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Exercise 7.1 Scattering cross section in the first Born approximation

a) As discussed in the lecture, the differential scattering cross section is directly related
to the scattering amplitude via
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where k points in the direction of the incident beam and k’ towards the observation
point r (the solid angle €2). For elastic scattering, we further know that k = |k| =
K.
In the first Born approximation, the scattering amplitude is (up to some numerical
factor) given by the Fourier transform of the scattering potential with respect to
k' —k
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For a spherically symmetric potential, f(!)(k,k’) only depends on the absolute value
q = |k — K| = 2ksin€'/2, where ¢ = <(k,k’). The angular integration can be
performed immediately,
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For the spherical-box potential the integration is cut off at » = ry and one finds,
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and the differential scattering cross section reads
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b) The limit kry — 0 implies qrq — 0. Expanding Eq. (5) in small gry leads to an
expression which is independent of ¢,
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Since this expression is isotropic the total differential cross section at low energy is

easily obtained,
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c¢) For the Born approximation to be applicable the actual wave function W (r) should
not be too different from the plane wave e*7 inside the range of the scattering
potential. In other words, the first Born approximation is reasonable if the following
condition is fulfilled at the scattering center r = 0 (where we assume the influence
of the potential to be strongest),
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where in the first equality we have used that V(r') = V(r'). In the limit krg — 0
(qro — 0) we can set ¢“" ~ 1 and one finds that the condition (8) holds if
Vomrg/h? < 1.

Exercise 7.2 Low energy resonances and the Breit-Wigner formula

a) The continuity of the wave function and its first derivative implies
0, log Rf‘T:R = 0, log Rﬂr:R = qy, 9)

where the last equation is the definition of ;. With the ansatz for the wave function
outside the range R of the potential,
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it follows that
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where the prime stands for the derivative with respect to x = kr. Solving this for
cot 6;(k) yields the equation
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Thus the phase shift depends on the potential only through the logarithmic deriva-
tive oy.
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b) We observe that
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In order to find the maximum of o;(k) in the limit kR < 1 we need to find the
expression of Eq. (12) at low energies. With the asymptotic identities for the Bessel
and Neumann functions,
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as x — 0, one arrives at
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Inserting this into Eq. (15) leads to the expression
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which is proportional to (kR)*. Thus, at low energies the partial scattering cross
section is a monotonically decreasing function of the angular quantum number [. In
particular, its maximum is assumed for [ = 0, and to a good approximation one can
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Note, however, that there is an exception for which the step from (18) to (19) is
not true; namely, if the particle energy E, = h%k?/2m is such that the following
condition is fulfilled,

l+14 aq(E,)R=0. (21)

In this case 0; oc k72 for all [ = 0,1,2,... (recall that kR < 1). These resonance
energies I, maximize the partial scattering cross section o; for any channel [ of the
angular momentum.

Close to a resonance energy F, one finds to leading order
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We insert this into (17) to find
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Thus, for scattering energies E =~ E, the cross section of the [-th channel is well-
described by a Lorentzian,
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where the parameter I' represents the width of the resonance. This result is called
the Breit-Wigner formula.



