Table of Content

1. The Emergence of Life

2. Entropy of an Organism and Natural Selection

3. Growth and Aging
PART 1

Emergence of Life

• E.Smith and H.J.Morowitz: Energy flow and the organisation of life
• E.Smith: Thermodynamics of natural selection I
• E.Schrödinger: What is life? Mind and Matter
The Biosphere
The Biosphere

• Self organized system:
 – State with less entropy is statistically favored and remains under perturbation
 ➔ Implies that:
 - Life rejects entropy

➔ Possible Definition:
 - Life is everything which is not in thermodynamic equilibrium with its environment
Probability distributions for the emergence of the biosphere
Inevitable Life?

Life => Free Energy!

Free Energy => Life?
Inevitable Life?

- Source of Free energy on earth:
 1. Light
 - Energy can scatter into space
 2. Fission
 - High activity in earth core
 - A high amount of ionized matter is produced = reductive potential
 - Reductive potential is kept on earth and can not be equilibrated
Inevitable Life?

- A process reducing the reductive potential is kept working.
- Processes creating channels with higher order for higher efficiency are favored
- Life is such a process
Inevitable Life?

- Hints for the theory:
 - Split biosphere into autotrophical ecosystems
 - Universal core of 500 small organic molecules [hypothesized to be the beginning of life]
 - Reductive chemo-autotrophs formed the first living system
Inevitable Life?

Bettelheim 6/e
Fig 26.8
Inevitable Life?

• Entropy paradox:
 – Equilibrium entropy higher for a non-living system
 – „Living Earth“ is a driven system
 – Life-channel: higher order parameter => phase transition
 → Biosphere can be considered as an alloy of biotic and abiotic part, were the abiotic part serves as transport phenomenon
Inevitable Life?

- Link between Darwin and Thermodynamics:
 - Cell physiology with a statistical path of least resistance is considered to be the fittest
Summary Part 1

- **Definitions of life:**
 - Life is a transport phenomenon
 - Inevitable?
 - Life rejects entropy
 - Biosphere is a self-organized system
PART 2
Entropy approach to natural selection

• H.J. Morowitz: Some order-disorder considerations in living systems
• E. Smith: Thermodynamics of natural selection I
Entropy of a cell

- \(N = \# \text{ structural states} \)
- Living cell corresponds to \(L \) of \(N \) possible states
- Probability for Life: \(p = \frac{L}{N} \)
- \(L << N \rightarrow p \approx \frac{1}{N} \)
Entropy of a cell

- Definitions for Entropy:

\[\Delta S = k \log L - k \log N \]

\[I = \log_2 N - \log_2 L \]

- With: \(L << N \)

- Therefore: \(I = \log_2 N \)
Entropy of a cell

Experimental Data:

- Some cells withstand 95% drying

- Some cells withstand cooling down to 1.3K

→ no information, that is required to be alive, in water or motion of molecules
Entropy of a cell

- \(N_A = \# \text{ Atoms} \)

- \(n_i : \text{atoms of ith type:} \)

\[
N_A = \sum n_i
\]

- \(N_1 \text{ possibilities to put } N_A \text{ Atoms in } N_A \text{ boxes:} \)

\[
N_1 = \frac{N_A}{\prod n_i!}
\]
Entropy of a cell

- # bonding states = B
 - \(B_i \) ways for an atom to distribute its bonds:
 \[
 B < \prod_i B_i^{n_i}
 \]

- Total Entropy:
 \[
 I = \log N < \log N_1 + \log B
 \]
 \[
 \text{Stirling} \quad \approx N_A \log N_A - \sum n_i \log n_i + \sum n_i \log B_i
 \]

- Assuming 6 Nearest Neighbors:
 - \(B_O = 21 \quad B_H = 6 \quad B_C = 120 \ldots \)

- \(I_{B.\text{Coli}} = 1.2 \times 10^{10} \text{ Bits} \)
Entropy of a cell

• Experiment:
 – Idea: Grow bacteria in water and measure temperature increase:
 \[\Delta Q = T \Delta S = -T k_B I \log 2 \]

• Result:
 – \(I_{\text{exp}} = 4 \times 10^{10} \) Bits

• Possible Reasons:
 – Real growth process is not reversible
 – Maintenance reduces entropy as well
Entropy in Natural Selection
Increase of Entropy: ΔS_1
→ Decrease of Entropy : -ΔS_2

Natural Selection requires Energy as ΔS_2 > ΔS_1
Summary Part 2

• Entropy of an organism scales with # Atoms
• Entropy gives us various lower bounds for biological processes
PART 3
Growth and Aging

E. Smith: Thermodynamics of natural selection I
Aims of Part 3:

• Deduce links between energy balance, entropy and error correction
Summary

• Definitions of life:
 Life is a transport phenomenon
 → Inevitable ?
 Life rejects entropy
 → Biosphere is a self-organized system

• Entropy of an organism depends mainly on the # atoms.

• Entropy gives lower bounds for energy required for natural selection and growth

• The lifetime is bounded by error appearance and correction
References

• E. Smith: Thermodynamics of natural selection I: Journal of Theoretical Biology
• E. Smith and H. J. Morowitz: Energy flow and the organisation of life: Complexity
• H. J. Morowitz: Some order-disorder considerations in living systems: Bulletin of Mathematical Biophysics
• E. Schrödinger: What is life? Mind and Matter