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Exercise 7.1 Scattering cross section in the first Born approximation

a) As discussed in the lecture, the differential scattering cross section is directly related
to the scattering amplitude via

dσ

dΩ
= |f(k,k′)|2, (1)

where k points in the direction of the incident beam and k′ towards the observation
point r (the solid angle Ω). For elastic scattering, we further know that k = |k| =
|k′|.
In the first Born approximation, the scattering amplitude is (up to some numerical
factor) given by the Fourier transform of the scattering potential with respect to
k′ − k,

f (1)(k,k′) = − m

2π~2
V̂ (k′ − k) = − m

2π~2

∫
d3r′ V (r′)e−i(k′−k)·r′

. (2)

For a spherically symmetric potential, f (1)(k,k′) only depends on the absolute value
q = |k − k′| = 2k sin θ′/2, where θ′ = ^(k,k′). The angular integration can be
performed immediately,

f (1)(k,k′) = f (1)(k, θ) = −2m

~2q

∫ ∞

0

dr′ r′V (r′) sin qr′. (3)

For the spherical-box potential the integration is cut off at r = r0 and one finds,

f (1)(k, θ) =
2mV0

~2q

∫ r0

0

dr′ r′ sin qr′

= 2r0
mV0r

2
0

~2

sin qr0 − qr0 cos qr0

(qr0)3
, (4)

and the differential scattering cross section reads

dσ

dΩ
= |f (1)(k,k′)|2 = 4r2

0

(mV0r
2
0

~2

)2 (sin qr0 − qr0 cos qr0)
2

(qr0)6
. (5)

b) The limit kr0 → 0 implies qr0 → 0. Expanding Eq. (5) in small qr0 leads to an
expression which is independent of q,

dσ

dΩ

∣∣∣
kr0→0

= 4r2
0

(mV0r
2
0

~2

)2 [qr0 − (qr0)
3/3!− qr0 + (qr0)

3/2! +O((qr0)
5)]2

(qr0)6

≈ 4r2
0

9

(mV0r
2
0

~2

)2

. (6)

Since this expression is isotropic the total differential cross section at low energy is
easily obtained,

σ =

∫
dΩ

dσ

dΩ
=

16πr2
0

9

(mV0r
2
0

~2

)2

. (7)
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c) For the Born approximation to be applicable the actual wave function Ψk(r) should
not be too different from the plane wave eik·r inside the range of the scattering
potential. In other words, the first Born approximation is reasonable if the following
condition is fulfilled at the scattering center r = 0 (where we assume the influence
of the potential to be strongest),∣∣∣ ∫

d3r′ G(r = 0, r′)V (r′)eik·r′
∣∣∣ =

∣∣∣ m

2π~2

∫
d3r′

eiqr′

r′
V (r′)

∣∣∣ � 1, (8)

where in the first equality we have used that V (r′) = V (r′). In the limit kr0 → 0
(qr0 → 0) we can set eiqr ≈ 1 and one finds that the condition (8) holds if
V0mr2

0/~2 � 1.

Exercise 7.2 Low energy resonances and the Breit-Wigner formula

a) The continuity of the wave function and its first derivative implies

∂r log R>
l

∣∣
r=R

= ∂r log R<
l

∣∣
r=R

= αl, (9)

where the last equation is the definition of αl. With the ansatz for the wave function
outside the range R of the potential,

R>
l (k, r) =

1

2

(
h∗l (kr) + e2iδl(k)hl(kr)

)
, (10)

it follows that

αl =
k[∂xh

∗
l (x) + e2iδl(k)∂xhl(x))

h∗l (x) + e2iδl(k)hl(x)

∣∣∣
x=kR

=
k[j′l(x)(1 + e2iδl(k)) + in′l(x)(−1 + e2iδl(k))]

jl(x)(1 + e2iδl(k)) + inl(x)(−1 + e2iδl(k))

∣∣∣
x=kR

=
k[j′l(x) cos δl(k)− n′l(x) sin δl(k)]

jl(x) cos δl(k)− nl(x) sin δl(k)

∣∣∣
x=kR

=
k[j′l(x) cot δl(k)− n′l(x)]

jl(x) cot δl(k)− nl(x)

∣∣∣
x=kR

, (11)

where the prime stands for the derivative with respect to x = kr. Solving this for
cot δl(k) yields the equation

cot δl =
k∂xnl(x)− αlnl(x)

k∂xjl(x)− αljl(x)

∣∣∣∣
x=kR

. (12)

Thus the phase shift depends on the potential only through the logarithmic deriva-
tive αl.

b) We observe that

σl =
4π

k2
(2l + 1) sin2 δl (13)

=
4π

k2
(2l + 1)

sin2 δl

sin2 δl + cos2 δl

(14)

=
4π

k2
(2l + 1)

1

cot2 δl + 1
. (15)
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In order to find the maximum of σl(k) in the limit kR � 1 we need to find the
expression of Eq. (12) at low energies. With the asymptotic identities for the Bessel
and Neumann functions,

jl(x) ≈ xl

(2l + 1)!!
, nl(x) ≈ −(2l − 1)!!

xl+1
, (16)

as x → 0, one arrives at

cot δl =
k∂xnl(x)− αlnl(x)

k∂xjl(x)− αljl(x)

∣∣∣∣
x=kR

≈ (2l − 1)!!(2l + 1)!! (kR)−(2l+1) l + 1 + αlR

l − αlR
. (17)

Inserting this into Eq. (15) leads to the expression

σl ≈
4π

k2
(2l + 1)

1

[(2l − 1)!!(2l + 1)!! (kR)−(2l+1) (l + 1 + αlR)/(l − αlR)]
2
+ 1

(18)

≈ 4πR2(2l + 1)
(kR)4l

[(2l − 1)!!(2l + 1)!! (l + 1 + αlR)/(l − αlR)]2
, (19)

which is proportional to (kR)4l. Thus, at low energies the partial scattering cross
section is a monotonically decreasing function of the angular quantum number l. In
particular, its maximum is assumed for l = 0, and to a good approximation one can
write

σ =
∑
l≥0

σl ≈ σl=0 = 4πR2
( α0R

1 + α0R

)2

. (20)

Note, however, that there is an exception for which the step from (18) to (19) is
not true; namely, if the particle energy Er = ~2k2

r/2m is such that the following
condition is fulfilled,

l + 1 + αl(Er)R = 0. (21)

In this case σl ∝ k−2 for all l = 0, 1, 2, ... (recall that kR � 1). These resonance
energies Er maximize the partial scattering cross section σl for any channel l of the
angular momentum.

c) Close to a resonance energy Er one finds to leading order

αl(E)R ≈ −(l + 1) +
dαl(E)R

dE

∣∣∣∣
E=Er

(E − Er). (22)

We insert this into (17) to find

cot δl(E) ≈ (2l − 1)!!(2l + 1)!! (kR)−(2l+1)

dαl(E)R
dE

∣∣∣
E=Er

(E − Er)

2l + 1

= −2(E − Er)

Γ
, (23)

where Γ is defined as

Γ := − 2k2l+1
r R2l

[(2l − 1)!!]2 dαl(E)
dE

∣∣∣
E=Er

. (24)
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Thus, for scattering energies E ≈ Er the cross section of the l-th channel is well-
described by a Lorentzian,

σl =
4π

k2
(2l + 1)

1

cot2 δl + 1

≈ 4π

k2
(2l + 1)

1
4(E−Er)2

Γ2 + 1

=
4π

k2
(2l + 1)

(Γ/2)2

(E − Er)2 + (Γ/2)2
, (25)

where the parameter Γ represents the width of the resonance. This result is called
the Breit-Wigner formula.
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