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Exercise 12.1 Many-Body Perturbation Theory
a) We first consider the case N = 1:
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Next, we assume the statement to be valid for the case of N —1 particles and consider

the step from N —1 to N, where we denote the N —1 particle state | p,, P, - -

by IN—1):
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Now we can use the induction hypothesis,
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which then leads to
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Note that in this exercise we explicitly denote operators by a “hat”. The momenta
P, Py, etc. are numbers and thus commute with b(p,t) and bf(p, ).

b) (1)

(plk) = (0[b(p,1)b'(k,t)0)
(0169 (k — p) £ (k, £)b(p, )] 0) = 6 (k — p)
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where the plus (minus) signs corresponds to bosons (fermions).

(iti) The interaction term Vp has two destruction operators to the right and thus,
applying it to a one particle state such as | p) necessarily destroys the state.
This makes sense since it describes the interaction between two particles and
can not describe the interaction of a particle with itself.

(iv) We first examine that the effect of two destruction operators on the state
| Py, Py ) is basically described in (ii) and yields
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Again, the plus (minus) sign corresponds to bosons (fermions).



Exercise 12.2 Transition Amplitudes

We start by writing the three particle to three particle transition amplitude in terms of
the operators b and b'. We shorten notation by introducing the abbreviations b, = b(p, t).
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The strategy is to use the commutation relations of the operators b and b in order to
move the annihilation operators to the right and the creation operators to the left. By
use of the relation

by b, = 69 (p — ') £ B, by | (6)

every change of the order of an annihilation operator with a creation operator thus gives
rise (apart from a minus sign for fermions) to an additional term where the two operators
have annihilated themselves leading to a d-funtion. In the end we want to use this pro-
cedure to eliminate all the operators leaving only terms where an annihilation operator
is acting on the vacuum state |0). We will demonstrate one such step on the vacuum
expectiation value by changing the order of the two operators 1311+q and Z;I,l in Eq. (5)
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Keeping only the J-function, we say that we have “contracted” the operators 1311+q and
bLl and denote this by a bracket connecting the two operators,
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Since commutating a destruction operator to the right such that it destroys the vacuum

state leads to 0, the total vacuum expectation value is given by all possible contractions

of destruction operators with a creation operator to their right, e.g. terms of the form,
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The expectation value in (7) is then simply a sum over terms of this form that can now be
obtained by simply permuting the three creation operators belonging to the ket-state and
the three destruction operators of the bra-state independently, giving rise to 36 = 3! x 3!
terms in the sum. Since fermions pick up a minus sign for every commutation performed,
we additionally find a factor (—1)P*(—1)P2 for every term with p;, ps € S3, permutations
of three elements.

After performing the integrations, the final result can thus be written in a compact form
as
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where the minus (plus) sign corresponds to fermions (bosons).

Obviously, this procedure is very cumbersome, especially if we now wanted to go on to
four-particle states. It is thus not surprising that better techniques to calculate these
kinds of expectation values were invented, cf. Feynman diagrams.



