels are not degenerate anymore but after a first particle an additional energy is
needed to add another one. Therefore, the step-size reduces to one (dashed line).
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Note: This picture is of course overly simplified, since when introducing an in-
teraction, the single-particle picture breaks down and we actually would have to
deal with real many-particle wave-functions. For a qualitative picture, however, the
single-particle treatment suffices.

Exercise 9.2 Non-interacting spin-1/2-particles in a box

(i) Again we are dealing with non-interacting fermions and therefore need to find the
single-particle energies of the Hamiltonian. Since we have basically free particles
with the constraint of a box, the eigenenergies are

ε~k =
~2

2m
~k2 ~k =

2π

L
~n, ~n ∈ Zd. (8)

(ii) To start, we first want to calculate the density of particles in our box. Since the

energies only depend monotonically on the absolute value of ~k, there is a maximal
value kF until which all the states are filled, i.e. |~k| < kF for all the single-particle
states in the ground-state. Thus, the density can be written as

n =
N

V
=

2

Ld

∑
|~k|<kF

1 =
2

(2π)d

∑
|~k|<kF

(2π

L

)d
(9)
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(the factor of 2 in the above equation comes from the spin summation).
For L→∞, dk = (2π)/L gets infinitesimal and thus Eq. (9) yields a Riemann sum
and can be transformed to a d dimensional integral,

n =
2

(2π)d

∫
dΩ

∫ kF

0

kd−1dk = 2
Sd(1)

(2π)d

∫ εF

0

(∂ε
∂k

)−1(2mε

~2

)(d−1)/2

dε. (10)

In the first step, we have already used the spherical symmetry in k-space to separate
the angular from the radial integration. In the second step, we introduced Sd(1),
the surface of a d-dimensional sphere with radius 1 and εF = ~2k2

F/2m is the Fermi
energy. This is already the result we were looking for with

ρ(ε) =
2

(2π)d

(∂ε
∂k

)−1(2mε

~2

)(d−1)/2

Sd(1) =
2

(2π)d

√
m

2~2ε

(2mε

~2

)(d−1)/2

Sd(1). (11)

Note: In this formulation, the spin-degeneracy is already in the density of states.
This is sometimes not the case and can lead to confusion.

α) For d = 3, Sd(1) = 4π and we find for the density of states

ρ(ε) =
2

8π3

√
m

2~2ε

(2mε

~2

)
4π =

m

π2~3

√
2mε. (12)

The density of electrons now reads

n =

∫ εF

0

ρ(ε)dε =
m

π2~3

∫ εF

0

√
2mεdε =

2

3

m

π2~3

√
2mε

3/2
F (13)

and the Fermi energy can be written as

εF =
(3

2

π2~3

√
2m3/2

n
)2/3

. (14)

Eventually, we can calculate the total energy of the system,

Egs =

∫ εF

0

ρ(ε)εdε =
2

5

√
2m3/2

π2~3
ε
5/2
F =

3

5
nεF . (15)

β) For d = 2, we find

ρ(ε) =
2

4π2

√
m

2~2ε

(2mε

~2

)1/2

2π =
m

~2π
(16)

⇒ n =

∫ εF

0

ρ(ε)dε =
mεF
~2π

(17)

⇒ εF =
~2πn

m
(18)

⇒ Egs =

∫ εF

0

ρ(ε)εdε =
1

2
nεF . (19)

γ) Eventually, the d = 1 case yields

ρ(ε) =
2

2π

√
m

2~2ε
2 =

√
2m

~2π2ε
(20)

⇒ n =

∫ εF

0

ρ(ε)dε = 2

√
2mεF
~π

(21)

⇒ εF =
~2π2n2

8m
(22)

⇒ Egs =

∫ εF

0

ρ(ε)εdε =
1

3
nεF . (23)
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In the first line, the factor of 2 comes from the fact that we have to integrate
along the positive and the negative k-axis in one dimension.

Note: The three cases differ most prominently in the densities of states which have√
ε, 1 and 1/

√
ε dependences, respectively. This has important consequences for

many physical properties, such as response functions of materials.
Finally, if we consider a three-dimensional box with L = 1cm, and N = 1023 parti-
cles, we find a Fermi energy of

εF =
(3

2

π2~3

√
2m3/2

)2/3

n2/3 ≈ 3.8 · 10−15n2/3[cm−3] ≈ 8.2eV (24)

which corresponds to a temperature of approximately TF ≈ 9 · 104K.

(iii) In a classical gas where the particles have a certain energy distribution depending on
the temperature, every particle can be excited with an energy however small. Now,
if we consider Fermions, particles with energies deep below the Fermi energy, can
not be excited, since all the states above are already occupied. Thus, only states in
a shell of thickness ∼ kBT can be thermally excited and the specific heat is roughly

cV ∼ kBn
( T
TF

)
� kBn. (25)

Exercise 9.3 Tunneling through a quantum dot

For an electron to hop from the left reservoir to the right, there needs to be a state available
in the quantum dot or else it blocks and no current flows(gray areas in the figure). This
means, that an energy level has to lie between εF and εF + eV . If we don’t apply an
external potential V , this is only the case when an energy level is exactly at εF which can
be tuned by Vg and happens in intervals of ~ω/e with e the charge of the electrons. If we
apply a potential V , we can also apply a gate voltage Vg up to the same value and still
have a current. Eventually, when the potential is big enough, i.e. V > ~ω/e, there will
always be a current, no matter the gate voltage.

V
~ω
e

~ω
e

Vg

A very similar pattern has actually also been measured (see e.g. J. Weiss et.al., Phys.
Rev. Lett. 71, 4019 (1993)), however, there is some more physics involved: the level
splitting in a quantum dot is much smaller than the corresponding temperature at which
such measurements are done. Therefore, thermally activated tunneling will occur and it
should actually be impossible to detect these ’diamonds’. However, as was introduced
in Ex. 9.1, there should also be Coulomb repulsion, which, for the case of a very small
system, is rather large compared to the level splitting (∆Elevel ≈ 0.5K� 10K≈ Ecoulomb).
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This leads to the so-called Coulomb blockade (as compared to a pure Pauli blockade in
the system above) and one refers to this characteristic pattern as ’Coulomb diamonds’.
(Note also that usually the applied voltage is divided equally between both reservoirs, i.e.
we have εF + eV/2 and εF − eV/2 for the two reservoirs which leads to a more symmetric
pattern.)
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