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Exercise 10.1 The Ground State of the Helium Atom

a) We can write the denominator as

|x1 — x2| = \/r% + 73 — 2ryrycos 6 (1)

Hence
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b) Substituting in the explicit form of the wavefunction 19 into A, we arrive at the following
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We can use the result of the previous question for the angular part of the integration,
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We note that this integral is symmetric in r; and ro. We can split the integration region
of 79 into 7o < r1 and 79 > r; and carry out the integration accordingly.
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For Z = 2, we obtain
AFE = 34eV. (6)

Exercise 10.2 The Excited States of the Helium Atom

We can write the wavefunctions of the electrons as a product of the radial and angular parts

Ynim (X) = Rt (1)Yim (0, ¢). (7)



Using this and the expansion of 1/|x1 — X2/, we have
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We note that Ypo = Y = 1/v/4m such that the angular integration becomes
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where we have used
Yim = (_1)_m Yﬁ—m? (10)

and the orthogonality relation for the special harmonics to evaluate the angular integration
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Thus the exchange term becomes
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The radial part of the wavefunction is given by
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where Lilj_rll (r) are the associated Laguerre polynomials
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Due to the characteristics of the Laguerre polynomials, which has n — [ — 1 nodes, R, ,—1 has
no nodes. It therefore follows that K, ,—1 > 0. By explicit computation it can be shown that
K1 is 0 for other values of [ as well. This corretion means that the energy of the triplet state
lies lower than that for the singlet state and is therefore energetically more favourable.

This makes sense since the antisymmetric spatial wavefunction (corresponding to the symmetric
triplet spin state) must have lower energy due to the smaller electron-electron interaction. This
is known as the orthohelium state.



