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Exercise 10.1 The Ground State of the Helium Atom

a) We can write the denominator as
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b) Substituting in the explicit form of the wavefunction ψ100 into ∆, we arrive at the following
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We can use the result of the previous question for the angular part of the integration,
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Hence,
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We note that this integral is symmetric in r1 and r2. We can split the integration region
of r2 into r2 < r1 and r2 > r1 and carry out the integration accordingly.
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For Z = 2, we obtain
∆E = 34eV. (6)

Exercise 10.2 The Excited States of the Helium Atom

We can write the wavefunctions of the electrons as a product of the radial and angular parts

ψnlm(x) = Rnl(r)Ylm(θ, φ). (7)
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Using this and the expansion of 1/|x1 − x2|, we have

Knl = e2

∫
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We note that Y00 = Y ∗
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4π such that the angular integration becomes
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where we have used
Ylm = (−1)−m Y ∗

l,−m , (10)

and the orthogonality relation for the special harmonics to evaluate the angular integration
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Thus the exchange term becomes
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The radial part of the wavefunction is given by
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where L2l+1
n+l (r) are the associated Laguerre polynomials

L2l+1
n+l (x) =
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Due to the characteristics of the Laguerre polynomials, which has n − l − 1 nodes, Rn,n−1 has
no nodes. It therefore follows that Kn,n−1 > 0. By explicit computation it can be shown that
Kn,1 is 0 for other values of l as well. This corretion means that the energy of the triplet state
lies lower than that for the singlet state and is therefore energetically more favourable.
This makes sense since the antisymmetric spatial wavefunction (corresponding to the symmetric
triplet spin state) must have lower energy due to the smaller electron-electron interaction. This
is known as the orthohelium state.
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