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0 Overview

Some keywords. Group theory in connection to physics is an incredibly rich
topic:

• symmetry
• geometry
• topology
• solid state lattices
• special relativity
• quantum mechanics
• spin
• quantum anomalies
• gauge theory
• supersymmetry
• integrable systems
• string theory
• exceptional groups

One might argue that physics of the 20th century is all about group theory. The
mathematics involved in this is not quite as recent though; modern mathematical
formulations of groups are very general and also abstract.

We will learn about many mathematical concepts of group theory in a physicist’s
or classical mathematics language. This is intended to be a (theoretical) physicist’s
course. I will try to provide examples from various areas of physics and use them
as a motivation for the mathematical concepts.

0.1 Prerequisites

Prerequisites for this course are the core courses in mathematics and theoretical
physics of the bachelor syllabus:

• linear algebra (basic concepts, linear maps)
• quantum mechanics (representations of SO(3) or SU(2))
• classical mechanics (formalism)
• electrodynamics (fields)
• mathematical methods in physics (HO, Fourier transforms, . . . )

0.2 Contents

1. Two-Dimensional Rotations (3 lectures)
2. Three-Dimensional Symmetries (5 lectures)
3. Finite Group Theory (3 lectures)
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4. Point and Space Groups (3 lectures)
5. Structure of Simple Lie Algebras (2 lectures)
6. Finite-Dimensional Representations (6 lectures)
7. Representations of SU(N) (0 lectures)
8. Classification of Simple Lie Algebras (2 lectures)
9. Conformal Symmetry (4 lectures)

Indicated are the approximate number of 45-minute lectures. Altogether, the
course consists of 28 lectures.

0.3 References

There are many text books and lecture notes on group theory, representation and
physics. Here are some which I will refer to in my preparation:

• J. F. Cornwell, “Group Theory in Physics, An Introduction”, Academic Press
(1997)
• S. Sternberg, “Group theory and physics”, Cambridge University Press (1994)
• H. F. Jones, “Groups, Representations and Physics”, CRC Press (1998)
• M. Hamermesh, “Group Theory and Its Application to Physical Problems”,

Dover Publications (1989)
• online: M. Gaberdiel, “Symmetries in Physics”, lecture notes (HS13),
http://edu.itp.phys.ethz.ch/hs13/Symmetries/

• . . .
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1 Two-Dimensional Rotations

Symmetries in physics are typically expressed by mathematical groups acting in
some specific way on some objects or spaces.

In the first chapter we introduce the basic notions of group theory using the
example of rotations in two spatial dimensions.

1.1 Group Basics

We start with rotations in two-dimensional space. A rotation by angle ϕ is defined
by the map (

x
y

)
7→
(
x cosϕ− y sinϕ
x sinϕ+ y cosϕ

)
. (1.1)

This simple example already contains several notions of group theory which we
shall explore in the following. Most of them will be intuitive (for anyone who has
studied physics for a while), but it will be good to know the appropriate
mathematical terms and concepts and to associate them to physical applications
right away. We shall also highlight a few subtleties that are resolved by the
mathematical framework.

Definition of Group. Let us collect a few properties of the above maps:

• Two consecutive rotations by angles ϕ1 and ϕ2 yield another rotation, namely
by the angle ϕ = ϕ1 + ϕ2. This statement can be confirmed by direct
computation applying the addition theorem for the trigonometric functions.
• The rotation by the angle ϕ = 0 (or more generally by ϕ ∈ 2πZ) is distinguished

in that it maps all points (x, y) to themselves (identity map).
• For the rotation by any angle ϕ there exists the inverse rotation by the angle −ϕ

such that their composition is the trivial rotation.
• The order in which two or more rotations are performed does not matter.
• Rotations whose angles differ by an integer multiple of 2π are equivalent.

The former three of the above properties match nicely with the definition of a
group: A group is a set G with a composition rule µ : G×G→ G, which has the
following three properties:

• It is associative

µ(µ(a, b), c) = µ(a, µ(b, c)) for all a, b, c ∈ G. (1.2)

• There exists a (unique) identity element e ∈ G such that

µ(e, a) = µ(a, e) = a for all a ∈ G. (1.3)
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• There exists a (unique) inverse map η : G→ G such that

µ(a, η(a)) = µ(η(a), a) = e for all a ∈ G. (1.4)

Usually one considers the concept of a group as the generalisation of multiplication
of numbers. Therefore one writes the composition rule µ(a, b) as multiplication a·b
or even shorter as ab. The inverse η(a) of an element a is denoted by a−1. In this
course, we will also denote the identity element as 1 instead of e.1 The group
axioms in multiplicative notation read

(ab)c = a(bc), 1a = a1 = a, aa−1 = a−1a = 1. (1.5)

In a general group, the order of the elements to be multiplied matters. In our
example, this is apparently not the case. A group with a symmetric composition
rule

µ(a, b) = µ(b, a) or ab = ba (1.6)

is called abelian. Abelian groups are largely boring, up to some subtleties to be
discussed. This course will mostly be about non-abelian groups where the
composition rule is non-commutative.

Group Action. The group axioms translate to the properties of the rotations,
however, there is no immediate match for associativity. Associativity comes about
by considering the above rotation as a group action. In mathematics, one clearly
distinguishes between the group elements as abstract rotations and the group
action as a transformation rule acting on some set. The action of a group G on a
set M is a map α : G×M →M with the following properties

• Consecutive group actions can be combined, i.e. the action is compatible with
the group composition rule2

α(a, α(b,m)) = α(µ(a, b),m) for all a, b ∈ G and m ∈M. (1.7)

• The identity element acts trivially

α(e,m) = m for all m ∈M. (1.8)

In physics one usually assumes a unique/natural action of a given group on a given
set, and in multiplicative notation it suffices to denote the group action α(a,m) by
a·m or just am. Thus

a(bm) = (ab)m, 1m = m. (1.9)

The requirement that the composition of group actions is again a group action in
fact hinges on associativity of the group:3

((ab)c)m = (ab)(cm) = a(b(cm)) = a((bc)m) = (a(bc))m. (1.10)

1Also the identity elements of various other algebraic structures will be denoted by 1 hoping
that no ambiguities will arise. 1 is one is 1 is id.

2Note that the order of the actions is from right to left (as for matrices acting on vectors), i.e.
b acts first in the product ab, which can be confusing.

3In principle, (ab)c and a(bc) could differ while their actions on m are identical. This logical
possibility is avoided by associativity of the group.
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Furthermore, a simple corollary of the definition is that the group action αa of a
given group element a is a bijection on M , i.e. the map αa : M →M with
αa(m) := α(a,m) is one-to-one. The inverse group action (αa)

−1 is given by the
inverse group element αa−1

a−1(am) = (a−1a)m = 1m = m. (1.11)

Initially, we merely considered concrete rotational transformations on
two-dimensional space R2. For the group theoretical treatment we have to split up
this concept into a group element and a group action. The natural choice is to
introduce an abstract rotation by the angle ϕ ∈ R denoted by Rϕ ∈ G. The group
composition rule, identity and inverse read

Rϕ1 +Rϕ2 = Rϕ1+ϕ2 , R0 = 1, (Rϕ)−1 = Rϕ. (1.12)

The action of Rϕ on a point ~x ∈ R2 is then denoted by Rϕ~x. More concretely,

Rϕ

(
x
y

)
=

(
x cosϕ− y sinϕ
x sinϕ+ y cosϕ

)
. (1.13)

Group Topology. In fact, the above definition of the rotational group is not the
only one. Alternatively, one could embed the above group elements into a larger
group and still obtain the same rotational action. A physically reasonable setup
might be to consider the group of rotations and time translations (t 7→ t+ τ).
However, time translations are independent of spatial rotations, and the rotational
action of a group element would simply ignore the time translation. Therefore it
makes sense to restrict our attention to the minimal case introduced above.

Nevertheless, Rϕ is not yet uniquely defined because we have not specified the
range of ϕ which is evidently a subset of the real numbers. We know that rotations
which differ by multiples of 2π act equivalently

Rϕ ' Rϕ+2πm or Rϕ~x = Rϕ+2πm~x. (1.14)

However, that does not imply that the corresponding abstract rotations are the
same. In other words, it may or may not make physical sense to keep track of how
many full turns a given rotation contains. Let us identify group elements which
differ by n ∈ Z+ full turns

R(n)
ϕ = R

(n)
ϕ+2πn. (1.15)

The corresponding group can be defined as

G(n) = {R(n)
ϕ ;ϕ ∈ R/2πnZ}. (1.16)

The group without identifications can be denoted as

G(∞) = {R(∞)
ϕ ;ϕ ∈ R}. (1.17)

Thus G(1) is the minimal definition for the group of rotations in two dimensions.
However, in quantum theory, G(2) also has a natural meaning: Here, a rotation by
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4π is the identity element e, but a rotation by 2π is a non-trivial element. For
quantum mechanical states with Fermi statistics, an odd number of full turns
should flip the sign of the state. Thus one would naturally identify this element
with the operator (−1)F

R
(2)
2π = (−1)F . (1.18)

Finally, G(∞) keeps track of all full rotations, which may be beneficial in some
cases. For instance, the function log(x+ ı̊y) which measures the logarithmic
distance and the angle w.r.t. the origin is not uniquely defined on plain R2. If
considered as a multi-valued function one could say that its value shifts by ı̊ϕ
under the action of R

(∞)
ϕ (if the multi-valued function is analytically continued

without jumps).

A further subtlety is that all groups G(n) with finite n are equivalent, i.e.
isomorphic. In other words, one can identify the elements

R(n)
ϕ ≡ R

(1)
ϕ/n (1.19)

such that the group composition rule is respected (with all applicable
identifications between the elements). From a group theoretical point of view, it
suffices to consider G(1) and G(∞).

In this picture, the above ambiguities in choosing the periodicity of Rϕ translate to
the existence of inequivalent group actions of G(1) on R2 labelled by n ∈ Z

αn(R(1)
ϕ , ~x) =

(
x cos(nϕ)− y sin(nϕ)
x sin(nϕ) + y cos(nϕ)

)
. (1.20)

In other words R
(1)
ϕ could act as a rotation by n times the angle specified by the

group element. Note that α0 is the trivial group action which acts as the identity
map for all group elements. The difference for G(∞) as compared to G(1) is that
the parameter n of the action αn is not restricted to the integers, but can rather be
any real number, n ∈ R, because of the absence of the periodicity constraint.

Furthermore, the groups are isomorphic to the additive groups on a circle or on the
real line

G(n) ≡ R/2πnZ, G(∞) ≡ R, (1.21)

via the trivial identification R
(n)
ϕ ≡ ϕ. This shows that the set of rotations has the

topology of either the circle or the real line

G(n) ≡ S1, G(∞) ≡ R. (1.22)

Thus G(n) is compact while G(∞) is non-compact in a topological sense. Compact
groups have some convenient features which simplifies their treatment
substantially. Furthermore, they play an important role in quantum physics.
Nevertheless, non-compact groups are very relevant for physics as well.

1.2 Representations

The final topic in connection to two-dimensional rotations are representations.
Representations are perhaps the most important objects in group theory relevant

1.4



to physics, in particular quantum physics. A representation is essentially a group
action which acts linearly on a set. For this to make sense, the set should have the
structure of a vector space. Useful examples of representations correspond to the
notions of vectors, tensor, spinors, but also momentum eigenstates, spherical
harmonics, and many other physics concepts.

Definition. A representation ρ 4 of a group G on a vector space V is a map

ρ : G→ Aut(V), (1.23)

which respects the group composition law and the identity element

ρ(a) ◦ ρ(b) = ρ(µ(a, b)), ρ(e) = idV, (1.24)

or more concisely in the multiplicative notation

ρ(a)ρ(b) = ρ(ab), ρ(e) = 1. (1.25)

Note that the formal definition of the representation is slightly different from a
linear group action α : G× V→ V in that it maps a group element to an
automorphism of V, i.e. an invertible linear transformation from V to itself. The
space Aut(V) is equipped with a natural multiplication which is composition of the
linear transformations. In the finite-dimensional case, and given a certain basis of
V, a linear transformation can be viewed as a square matrix, and multiplication
corresponds to the matrix product.

In the physics context, as in the case of the group action, the representation symbol
ρ is often omitted, and ρ(a)~v becomes a~v. This is valid because in many cases,
there is a distinguished representation for a particular vector space. Furthermore,
in the physics literature, no distinction is made between the representation as
defined above and the space V it acts upon. Often the context reveals which of the
two concepts is referred to. More correctly, the vector space can be called a
G-module. We shall refer to the space V as the representation space.

Types of Representations. The group actions discussed above are linear and
thus correspond to representations on the space V = R2. For the plain rotation we
can define the representation

ρ(Rϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. (1.26)

The resulting matrices are orthogonal, (Rϕ)TRϕ = 1 and have unit determinant.
Matrices of this kind form the group SO(2). For the compact group G(1) the
representation ρ : G(1) → SO(2) is one-to-one which shows the group isomorphism

G(1) ≡ SO(2). (1.27)

4Other common symbols are R, D, r, Γ , . . .
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The latter is a common name for the group of rotations in two-dimensional space.
In this case, the identity map on SO(2) in fact serves as a representation, namely
the defining or fundamental representation. The above representation is real,
two-dimensional and orthogonal, i.e. it acts on a vector space R2 over the field R of
real numbers by orthogonal transformations (w.r.t. the canonical symmetric
bilinear form on R2).

It can equivalently be written as a complex, one-dimensional, unitary
representation which acts on a vector space C1 over the field C of complex
numbers by unitary transformations (w.r.t. any hermitian form on C1).5 To that
end, one embeds the vector (x, y) ∈ R2 into C1 as x+ ı̊y and obtains6

ρC(Rϕ) =
(
eı̊ϕ
)
. (1.28)

Again, this map is one-to-one and thus we have a group isomorphism to the group
of unitary 1× 1 matrices

G(1) ≡ U(1). (1.29)

Beyond real and complex representations, one often encounters quaternionic or
pseudo-real representations over the field H of quaternions.7 8

Similarly, a representation is called symplectic if all group elements are mapped to
symplectic transformations (w.r.t. some anti-symmetric bilinear form on V).

Representation Theory. The representation theory of a given group describes
its representations as well as their relations. For our example, the compact abelian
group G(1),9 we have already found further group actions which translate to
representations on R2

ρn(Rϕ) =

(
cos(nϕ) − sin(nϕ)
sin(nϕ) cos(nϕ)

)
. (1.30)

Equivalently, we can write these as complex one-dimensional representations10

ρC,n(Rϕ) = eı̊nϕ. (1.31)

Given some representation(s), there are three standard tools to construct further
ones, namely similarity transformations, direct sums and tensor products. A

5In the ordinary (strict) sense, the notion of unitarity requires that the underlying hermitian
form is positive definite.

6The real representation matrix has a particular form which allows the interpretation as
complex multiplication: (c+ ı̊s)(x+ ı̊y) = (cx− sy) + ı̊(sx+ cy), where c = cosϕ and s = sinϕ.

7Even though quaternions are non-commutative, matrices with quaternionic entries are
perfectly admissible (in contradistinction to the remaining division algebra of octonions, where
associativity is lost).

8For example, spinors in three-dimensional space (and correspondingly the Pauli matrices)
have a quaternionic structure rather than a complex one. Nevertheless, physicists usually avoid
thinking about quaternions and instead consider a complex vector space of twice the dimension.

9The representation theory for the non-compact abelian group G(∞) is analogous, but the
parameters m,n can take arbitrary real values instead of integer values.

10It is not a coincidence that this function appears in Fourier series.
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similarity transformation by some invertible linear map T ∈ Aut(V) applied to a
representation ρ on V yields a new representation ρ′ on V

ρ′(a) = Tρ(a)T−1. (1.32)

It is straight-forward to convince oneself of this fact. This new representation ρ′

behaves for all purposes like ρ. Therefore, one hardly distinguishes between ρ and
ρ′ in representation theory and calls the representations equivalent.

ρ′ ≡ ρ. (1.33)

For example, the real representations ρn and ρ−n are equivalent

ρn ≡ ρ−n via T =

(
0 1
1 0

)
. (1.34)

The direct sum of two or more representations ρj on the spaces Vj is a
representation ρ⊕ := ρ1⊕ . . .⊕ ρN on the direct sum of spaces V⊕ := V1⊕ . . .⊕VN

ρ1 ⊕ . . .⊕ ρN : G→ Aut(V1 ⊕ . . .⊕ VN). (1.35)

The direct sum of vector spaces is easily explained if the individual vector spaces
are equipped with some bases. A basis of the direct sum is given by the union of
all the bases, where all basis vectors are treated as linearly independent. This
implies that the dimension of the direct sum equals the sum of dimensions of its
components. The direct sum of vector spaces is the same as the Cartesian product
V⊕ = V1 × . . .× VN . One can write the direct sum of representations as a matrix
in block form acting on the individual spaces Vj

ρ⊕(a) =


ρ1(a) 0 . . . 0

0 ρ2(a) 0 0
... 0

. . . 0
0 . . . 0 ρN(a)

 . (1.36)

In other words, direct sums of representations are block-diagonal and vice versa.
One notable example is that the direct sum of ρC,n and ρC,−n is the
two-dimensional representation

ρC,+n,−n(Rϕ) =

(
eı̊nϕ 0

0 e−̊ınϕ

)
. (1.37)

This matrix is in fact equivalent to

ρn(Rϕ) = TρC,+n,−n(Rϕ)T−1 with T =

(
1 −̊ı
−̊ı 1

)
. (1.38)

This shows the statement11

ρn ≡ ρC,n ⊕ ρC,−n. (1.39)

11Note that the direct sum of a complex representation and its complex conjugate is a real
representation. In our case, the complex conjugate of ρC,n is ρC,−n. This statement is based on
the equivalence R2 ≡ C⊕ C̄ where C̄ is understood as the complex conjugate space of C.
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Similarly, the tensor product of two or more representations ρj on the spaces Vj is
a representation ρ⊗ := ρ1 ⊗ . . .⊗ ρN on the tensor product of spaces
V⊗ := V1 ⊗ . . .⊗ VN

12

ρ1 ⊗ . . .⊗ ρN : G→ Aut(V1 ⊗ . . .⊗ VN). (1.40)

A tensor product of vector spaces is conveniently defined via their bases. The basis
of the tensor product is the Cartesian product of the bases of the individual vector
spaces. As such, the dimension of the tensor product equals the product of the
dimensions of its components. The tensor product representation is defined by

ρ⊗(a) := ρ1(a)⊗ . . .⊗ ρN(a). (1.41)

The representation axioms follow immediately from the multiplication rule for
tensor products13

(m1 ⊗ . . .⊗mN)(n1 ⊗ . . .⊗ nN) = (m1n1 ⊗ . . .⊗mNnN). (1.42)

As an example, the tensor product of two generic complex one-dimensional
representations is another such representation

ρC,m ⊗ ρC,n = ρC,m+n. (1.43)

The situation for two generic real representations is more involved

(ρm ⊗ ρn)(Rϕ) =


cmcn −cmsn −smcn smsn
cmsn cmcn −smsn −smcn
smcn −smcn cmcn −cmsn
smsn smcn cmsn cmcn

 (1.44)

with the abbreviations ck := cos(kϕ) and sk := sin(kϕ). A similarity
transformation by the matrix

T =


−1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 1

 (1.45)

and use of the addition theorem for trigonometric functions brings the above
representation to the block form diag(ρm+n, ρm−n). Consequently, we have the
equivalence

ρm ⊗ ρn ≡ ρm+n ⊕ ρm−n. (1.46)

Note that this statement also follows from the above equivalences.

12In quantum physics, the tensor product of two systems describes the combined system which
can take on entangled states.

13A tensor product of two matrices A⊗B can be viewed as a block matrix of type A whose
blocks are of type B, i.e. a nesting of two matrices. The elements of A⊗B are the elements of A
times the elements of B (where every combination appears precisely once).
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We observe that some representations, in particular tensor products of
representations, are equivalent to the direct sum of representations. Direct sum
representations are easy to set up, therefore they can be discarded towards
understanding the representation theory of a given group; it suffices to focus on
atomic building blocks. There are three types of representations in this regard:

A representation ρ on V which takes a block-diagonal form on the direct sum of
two (suitably chosen) subspaces V1 ⊕ V2

ρ ≡
(
ρ1 0
0 ρ2

)
(1.47)

is called decomposable; otherwise it is indecomposable. For example, the
representation ρn is indecomposable over R (not over C as we have seen above) for
generic n. For n = 0, however, the representation is trivial

ρ0(a) =

(
1 0
0 1

)
, (1.48)

and can be decomposed into two trivial one-dimensional representations.

A representation with an invariant subspace is called reducible; otherwise it called
irreducible. An invariant subspace of ρ is a space V1 ⊂ V for which ρ(a)V1 ⊂ V1

for all a ∈ G. A reducible representation has a block form

ρ ≡
(
ρ1 ∗
0 ρ2

)
. (1.49)

The restriction of the representation to the invariant subspace V1 can easily be
shown to be a sub-representation ρ1 of ρ.14 Note that a decomposable
representation is clearly reducible, while the converse is not necessarily true: there
exist reducible but indecomposable representations. However, for certain classes of
representations (such as the physically relevant case of unitary representations)
they can be excluded. In representation theory, the irreducible representations
serve as the atomic building blocks from which other representations can be
constructed. Due to their importance the term irreducible representation is often
abbreviated as irrep.

Altogether, we observe that the set of considered representations of
G(1) ≡ SO(2) ≡ U(1) closes under all the above elementary operations on
representations. All complex irreducible representations are one-dimensional and
unitary. In our case, they are labelled by an integer n ∈ Z. All non-trivial real
irreducible representations are two-dimensional and orthogonal. In our case, they
are labelled by a positive integer n ∈ Z+. The trivial irreducible representation is
clearly one-dimensional.15 We have also seen how to translate between real and
complex representations. In fact, the above classification of irreducible

14Also ρ2 is a representation on V2, but this is not a sub-representation of ρ because
ρ : V2 → V as compared to ρ : V1 → V1. In fact, this implies that there is some freedom to
choose V2 and this choice has some influence on the representation ρ2.

15Note again the similarities to complex and real Fourier series.
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representations (up to the precise labelling) is universal for compact abelian
groups: All complex representations are one-dimensional and all real
representations except for the trivial one are two-dimensional. Thus, the
representation theory of compact abelian groups is hardly exciting. For
non-abelian groups the representation theory has much richer structures by far.
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2 Three-Dimensional Symmetries

In the following we consider the more exciting case of symmetries in three
dimensions. The group of rotations SO(3) and its double cover SU(2) serve as the
prototype of continuous groups.

2.1 Lie Group

Let us start by setting up the group. Then we shall discuss its intrinsic geometry
and relate it to physics.

Elements of the Group. Rotations are linear transformations of R3 which
leave the scalar product between two vectors ~x, ~y invariant. We can thus write a
rotation as a 3× 3 matrix which is orthogonal

RT = R−1. (2.1)

Reflections share the above properties, and we can exclude them by the further
requirement that the matrix has positive determinant

detR = +1. (2.2)

The above constraints are compatible with the group axioms, and hence the set of
all such matrices forms a group

SO(3) =
{
R ∈ Aut(R3);RTR = 1, detR = 1

}
. (2.3)

There are several ways of parametrising rotations in three dimensions. A
prominent one is Euler angles

Rφ,θ,ψ = Rz
φR

y
θR

z
ψ, (2.4)

where Rx,y,z
ψ denote rotations about the corresponding axis,

Rz
φ =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 , Ry
θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (2.5)

The angles φ and ψ are 2π-periodic and 0 ≤ θ ≤ π. Note that the individual
rotations do not commute (in general); rotations in three dimensions form a
non-abelian group. Therefore the first and last rotations cannot be combined into
a single rotation about the z-axis. This feature allows to parametrise arbitrary
rotations in three dimensions, even about the x-axis.
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A different way of parametrising rotations in three dimensions makes use of the
fact that any rotation leaves a one-dimensional subspace invariant.1 We can
specify this subspace by a unit vector ~n ∈ S2 ⊂ R3. The rotation then acts on the
orthogonal two-dimensional subspace as a two-dimensional rotation about some
angle ψ. This matrix of rotation can be written as

R~n,ψ = ~n~nT + ~n× sinψ + (1− ~n~nT) cosψ. (2.6)

Here, ~v× denotes the 3× 3 anti-symmetric matrix that defines the cross product of
~v with an arbitrary vector ~w via matrix multiplication, ~v× ~w := ~v × ~x,2

~v× :=

 0 −vz +vy
+vz 0 −vx
−vy +vx 0

 , (~v×)ij = εikjv
k. (2.7)

Without loss of generality we can assume that 0 ≤ ψ ≤ π. It is straight-forward to
confirm that the above form of R~n,ψ describes a rotation that leaves the axis ~n
invariant. In particular, Rz

φ and Ry
θ are easily reproduced.

The group is defined as a subgroup of Aut(R3). Therefore, there the identity map
on Aut(R3) restricted to SO(3) is a representation. It is called the fundamental,
defining or vector representation of SO(3).3

Group Manifold and Topology. Let us discuss the geometric properties of the
group itself. The group elements are parametrised by three continuous numbers:
(φ, θ, ψ) ∈ R3 or (~n, ψ) ∈ S2 × R. The neighbourhood of a generic point is a patch
of R3; we shall discuss special points further below. Furthermore, the group
composition rule and inversion are apparently smooth functions of the coordinates.
These are the defining properties of a Lie group.

A Lie group is a group whose set G is a differentiable manifold and whose
composition rule and inversion are smooth maps on this manifold.

How about the special points? Let us discuss the parametrisation R~n,ψ. The
parameter ~n ∈ S2 has no distinguished point; S2 is a symmetric space and treated
as such in the matrix R~n,ψ. The remaining parameter ψ can be restricted to the
interval 0 ≤ ψ ≤ π, both of whose end-points are special. For ψ = 0, the matrix
R~n,0 is the identity and the dependence on ~n becomes trivial. This situation is
analogous to polar coordinates at the coordinate origin. We could thus introduce a
non-unit vector to describe a general rotation

~ψ := ~nψ ∈ R3, |~ψ| ≤ π. (2.8)

1The spectrum of R−1 = RT coincides with the one of R. Consequently, the eigenvalues of
orthogonal matrices come in inverse pairs (e+iψ, e−iψ) or in singlets (+1 or −1). As there are
three eigenvalues whose overall product is 1, one of them must be 1.

2We assume the Einstein summation convention where for each pair of (upper and lower)
equal indices within a term there is an implicit sum over the range of allowable values, e.g.
vkw

k :=
∑3
k=1 vkw

k.
3Many relevant examples of groups in physics are defined in terms of matrices. The proximity

of the group and its fundamental representation may be a reason for an occasional confusion of
terminology between groups, representations and, later on, algebras.
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Its direction describes the axis of rotation, its magnitude the angle of rotation.
The dependence of the group element on ~ψ becomes non-singular at the coordinate
origin ~ψ = 0, which describes the unit element.

It remains to discuss the boundary ψ = π of the parameter space. These are
rotations by half of a full turn. In this special case, it does not matter whether a
rotation is towards the left or the right; the two rotations are identical

~n ≡ −~n at ψ = π. (2.9)

More generally, there is the following identification of group elements

R~n,ψ = R−~n,2π−ψ. (2.10)

This shows that the neighbourhood of a point at ψ = π is not special and still a
patch of R3. The boundary at ψ = π simply arises by identifying rotations about
an angle ψ > π with rotations about an angle ψ < π.

Our findings are summarised in the figure:

ψ = π

ψ = 0

1 R

R

(2.11)

It makes sense to view (~n, ψ) as polar coordinates around the north-pole on a
three-dimensional sphere S3. The north-pole is the point ψ = 0 while ψ = π
describes points on the equator. The above relation between the rotations then
simply identifies antipodes. This shows that the group manifold has the topology
of three-dimensional real projective space

SO(3) ≡ S3/Z2 ≡ RP 3. (2.12)

Now the Z2 quotient complicates the topology of the manifold somewhat. The
group manifold is connected, but not simply connected; its fundamental group is
Z2 because S3 is simply connected. It thus makes sense to consider a bigger group
which contains the original group and which is simply connected. This is the
universal cover of a group.4 For SO(3) it is a double cover known as the spin
group Spin(3). It is isomorphic to a unitary group or a symplectic group, and it
has the topology of a three-sphere

Spin(3) ≡ SU(2) ≡ Sp(1) ≡ S3. (2.13)

The extension to Spin(3) lifts the identification between ψ and 2π − ψ and makes
ψ a 4π-periodic parameter. The south pole of the group manifold becomes a

4In the case of two-dimensional rotations, the fundamental group of G(1) = SO(2) is Z and its
universal cover is G(∞) = R.
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rotation by 2π, i.e. it corresponds to the operator (−1)F in quantum mechanics.
This is summarised in the following figure:

ψ = π

ψ = 0

ψ = 2π

1

(−1)F

(2.14)

In fact, Lie theory provides a natural metric on the group manifold; here it is the
canonical metric on the round S3. The latter is a curved space, however, with a
large amount of symmetry, a so-called symmetric space. More on these issues will
follow later.

Parity. A physically meaningful extension of the group of rotations is to include
reflections. This yields the matrix group

O(3) =
{
R ∈ Aut(R3);RTR = 1

}
. (2.15)

This group consists of the rotational elements R~n,ψ and elements which combine a
reflection P with a rotation PR~n,ψ. For three dimensions, a reasonable choice for
the elementary reflection is the overall parity operation

P = − diag(1, 1, 1), (2.16)

which obeys the rules P 2 = 1 and PR = RP . Thus parity decouples from the
rotations and extends the rotations by a discrete group Z2

O(3) = SO(3)× Z2. (2.17)

For the group manifold we obtain two disconnected copies of the projective space

O(3) ≡ RP 3 + RP 3 =
1

+
P

. (2.18)

The situation becomes somewhat more interesting when we go to the double cover:
Here, there are essentially two distinct choices for a meaningful parity operation.
One may assume parity to square to the identity P 2 = 1. In this case, the group is
a direct product

Spin(3)× Z2. (2.19)

However, we also have the almost trivial rotation by 2π at our disposal. It reduces
to the identity in SO(3), but it is a non-trivial element of Spin(3). Thus we can set
P 2 = (−1)F such that only the fourth power of parity is trivial P 4 = 1. In this
case the group can be written as a semi-direct product

Z2 n Spin(3) (2.20)

2.4



meaning that Z2 interacts non-trivially with Spin(3). More concretely, parity
combines with the centre Z2 of Spin(3) consisting of 1 and (−1)F and forms the
group Z4. In both of the above cases, the group manifold is two copies of S3.

S3 + S3 =
1

(−1)F

+
P

(2.21)

The interesting observation for physics is that there is a choice in how to define the
parity operation in the presence of fermions. Note that the interactions of parity
and spin will become even more complicated once Lorentz transformations are
included.

2.2 Lie Algebra

We have seen (by means of example) that a non-abelian Lie group is based on a
curved manifold. Its elements and thus its representations were described by a
well-chosen combination of trigonometric functions. For more elaborate groups
such a direct approach becomes rather difficult. In physics we often use the
approach of series expansion in order to treat problems at least approximately. For
Lie groups this treatment is particularly fruitful because the linearisation of the
problem covers most aspects of these groups exactly. Merely questions concerning
topology require the full non-linear treatment.

For conciseness we shall restrict to matrix groups, i.e. G ⊂ Aut(V) for some vector
space V. This generalises the case of G = SO(3) with V = R3 which we shall use as
the main example. Later on we will discuss more general, abstract Lie groups.

Tangent Space. Let us set up the perturbative treatment. The one point we
understand very well for any Lie group is the identity element 1. It therefore
makes sense to investigate its neighbourhood containing group elements which we
may declare as ‘small’. They are small in the sense that multiplying two such
elements will again yield another (not necessarily quite as) small element. To set
up perturbation theory, we consider differentiable curves on the group manifold
which pass through the identity element. In particular, let Ik ⊂ R be some
sufficiently small intervals containing the number 0, and let Ak : Ik → G be some
differentiable curves on G such that Ak(0) = 1. For small t ∈ Ik the most relevant
information about the curve Ak is the derivative at t = 0

ak = A′k(0) ∈ g ⊂ End(V).
1

G

ga

A(t)
(2.22)

Note that Ak(t) ∈ Aut(V) ⊂ End(V) is an endomorphism (linear map from V to
V; square matrix), and the space of endomorphisms End(V) is a vector space. As

2.5



such, the derivative w.r.t. t is canonically defined5 and yields another
endomorphism. The space of all permissible ak is called the tangent space T1G of
G at the unit element 1. We denote it by a lowercase gothic letter g := T1G
corresponding to the uppercase letter G that labels the group. It naturally carries
the structure of a vector space for the composite path A3(t) = A1(λ1t)A2(λ2t) has
the derivative

λ1a1 + λ2a2 = a3 ∈ g. (2.23)

For the sample group SO(3), the corresponding tangent space so(3) follows
straight-forwardly from the form R~n,ψ.6 The unit element is parametrised as
R~n0,0 = 1 with arbitrary ~n0. We thus define a path ~n(t) = ~n0 + . . . and
ψ = 0 + tψ1 + . . . and expand

R~n,ψ = 1 + ψ1~n
×
0 t+ . . . . (2.24)

Here ~n×0 is an anti-symmetric matrix by definition, and arbitrary 3× 3
anti-symmetric matrices can be written as ψ1~n

×
0 . This shows that so(3) is the

space of anti-symmetric 3× 3 matrices

so(3) = {r ∈ End(R3); rT = −r}. (2.25)

Adjoint Actions. The composition rule of the group induces a corresponding
algebraic structure on the vector space g. In order to understand it, we first define
the adjoint action Ad(R) : g→ g of a group element R ∈ G on g. We can combine
R and a curve A1(t) to define another curve A2(t) = RA1(t)R−1 which passes
through the identity element. This defines a relationship between two elements of
g:

Ad(R)(a1) := Ra1R
−1 = a2 ∈ g. (2.26)

Since g is a vector space and the adjoint action is linear in a1, the latter in fact
defines a representation Ad : G→ Aut(g) of the Lie group G on g, called the
adjoint representation.

We can go one step further, and consider the adjoint action of a curve; this allows
us to define the adjoint action ad(a) : g→ g of an element a ∈ g of g. We set
a3(t) = Ad(A2(t))(a1) and obtain

ad(a2)(a1) := a2a1 − a1a2 = a3 ∈ g. (2.27)

Clearly, the adjoint action ad : g→ End(g) is a linear map.

Algebra. Altogether, the adjoint action ad(a)b ∈ g is linear in both arguments
a, b ∈ g. As such, it equips the vector space g with the structure of an algebra, the

5In any given basis, the derivative is determined element by element.
6The parametrisation Rφ,θ,ψ using Euler angles is not immediately suitable because in first

order only θ and φ+ ψ contribute.
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so-called Lie algebra. The composition rule of a Lie algebra is called the Lie
bracket J·, ·K : g× g→ g,

Ja, bK := ad(a)b = ab− ba =: [a, b]. (2.28)

Thus for any Lie group G there is a corresponding Lie algebra g.7 In the case of a
Lie algebra, the composition rule is anti-symmetric8

Ja, bK = −Jb, aK for all a, b ∈ g. (2.29)

Moreover, it is not even associative. Instead, it satisfies the Jacobi identity9

q
a, Jb, cK

y
+

q
b, Jc, aK

y
+

q
c, Ja, bK

y
= 0 for all a, b, c ∈ g. (2.30)

In our case, the anti-symmetry and Jacobi identity follow from the corresponding
identities of matrices

[a, b] = −[b, a] for all a, b ∈ End(V) (2.31)

and [
a, [b, c]

]
+
[
b, [c, a]

]
+
[
c, [a, b]

]
= 0 for all a, b, c ∈ End(V). (2.32)

Somewhat confusingly, the Lie bracket J·, ·K typically uses the same symbol as the
matrix commutator [·, ·]. One should bear in mind that a bilinear map
J·, ·K : g× g→ g refers to Lie brackets while a bilinear map
[·, ·] : End(V)× End(V)→ End(V) refers to the matrix commutator. In cases
where the Lie algebra is given in terms of matrices, g ⊂ End(V), the Lie brackets
and the matrix commutator coincide.

The major difference between a Lie algebra g and some space of matrices End(V)
is that the former is equipped with the Lie bracket J·, ·K as the only algebraic
operation, whereas the latter uses composition of matrices. Note that the Lie
bracket is anti-symmetric and non-associative whereas composition is has indefinite
symmetry, but is associative. Clearly, composition of matrices is more general
because the commutator of matrices can be used to define a Lie bracket on End(V).

The algebra so(3). To apply the above concept to so(3), it makes sense to
introduce a basis Jk for this vector space. The elements of so(3) are
anti-symmetric matrices. However, (quantum) physicists are obsessed with
hermitian matrices because their spectrum of eigenvalues is real. Therefore, we
introduce a conventional factor of ı̊ for the basis elements of g to make the
anti-symmetric matrices hermitian10 11

Jk := ı̊~e×k ∈ ı̊ so(3) ⊂ so(3,C), k = x, y, z. (2.33)

7We have shown this statement only for matrix Lie groups G ⊂ End(V), but it holds in
general.

8It measures by how much the composition rule of the Lie algebra deviates from being abelian.
9The Jacobi identity is a consequence of associativity of the associated Lie group.

10Mathematicians prefer to avoid cluttering many expressions by factors of ı̊ and work with a
real basis Jk = ~e×k instead.

11Note that the elements of the Lie algebra remain real, a ∈ so(3), merely our basis is complex
(purely imaginary), Jk ∈ ı̊ so(3). A generic element thus expands as a = ı̊akJk. Later on we shall
work with complex(ified) Lie algebras such as so(3,C) where factors of ı̊ are not an issue.
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More explicitly

Jx,y,z =

0 0 0
0 0 −̊ı
0 +̊ı 0

 ,

 0 0 +̊ı
0 0 0
−̊ı 0 0

 ,

 0 −̊ı 0
+̊ı 0 0
0 0 0

 . (2.34)

The Lie bracket on this space can now be expanded as follows

JJi, JjK = [̊ı~e×i , ı̊~e
×
j ] = −(~ei × ~ej)× = −εijk~e×k = ı̊εijkJk. (2.35)

Above, we have claimed that the double cover of SO(3) is the group SU(2) of
unitary 2× 2 matrices with unit determinant. Its Lie algebra su(2) consists of
anti-hermitian, traceless 2× 2 matrices

su(2) = {m ∈ End(C2);m = −m†, trm = 0}. (2.36)

An (imaginary) basis Jk ∈ ı̊ su(2) for such matrices is provided by the well-known
Pauli matrices

Jk = 1
2
σk. (2.37)

The Lie algebra follows by direct computation

JJi, JjK = [1
2
σi,

1
2
σj] = ı̊

2
εijkσk = ı̊εijkJk. (2.38)

It agrees perfectly with the Lie algebra so(3), thus the two are isomorphic

so(3) ≡ su(2). (2.39)

Note that the isomorphism of Lie algebras is blind to the topological structure of
the group manifold (SO(3) ≡ SU(2)/Z2).

Finally, we point out that the Lie algebra for the group O(3) of reflections is the
same so(3). The point here is that O(3) extends SO(3) by a disconnected
component. The neighbourhood of the identity element is the same in both
groups, and thus they share the same Lie algebra.

Exponential Map. We have defined the Lie algebra g as the tangent space of a
Lie group G at the identity element. Conversely, we can construct a map from the
Lie algebra to the Lie group, the so-called exponential map

exp : g→ G. (2.40)

For matrix groups G ⊂ Aut(V) or for representations ρ : G→ Aut(V) the map is
given by the exponential of matrices exp : End(V)→ Aut(V) defined as a power
series

expA =
∞∑
n=0

1

n!
An. (2.41)

Like the ordinary exponential function, this series converges for all A.
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Importantly, the exponential map has the group property that

exp a exp b = expC(a, b), (2.42)

where C(a, b) ∈ g is determined by the Baker–Campbell–Hausdorff formula in
terms of iterated Lie brackets (or commutators where applicable)

C(a, b) = a+ b+ 1
2
Ja, bK + 1

12

q
a, Ja, bK

y
+ 1

12

q
b, Jb, aK

y
+ . . . . (2.43)

Furthermore, the inverse is given by

(exp a)−1 = exp(−a). (2.44)

For a connected Lie group, the exponential map is typically surjective. If there is
more than one connection component, however, only the component containing the
identity element can be reached. As physicists generally prefer to work with the
linearised Lie algebra, they frequently refer to the exponential map to denote
elements of the Lie group. A prominent example in physics is the coefficient eı̊px in
the Fourier transformation. Here, p refers to the eigenvalue of the momentum
operator P (representation of the algebra of translations) and x to the position
(shift from the origin). In terms of algebra, if P is the generator of infinitesimal
translations (Lie algebra), eı̊Px generates a finite translation (Lie group). Note that
as usual the factor of ı̊ is due to the choice of an imaginary basis.

2.3 Representations

We want to understand the representation theory of the rotation group SO(3). To
this end, the Lie algebra so(3) comes in handy because the linearisation makes the
problem much easier to handle.

Lie Algebra Representations. First of all, representations of a Lie group G
straight-forwardly translate to representations of the corresponding Lie algebra g.
A representation of a Lie algebra is defined as a linear map

ρ : g→ End(V) (2.45)

such that the Lie brackets are represented by the commutator of matrices

ρ(Ja, bK) = [ρ(a), ρ(b)] for all a, b ∈ g. (2.46)

For example, we already know two representations of su(2) ≡ so(3) as the defining
representations of these two algebras12

ρsu(2)(Jk) = 1
2
σk ∈ ı̊ su(2) ⊂ End(C2),

ρso(3)(Jk) = i~e×k ∈ ı̊ so(3) ⊂ ı̊End(R3). (2.47)

12The appearance of the imaginary unit ı̊ is due to choice of imaginary basis.
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Furthermore, for every Lie algebra there is the trivial representation (it exist for
any vector space V, but typically one assumes V = R1)

ρ0 : g→ End(V), ρ0(Jk) = 0, (2.48)

as well as the adjoint representation ad

ad : g→ End(g), Ja, bK = ad(a)b. (2.49)

It is straight-forward to prove that the latter is a representation via the Jacobi
identity: for all a, b, c ∈ g

ad(Ja, bK)c =
q
Ja, bK, c

y
=

q
a, Jb, cK

y
−

q
b, Ja, cK

y

= ad(a) ad(b)c− ad(b) ad(a)c = [ad(a), ad(b)]c. (2.50)

The adjoint representation is equivalent to the defining representation ρso(3) of
so(3) noting that g ≡ R3 as a vector space

ad ≡ ρso(3). (2.51)

To show this statement, identify Jk ≡ ı̊~ek and compare

ad(Ji)Jj = JJi, JjK = ı̊εijkJk,

ρso(3)(Ji)Jj = −~e×i ~ej = −~ei × ~ej = −εijk~ek = ı̊εijkJk. (2.52)

The above representations can be characterised as complex, two-dimensional,
unitary (ρsu(2)) and real, three-dimensional, orthogonal (ρso(3)).

A third type of number field suitable for representations is given by the
quaternions H. We are now in a good position to discuss this option. The
quaternions are a generalisation of the complex numbers spanned by the real unit
1 and three imaginary units ı̂, ̂, k̂. Each imaginary unit on its own behaves as the
complex imaginary unit ı̊. Their products are given by ı̂̂ = −̂̂ı = k̂ and cyclic
permutations of ı̂, ̂, k̂. As such they are non-commutative numbers. Quaternions
are closely related to the Pauli matrices because they can be represented in terms
of 2× 2 complex matrices as follows

(1, ı̂, ̂, k̂) ≡ (1, −̊ıσx, −̊ıσy, −̊ıσz). (2.53)

It is straight-forward to show the equivalence. This equivalence implies that the
representation ρsu(2) can be written as the quaternionic representation
ρsp(1) : g→ End(H1) 13

ρsp(1)(−̊ıJx) = 1
2
ı̂, ρsp(1)(−̊ıJy) = 1

2
̂, ρsp(1)(−̊ıJz) = 1

2
k̂. (2.54)

13The imaginary basis Jk is not suitable for the quaternionic representation because of the
clash between the complex imaginary unit ı̊ (which is meant to commute with everything) and

the the quaternionic imaginary unit ı̂ (which does not commute with ̂, k̂). Therefore we express
the representation in terms of the real basis −̊ıJk.
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Note that this representation is symplectic because

ρsp(1)(a)† = −ρsp(1)(a), (2.55)

where the adjoint operation † flips the order and sign of the imaginary units
ı̂, ̂, k̂.14 This shows the equivalence of Lie algebras

su(2) ≡ sp(1). (2.56)

In terms of physics, the defining representation of su(2) is in fact quaternionic,
even though hardly any physicist would think of it in this way.

Construction of Irreducible Representations. We now want to construct
general finite-dimensional irreducible representations of so(3) from scratch. For
simplicity, the representation is assumed to be complex N -dimensional

ρ : so(3)→ End(V), V = CN . (2.57)

Let us single out the generator Jz ∈ ı̊ so(3) and split the space V into eigenspaces15

Vm corresponding to the eigenvalue m ∈ C of ρ(Jz)

V =
⊕
m

Vm. (2.58)

Furthermore, consider the generators J± defined as

J± := Jx ± ı̊Jy ∈ so(3,C). (2.59)

These generators obey the following Lie brackets

JJz, J±K = ±J±, (2.60)

JJ+, J−K = 2Jz. (2.61)

The former relation implies that ρ(J+) maps a vector of the space Vm to a vector of
the space Vm±1 (if the latter exists, otherwise to the trivial vector): Suppose that
|ψ〉 ∈ Vm, then define |ψ′〉 := ρ(J±)Vm and show that the latter belongs to Vm±1

ρ(Jz)|ψ′〉 = ρ(Jz)ρ(J±)|ψ〉
= ρ(J±)ρ(Jz)|ψ〉+ [ρ(Jz), ρ(J±)]|ψ〉
= mρ(J±)|ψ〉 ± ρ(J±)|ψ〉
= (m± 1)|ψ′〉. (2.62)

14This does not explain the term symplectic which for representations of the Lie algebra means
anti-symmetric w.r.t. an anti-symmetric metric. To that end, define the order-inverting transpose
operation as 1T = 1, ı̂T = ı̂, ̂T = −̂, k̂T = k̂. Thus, ̂ is the only anti-symmetric number and we
define the symplectic conjugate as x 7→ −̂xT̂. This operation is the same as x 7→ x†, and
−̂xT̂ = x† = −x is solved by the basis ı̂, ̂, k̂.

15A priori, the matrix ρ(Jz) could be non-diagonalisable. The following discussion nevertheless
works with minor adjustments. Eventually, we will see that ρ(Jz) is in fact diagonalisable.
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Now, the generators Jz and J± form a basis of so(3,C). For an irreducible
representation, the space V must be spanned by the vectors which are obtained by
applying a sequence of ρ(Jk) on any particular state |ψ〉 ∈ V. This implies that the
labels m of Vm must form an uninterrupted sequence

m ∈ {m−,m− + 1, . . . ,m+ − 1,m+}. (2.63)

Let us choose some state |ψ〉 from the ‘highest’ eigenspace Vm+ . We claim that the
sequence of states

|ψk〉 := ρ(J−)k|ψ〉, k = 0, . . . , N − 1 = m+ −m−, (2.64)

spans the complete space V. It suffices to show that all the states are non-trivial
and that the action of all generators ρ(Jk) closes on this space. By construction
ρ(Jz) maps all states back to themselves. Furthermore, ρ(J−) maps state |ψk〉 to
state |ψk+1〉. The last state |ψN−1〉 is mapped to the zero vector |ψN〉 = 0 because
there is no space Vm−−1. Likewise, the state |ψ0〉 is annihilated by ρ(J+) because
there is no space Vm++1. Let us act on any other state:

ρ(J+)|ψk〉 = ρ(J+)ρ(J−)|ψk−1〉
= ρ(J−)ρ(J+)|ψk−1〉+ [ρ(J+), ρ(J−)]|ψk−1〉
= ρ(J−)ρ(J+)|ψk−1〉+ 2(m+ − k + 1)|ψk−1〉

= 2
k∑
j=1

(m+ − k + j)|ψk−1〉

= k
(
2m+ − k + 1

)
|ψk−1〉. (2.65)

The last step follows by induction terminated by the condition ρ(J+)|ψ0〉 = 0. In
other words, no new states are generated. As a consequence, all spaces Vm are
one-dimensional, and the dimension of the representation is N = m+ −m− + 1.

We can derive one further relationship: The state |ψN〉 = 0 does not exist. By the
above derivation, however, ρ(J+) maps it to N (2m+ −N + 1) |ψN−1〉. This
contradiction is resolved by demanding the coefficient to vanish,

m± = ±1
2
(N − 1). (2.66)

This concludes the construction of the irreducible representation. We see that
there exists one irreducible representation for each positive integer N .

Spin Representations. Let us summarise the findings: An N -dimensional
irreducible representation of so(3) is labelled by a non-negative half-integer
j = 1

2
(N − 1), the so-called spin

ρC,j : so(3,C)→ End(C2j+1), j ∈ 1
2
Z+

0 . (2.67)

The representation space is spanned by the vectors

|m〉, m ∈ {−j,−j + 1, . . . , j − 1, j}. (2.68)
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The generators acts as follows on these states16

ρ(Jz)|m〉 = m|m〉,
ρ(J±)|m〉 = c±m|m± 1〉. (2.69)

The algebra implies the relationship

c+
m−1c

−
m − c−m+1c

+
m = 2m, c+

j = c−−j = 0, (2.70)

which is solved by
c+
m−1c

−
m = (j + 1)j −m(m− 1). (2.71)

Furthermore, we can investigate whether the representation is unitarity. Unitarity
is the statement that the representation maps elements of the real algebra to
anti-hermitian matrices. Our choice of complex basis leads to the following
unitarity relationships

ρ(Jz)
† = ρ(Jz), ρ(J+)† = ρ(J−). (2.72)

The former is manifestly obeyed because m ∈ R. The latter implies

(c+
m)∗ = c−m+1. (2.73)

Together with the above relationship we have

|c+
m−1|2 = |c−m|2 = (j + 1)j −m(m− 1). (2.74)

Importantly, the left hand side is non-negative for |m| ≤ j, i.e. unitarity can be
achieved.17 We can thus write the coefficients explicitly as the real numbers

c±m =
√

(j + 1)j −m(m± 1) =
√

(j ∓m)(j ±m+ 1). (2.75)

Reality of these coefficients, however, does not imply reality of the representation
because the states and generators were chosen to be complex. In fact, one finds
that representations with odd N , or equivalently integer j, are real

ρj : so(3)→ End(R2j+1), j ∈ Z+
0 . (2.76)

Conversely, representations with even N , or equivalently half-integers j, are
quaternionic

ρj : so(3)→ End(Hj+1/2), j ∈ Z+
0 + 1

2
. (2.77)

We shall not show these statements, but merely refer to the examples j = 1 and
j = 1

2
discussed above.

16It is straight-forward to convert these relationships into a matrix notation. Then ρ(Jz) is a
diagonal matrix while the ρ(J±) have non-zero elements next to the diagonal.

17Note that the sequence of states |m〉, |m+ 1〉, . . . breaks precisely at the point where
otherwise unitarity would be violated. This coincidence plays an important role in the
representation theory of more general algebras.
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We have already discussed that the algebras so(3), su(2) and sp(1) are isomorphic,
and thus their representation theory is identical. However, the corresponding Lie
groups SO(3) and SU(2) ≡ Sp(1) are not isomorphic because the latter are double
covers of the former. The representation theory for the larger group SU(2) consists
of all of the above representations. The smaller group SO(3), however, can
accommodate only of a subset of representations. It identifies the unit element
with the antipode (−1)F on the three-sphere SU(2). Thus only such
representations of SU(2) where the antipode (−1)F is mapped to the identity
matrix can be lifted to representations of SO(3). These are precisely the
representations with integer j and odd dimension.

Spherical Harmonics. One of the main applications of the general
finite-dimensional representation of so(3) is spherical harmonics. The spherical
harmonics Yl,m with l ∈ Z+

0 and m ∈ {−l, . . . ,+l} provide an orthogonal basis of
(square integrable) functions on the two-sphere S2

F (θ, φ) =
∞∑
l=0

l∑
m=−l

fl,mYl,m(θ, φ). (2.78)

This decomposition is the analog of the Fourier series for periodic functions, i.e.
functions on the circle S1. We have already related the Fourier series to
representation theory of the group SO(2). Here the relevant group is SO(3) which
serves as the group of isometries of the round two-sphere S2. Note that S2 is the
orbit of a point in R3 under the action of SO(3).

Spherical harmonics have been introduced in the context of electrodynamics
(multipole expansion) and quantum mechanics (orbital angular momentum) and
have been discussed extensively there. Here we note that the spherical harmonics
Yl,m provide a basis for functions which transform in the representation ρl of so(3)
or SO(3).18 The label m corresponds to the state |m〉. In other words, performing
a rotation on the function F (θ, φ) is equivalent to transforming the coefficients fl,m
by means of the representation ρl. Alternatively, one can also say that a function
on S2 transforms in the representation

ρS2 =
∞⊕
l=0

ρl. (2.79)

Casimir Operator. A useful way to classify representations is based on the
Casimir invariants, most importantly, the quadratic invariant. The latter is an
element of the tensor product of two copies of the Lie algebra

C ∈ g⊗ g. (2.80)

18Note that only representations ρj with integer j appear in the decomposition. The
half-integer rotations possess non-trivial rotations by an angle of 2π which evidently cannot be
represented on the space R3 containing the two-sphere S2.
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It has the special property of being invariant

Ja, CK = 0, for all a ∈ g, (2.81)

where the action of g on g⊗ g is defined as ad⊗ ad

Ja, b⊗ cK := Ja, bK⊗ c+ b⊗ Ja, cK. (2.82)

This definition has the convenient feature that a representation ρ : g→ End(V)
can be lifted to a representation of the tensor product algebra ρ : g⊗ g→ End(V)
with19

ρ(a⊗ b) := ρ(a)ρ(b) (2.83)

such that

ρ(Ja, b⊗ cK) = ρ(Ja, bK⊗ c+ b⊗ Ja, cK)
= ρ(Ja, bK)ρ(c) + ρ(b)ρ(Ja, cK)
= [ρ(a), ρ(b)]ρ(c) + ρ(b)[ρ(a), ρ(c)]

= [ρ(a), ρ(b)ρ(c)]

= [ρ(a), ρ(b⊗ c)]. (2.84)

Without further ado, the Casimir invariant for so(3) reads

C = Jk ⊗ Jk = Jz ⊗ Jz + 1
2
J+ ⊗ J− + 1

2
J− ⊗ J+. (2.85)

It obeys the invariance property

[Jj, C] = JJj, JkK⊗ Jk + Jk ⊗ JJj, JkK
= ı̊εjkmJm ⊗ Jk + ı̊εjkmJk ⊗ Jm = 0. (2.86)

Its representation thus takes the form

ρ(C) = ρ(Jk)ρ(Jk). (2.87)

By construction it commutes with the representation of all generators

[ρ(Jk), ρ(C)] = 0. (2.88)

This is a useful property because ρ(C) must acts as a number on any irreducible
representation, e.g.

ρj(C) = j(j + 1). (2.89)

To show this result, we act on the state |j〉 with highest eigenvalue of ρ(Jz). Before
applying ρ(C) blindly, we adjust the representation slightly for the purposes of our
state which obeys ρ(J+)|j〉 = 0

ρ(C) = ρ(Jz)ρ(Jz) + 1
2
ρ(J+)ρ(J−) + 1

2
ρ(J−)ρ(J+)

= ρ(Jz)ρ(Jz) + ρ(Jz) + ρ(J−)ρ(J+). (2.90)

The action on the state thus yields

ρ(C)|j〉 = (j2 + j)|j〉 = j(j + 1)|j〉. (2.91)

By construction then ρ(C)|m〉 = j(j + 1)|m〉 irrespectively of the value of m.

19Elements of the Lie algebra cannot be multiplied, but their representations can. The concept
of universal enveloping algebra will later allow to multiply Lie elements directly.
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Tensor Product Decomposition. An important element of representation
theory is the decomposition of tensor products. The tensor product
ρ⊗ : g→ End(V⊗) of Lie algebra representations ρk : g→ End(Vk), k = 1, . . . , N ,
is defined as a representation

ρ⊗ :=
N∑
k=1

1⊗ . . .⊗ 1⊗ ρk ⊗ 1⊗ . . .⊗ 1. (2.92)

This definition is compatible with the Lie algebra as the tangent space of a Lie
group and the exponential map. The direct sum ρ⊕ : g→ End(V⊕) of
representations is, however, defined analogously to the Lie group

ρ⊕ := ρ1 ⊕ . . .⊕ ρN . (2.93)

The central question which we want to answer is, how does the tensor product of
two representation with spin j and j′ decompose? The tensor product has
dimension (2j + 1)(2j′ + 1). However, the maximum eigenvalue of ρ⊗(Jz) is j + j′

as can be seen from the above formula. This means the tensor product cannot be
irreducible (unless j = 0 or j′ = 0), but it must contain a representation of spin
j + j′ among others.

In order to determine the decomposition, we can use a shortcut of group theory,
namely character polynomials. Let us define a group element g(q) depending on a
formal variable q (on the unit circle if reality conditions are to be respected) as
follows

g(q) = exp
[
2 log(q)Jz

]
= q2Jz . (2.94)

We define the character of this group element in a certain representation ρ as

Pρ(q) = tr ρ(g(q)). (2.95)

The character is most conveniently determined in a basis where ρ(Jz) is diagonal.
Then by construction, Pρ(q) evaluates to

Pρ(q) =
∑
k

nkq
2mk . (2.96)

Here mk is an eigenvalue of ρ(Jz) and nk is its corresponding multiplicity. Thus
the Laurent polynomial Pρ(q) is a convenient tool to summarise the quantum
numbers carried by the representation. For example, a hypothetical representation
with 2 states at m = −1, 5 states at m = −1

2
, 1 state at m = 0 and 4 states at

m = +1 corresponds to the polynomial 2q−2 + 5q−1 + 1 + 4q2. This situation can
also be visualised by a collection of dots as follows:

2q−2 5q−1 1 0q+1 4q+2 (2.97)

Quite clearly, setting q = 1 determines the dimension of some representation as

Pρ(1) = dim ρ. (2.98)
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For the representation of spin j we have20

Pj(q) =

2j∑
k=0

q2k−2j =
q2j+1 − q−2j−1

q − q−1
(2.99)

or in terms of dots:
−j −j + 1 +j − 1 +j

q−2j q−2j+2 q+2j+2 q+2j (2.100)

Now the character polynomial is useful because tensor products and direct sums of
characters are easily computed as the products and sums of characters

Pρ⊗ρ′(q) = Pρ(q)Pρ′(q) (2.101)

and
Pρ⊕ρ′(q) = Pρ(q) + Pρ′(q). (2.102)

Thus the tensor product of two representations with spin j and j′ yields

Pj⊗j′(q) = Pj(q)Pj′(q) =
q2j+1 − q−2j−1

q − q−1

q2j′+1 − q−2j′−1

q − q−1
. (2.103)

(2.104)

We should write this as a sum of polynomials Pj(q). A standard algorithm to
determine the decomposition is analogous to long division:21 Find the highest
power of q and subtract as many of the corresponding irreducible representations
with the corresponding spin. The residual polynomial has lower degree and the
above step can be iterated until there is nothing left.22 We find an identity which
is easy to confirm23

Pj⊗j′(q) =

2j′∑
k=0

Pj+j′−k(q). (2.105)

(2.106)

It translates to the tensor product decomposition of two generic finite-dimensional
representations of so(3)

ρj ⊗ ρj′ =

2 min(j,j′)⊕
k=0

ρj+j′−k. (2.107)

20In some sense, the denominator determines the spacing of the states whereas the numerator
determines the highest and lowest states.

21An alternative algorithm for finite-dimensional representations is to identify monomials with
negative powers of m as qm 7→ −q−2−m (and q−1 7→ 0). The resulting polynomial then counts
complete representations rather than states.

22A shortcut is to write out the polynomial (q − q−1)Pj⊗j′(q). The non-negative powers of q
correspond to irreducible representations in the tensor product.

23We should assume that j′ ≤ j. However, the formula holds even if j′ > j in which case we
need to use P−k = −Pk−1 which cancels some terms.
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The above technique has many further applications and generalisations. For
instance, we can apply it to determine (anti)-symmetric tensor products. In
quantum mechanics, these describe the wave function of identical bosonic (or
fermionic) particles. They are obtained by projecting the tensor product of two
alike representations onto the (anti)-symmetric part

ρ± := (ρ⊗ ρ)π±, (2.108)

where π± are defined in terms of the permutation operator σ as the
(anti)-symmetric projectors

π± = 1
2
(1± σ). (2.109)

One can convince oneself that these are projectors and that ρ± are indeed proper
representations. Now the character polynomial for the (anti)-symmetric tensor
product can be computed

P±(q) = (tr⊗ tr)
[
ρ(g(q))⊗ ρ(g(q))1

2
(1± σ)

]
= 1

2

[
tr g(q)

]2 ± 1
2

tr
[
g(q)2

]
= 1

2
Pρ(q)

2 ± 1
2
Pρ(q

2). (2.110)

Note that the result is conveniently expressed in terms of the character polynomial
for the tensor factor.

The tensor product of two spin-j representations is described by the function

P±(q) =
(q2j+1 − q−2j−1)2

2(q − q−1)2
± q4j+2 − q−4j−2

2(q2 − q−2)
. (2.111)

The decomposition yields for the symmetric and anti-symmetric parts

ρ∨2
j =

bjc⊕
n=0

ρ2j−2n, ρ∧2
j =

bj−1/2c⊕
n=0

ρ2j−2n−1. (2.112)

(2.113)

(2.114)

Finally, let us remark that the totally symmetric product of k spin-1
2

representations is the irreducible representation of spin k/2. Thus, all the
representation theory of so(3) follows from the smallest non-trivial representation
and its tensor products.
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3 Finite Group Theory

We switch gears and consider groups with finitely many elements for a while. In
physics they are relevant when there are some preferred points or axes in space, for
example in a solid with a crystal lattice structure. Finite groups are also an
exciting topic on their own.

Many of the concepts we have discussed carry over to finite groups.1 On the one
hand, we can derive some stronger results based on finiteness. On the other hand,
the discrete nature of these groups complicates some issues because we have no
linearisation at our disposal as in the case of continuous groups.

3.1 Finite Group Basics

Before we start, let us introduce a few sample groups, representations and some
further basic notions of group theory.

Sample Groups and Representations. In order to get acquainted with finite
groups and their representations, let us present a few elementary examples:

• The trivial group consists of the unit element alone.
• The cyclic group Cn = Zn = Z/nZ, n > 1, consists of the integers modulo n

under addition. This group is abelian.
• The symmetric group Sn, n > 1, consists of all n! permutations of a set of n

elements.
• The alternating group An, n > 1, consists of all n!/2 even permutations of a set

of n elements.

Throughout this chapter we shall use the symmetric group S3 as the main
example. It has |S3| = 3! = 6 elements which can be written in terms of two
elementary permutations σ1, σ2 obeying the relations (σ1)2 = (σ2)2 = (σ1σ2)3 = 1.
It can be viewed as the symmetry group of an equilateral triangle consisting of the
identity, 2 rotations σ1σ2, σ2σ1 and 3 reflections σ1, σ2, σ1σ2σ1

3

1 2

σ1σ2σ1

σ1σ2
σ2σ1σ1σ2 (3.1)

1We shall only consider finite-dimensional representations in this chapter.
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A few elementary representations are listed in the following table:

a ρ1 ρ1′ ρ2 ρ3

1 1 +1
(

+ 0
0 +

) (
1 0 0
0 1 0
0 0 1

)
σ1σ2 1 +1

(
0 −
+ −
) (

0 0 1
1 0 0
0 1 0

)
σ2σ1 1 +1

( − +
− 0

) (
0 1 0
0 0 1
1 0 0

)
σ1 1 −1

(
0 +
+ 0

) (
0 1 0
1 0 0
0 0 1

)
σ2 1 −1

(
+ −
0 −
) (

1 0 0
0 0 1
0 1 0

)
σ1σ2σ1 1 −1

( − 0
− +

) (
0 0 1
0 1 0
1 0 0

)
(3.2)

Of these, ρ1, ρ1′ and ρ2 are irreducible while ρ3 ≡ ρ1 ⊕ ρ2.

Orbits and Cosets. Let us continue by defining some useful notions of group
theory in connection to geometry, i.e. when a group G acts on a set M by a group
action α : G×M →M . These concepts are in fact not restricted to finite groups.

The orbit Mm of a point m ∈M is the set

Mm := α(G,m) = {α(a,m); a ∈ G}. (3.3)

By the group properties we have that Mn = Mm if n ∈Mm, and thus the orbits
define an equivalence relation on M . They split up the set M into disjoint subsets.

The stabiliser Gm (sometimes isotropy group or in physics little group) of a point
m ∈M is the subgroup of G which leaves the point m fixed

Gm := {a ∈ G;α(a,m) = m}. (3.4)

Similarly, one can define the stabiliser of a subset of points X ⊂M as
GX := {a ∈ G;α(a,X) = X}. Then for example, the stabiliser of an orbit is the
full group by construction.

A left coset gH of an element g ∈ G and a subgroup H ⊂ G is the set

gH := {gh;h ∈ H}. (3.5)

Combining the latter two concepts, we realise that all the elements of a left coset
gGm of the stabiliser of m map m to a common point m′ ∈Mm in the same orbit

α(gGm,m) = α(g, α(Gm,m)) = {α(g,m)} = {m′} ⊂Mm. (3.6)

It therefore also makes sense to view a coset as an equivalence class and consider
the quotient G/Gm.2 Furthermore, using invertibility of group elements one can
show that different cosets map m to different points in Mm. This implies that the
above map gGm 7→ α(gGm,m) is a bijection and that

G/Gm ≡Mm. (3.7)

2The quotient only has the structure of a group if the subgroup is normal.

3.2



For the orders of these sets, we deduce that

|Mm||Gm| = |G|. (3.8)

In particular, both |Mm| and |Gm| must be divisors of the order of the group |G|.
For example, we can consider the action of the group S3 on the set M of vertices of
an equilateral triangle. Then the orbit of any point m ∈M is Mm = M . The
stabiliser is a Z2-subgroup of G consisting of the identity element and a reflection
passing through the point m. We confirm that |Mm||Gm| = 2 · 3 = 6 = |G|.

Characters and Conjugacy Classes. We have already encountered the
character of a group element in a representation. It turned out to be a useful
concept towards decomposing a representation into its irreducible components. For
finite groups, characters of representations have an even more pronounced role.

The character χ : G→ C of a representation ρ : G→ Aut(V) on a complex vector
space V is defined as the trace of the representation

χ(a) := tr ρ(a) for all a ∈ G. (3.9)

The character reduces the information contained in a representation to an essential
minimum. First, the character of the identity element describes the dimension of
the representation

χ(1) = tr id = dimV = dim ρ. (3.10)

Second, the characters of two equivalent representations ρ2 = Rρ1R
−1 are equal

χ2(a) = trRρ1(a)R−1 = tr ρ1(a) = χ1(a) for all a ∈ G. (3.11)

Third, characters for direct sums and tensor products are computed easily as the
sums and products of the characters

χ⊕(a) =
∑

k
χk(a), χ⊗(a) =

∏
k
χk(a). (3.12)

These properties together with an orthogonality relation allow to describe the
decomposition of a representation into irreducibles in terms of its character as we
shall see later.

Let us calculate the characters of the elements of S3 in various representations:

a χ1 χ1′ χ2 χ3

1 1 1 2 3
σ1σ2 1 1 −1 0
σ2σ1 1 1 −1 0
σ1 1 −1 0 1
σ2 1 −1 0 1

σ1σ2σ1 1 −1 0 1

(3.13)

Clearly χ3 = χ1 + χ2 because ρ3 = ρ1 ⊕ ρ2. One can also confirm the relationship
χ1 · χ2 = χ1′ · χ2 = χ2 which at the level of representations means that the two
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tensor products are equivalent (but not equal). Finally, χ2 · χ2 = χ1 + χ1′ + χ2

which also holds at the level of representations. The tools that we developing in
the following allow us in general to promote such relationships among the
characters to relationship among representations.

From the table we can observe that the characters of several elements are the
same. In fact, the characters of a and bab−1 coincide for any a, b ∈ G

χ(bab−1) = tr ρ(b)ρ(a)ρ(b)−1 = tr ρ(a) = χ(a). (3.14)

Therefore it makes sense to collect all elements bab−1 for a given a ∈ G into a
so-called conjugacy class [a]. The reduced table for the characters of irreducible
representation vs. the conjugacy classes is called the character table

[a] χ1 χ1′ χ2

[1] 1 1 2
[σ1σ2] 1 1 −1
[σ1] 1 −1 0

(3.15)

Conjugacy classes can be viewed as the orbits of the action of G on itself by
conjugation (b, a) 7→ bab−1. This implies that the order of each conjugacy class
must be a divisor of the order of the group. Furthermore, there is an associated
group to each conjugacy class acting as the stabiliser of some representative. In
our example S3 we find

identity, rotations, reflections,

|[1]| = 1, |[σ1σ2]| = 2, |[σ1]| = 3,

G[1] = G, G[σ1σ2] = Z3, G[σ1] = Z2. (3.16)

3.2 Complete Reducibility

We have seen that any representation can be reduced to irreducible building
blocks. However, groups can also have representations which are indecomposable
in the sense that they cannot be written as a direct sum of their components. A
convenient feature of finite groups is that all representations are completely
reducible; any representation is a direct sum of irreducible representations.
Therefore, the classification of representations reduces to the classification of
irreducibles.

The key ingredients for complete reducibility are unitary representations and
averaging over the group.

Unitary Representations. Recall that a unitary representation
ρ : G→ Aut(V) to a complex vector space V 3 is a representation which obeys

〈v, w〉 = 〈ρ(a)v, ρ(a)w〉 for all a ∈ G, v, w ∈ V (3.17)

3The following discussion equally applies to real representations which are orthogonal w.r.t. a
positive-definite symmetric bilinear form.
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for some positive-definite hermitian form 〈·, ·〉 on V, i.e.

〈v, w〉 = 〈w, v〉∗, 〈v, v〉 ≥ 0 with 〈v, v〉 = 0⇔ v = 0. (3.18)

We want to show that every unitary representation is completely decomposable or
irreducible.

Suppose there is some non-trivial invariant subspace W of V, i.e.

ρ(a)w ∈W for all a ∈ G, w ∈W. (3.19)

Define the hermitian complement W⊥ of W as

W⊥ := {v ∈ V; 〈v, w〉 = 0 for all w ∈W}. (3.20)

Then for any v ∈W⊥ and any w ∈W

〈w, ρ(a)v〉 = 〈ρ(a)−1w, v〉 = 0. (3.21)

Consequently, the hermitian complement W⊥ is an invariant subspace of V as well.
Moreover, the full space V is the direct sum

V = W⊕W⊥ (3.22)

because no non-trivial vector is perpendicular to itself for a positive-definite
hermitian form. This shows that the representation decomposes to the
sub-representations on W and W⊥

ρ = ρ|W ⊕ ρ|W⊥ . (3.23)

Averaging over the Group. The above argument applies to unitary
representations of generic groups. The important feature of finite groups is that all
representations are unitary. To see this, we use some positive-definite hermitian
form 〈·, ·〉0 on V. Now define a second hermitian form as follows

〈v, w〉 :=
1

|G|
∑
a∈G

〈ρ(a)v, ρ(a)w〉0. (3.24)

Finiteness of the group implies that the sum is well-defined. Hermiticity of 〈·, ·〉
follows by linearity and positivity from the fact that for v 6= 0 all summands in
〈v, v〉 are strictly positive.

The representation ρ is unitary w.r.t. this hermitian form

〈ρ(a)v, ρ(a)w〉 =
1

|G|
∑
b∈G

〈ρ(b)ρ(a)v, ρ(b)ρ(a)w〉0

=
1

|G|
∑

ba−1∈G

〈ρ(b)v, ρ(b)w〉0

= 〈v, w〉. (3.25)
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Here we have made use of the fact that Ga = G for any a ∈ G. This proves that
every representation of a finite group is unitary and thus completely decomposable.

In our example, S3 all representations but ρ2 are already unitary w.r.t. the
canonical hermitian form 〈v, w〉0 = v†w. For ρ2 we construct the a suitable
hermitian form as described above

〈v, w〉 := v†Hw, H :=
1

6

∑
a∈G

ρ2(a)†ρ2(a) =
2

3

(
+2 −1
−1 +2

)
. (3.26)

The representation is unitary w.r.t. 〈·, ·〉. By conjugating the representation with√
H, we can also make it unitary (orthogonal) w.r.t. the canonical hermitian

(symmetric) form. We find4

ρ2′(σ1) =

(
0 1
1 0

)
, ρ2′(σ2) =

1

2

(
+
√

3 −1

−1 −
√

3

)
. (3.27)

3.3 Orthogonality Relations

A central tool for representation theory is Schur’s lemma which tightly constrains
the form of module homomorphisms or invariant linear maps. A module
homomorphism is a linear map T : V1 → V2 between two vector spaces (modules)
V1,V2 which is compatible with the representations ρ1, ρ2 of the group G on these
spaces

Tρ1(a)v = ρ2(a)Tv for all a ∈ G and v ∈ V1. (3.28)

Schur’s Lemma. In the case where the two representations are irreducible, a
module homomorphism is almost completely determined by Schur’s lemma:
Suppose T : V1 → V2 is a module homomorphism for two irreducible
representations ρ1, ρ2. Then:

• Either T = 0 or T is invertible.
• For equal representations T is proportional to the identity map, T ∼ id.

Let us prove this lemma: First, we show that the kernel of T is an invariant
subspace of V1

T ρ1(a) kerT = ρ2(a)T kerT = 0 for all a ∈ G. (3.29)

In other words, ρ1 maps any vector from kerT to a vector which is annihilated by
T , i.e. back to kerT

ρ1(a) kerT ⊂ kerT. (3.30)

Since ρ1 is irreducible, kerT can either be trivial or V1 itself. In other words,
either T is injective or T = 0. Secondly, we show that the image T V1 of T is an
invariant subspace of V2

ρ2(a)T V1 = T ρ1(a)V1 ⊂ T V1. (3.31)

4These are elements of O(2) which map an equilateral triangle centred at the origin with one
vertex at 45◦ to itself.
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Since ρ2 is irreducible, T V1 can either be trivial or V2 itself. In other words, either
T = 0 or T is surjective. Altogether this shows that either T = 0 or T is invertible.

Finally, it is easy to show that for equal representations ρ := ρ1 = ρ2 we must have
T = λ id. The map T has at least one eigenvalue λ. Now the map T ′ = T − λ id is
also a module homomorphism. It is not invertible and by the above results it must
be zero, T ′ = T − λ id = 0. This completes the proof of the lemma.

Some notes and corollaries are as follows:

• If T is invertible, the two representations are equivalent. Then T must be
proportional to the map that relates the irreducible representations.
• For inequivalent irreducible representations necessarily T = 0.

We can also generalise the results of Schur’s lemma to direct sums of irreducible
representations: A module homomorphism T takes the form of a block matrix
where

• the blocks corresponding to two inequivalent irreducible representations must be
zero,
• the blocks corresponding to two equivalent irreducible representations must be

proportional to their similarity transformation map.

Effectively, one can view each block as a single numerical entry of the matrix. For
example, a module homomorphism V1 ⊕ V2 ⊕ V3 ⊕ V3 ⊕ V3 → V3 ⊕ V3 ⊕ V2 (for
inequivalent representations on the spaces Vk) has the most general form0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗
0 ∗ 0 0 0

 . (3.32)

In fact, this also demonstrates that the decomposition of a representation to
irreducibles is complete.

Orthogonality Relations. We can combine Schur’s lemma with averaging over
the group to obtain a very useful relationship. For example, it can be used to
construct projectors on selected irreducible representations as we shall see later.

Suppose again that we have two irreducible representations ρ1, ρ2 on V1,V2 and a
linear map S0 : V1 → V2. Define another map S : V1 → V2 as follows

S :=
1

|G|
∑
a∈G

ρ2(a)−1S0ρ1(a). (3.33)

This map is a module homomorphism because

Sρ1(a) =
1

|G|
∑
b∈G

ρ2(b)−1S0ρ1(b)ρ1(a)

=
1

|G|
∑

ba−1∈G

ρ2(ba−1)−1S0ρ1(b)

= ρ2(a)S. (3.34)

Schur’s lemma then tells us that:
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• If ρ1 and ρ2 are inequivalent, the map S is zero, S = 0.
• If ρ1 = ρ2 are equal representations on V, the map S is proportional to the

identity. Concretely, S = (trS/ dimV) id, which follows directly by taking the
trace on both sides.
• If ρ1 and ρ2 are equivalent representations on V, i.e. ρ2 = R−1ρ1R, one finds
S = [tr(RS0)/ dimV]R−1.

It makes sense to rephrase the above result using tensor products

T12 :=
1

|G|
∑
a∈G

ρ1(a)⊗ ρ2(a−1) ∈ End(V1 ⊗ V2). (3.35)

If the representations are inequivalent one finds T12 = 0. Only for two equivalent
representations ρ1, ρ2 on V with ρ2 = R−1ρ1R the above operator takes a
non-trivial form

T12 =
1

dimV
(R⊗R−1)σ (3.36)

with σ the permutation operator on the tensor square V⊗ V. Alternatively, the
result can be expanded using two bases for the spaces V1,V2. In the case of
equivalent representations, the component expansion reads

(T12)ijkl =
1

|G|
∑
a∈G

ρ1(a)ik ⊗ ρ2(a−1)j l =
1

dimV
Ri

l(R
−1)jk. (3.37)

Relations like these frequently appear in the context of group theory, and they act
as completeness relations which allow to expand quantities in terms of a given
basis of group elements.

Projectors and Orthogonality. The above formula is very useful when
combined with characters. To that end, define the representation ρ[f ] ∈ End(V) of
a group function f : G→ C as

ρ[f ] :=
1

|G|
∑
a∈G

f(a−1)ρ(a). (3.38)

When we take the trace of the above tensor T12 over V2 we find

tr2 T12 = ρ1[χ2] =

{
0 if ρ1 6≡ ρ2,

(dimV2)−1 id1 if ρ1 ≡ ρ2.
(3.39)

This statement holds for irreducible representations ρ1, ρ2, and it can serve as a
useful test for equivalence of representations because a potential similarity
transformation between the two plays no role. Now, all representations are
completely reducible for finite groups. If ρ1 is reducible, the above describes a
projector (with weight 1/ dimV2) to all of its irreducible components equivalent to
ρ2. A useful corollary is that characters of inequivalent irreducible representations
must be linear independent functions.
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We can go one step further and also take the trace over the other space in the
above formula (for irreducibles)

〈χ1, χ2〉 :=
1

|G|
∑
a∈G

χ2(a−1)χ1(a) =

{
0 if ρ1 6≡ ρ2,

1 if ρ1 ≡ ρ2.
(3.40)

This shows that the characters of irreducible representations are orthonormal
w.r.t. the symmetric bilinear form 〈·, ·〉.5

This feature is extremely useful for determining the representation content of a
reducible representation ρ. It tells us that

〈χ, χk〉 = nk, (3.41)

where nk is the multiplicity of the representation ρk in ρ. Knowing the character of
ρ and the characters of all irreducible representations ρk (character table of G), it
is straight-forward to deduce the complete decomposition of ρ!

For example, recall the character table for S3:

[a] |[a]| χ1 χ1′ χ2

[1] 1 1 1 2
[σ1σ2] 2 1 1 −1
[σ1] 3 1 −1 0

(3.42)

It is straight-forward to verify that the characters of the irreducible representations
are orthonormal

〈χj, χk〉 = δjk, j, k = 1, 1′, 2. (3.43)

Conveniently, the sums over the group reduce to sums over the conjugacy classes
with their order as the weight factor. Moreover, consider the reducible
representation ρ3 with character

χ3([1]) = 3, χ3([σ1σ2]) = 0, χ3([σ1]) = 1. (3.44)

We find
〈χ1, χ3〉 = 1, 〈χ1′ , χ3〉 = 0, 〈χ2, χ3〉 = 1, (3.45)

and consequently ρ3 ≡ ρ1 ⊕ ρ2.

Group Algebra and Regular Representation. A few useful results for
representations and characters follow by considering the group algebra and the
regular representation.

The group algebra lifts a group G to a vector space C[G]. For each element a ∈ G
there is a basis vector ea ∈ C[G] and multiplication in the algebra is defined by
multiplication in the group via the basis vectors eaeb = eab.

6 The canonical

5Noting that all representations of finite groups are unitary (in some basis), we have
χ(a−1) = χ(a)∗ and thus the above bilinear form can also be viewed as a hermitian form.

6Note that the group algebra is the dual concept of a group function.
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representation of the group on the group algebra, the so-called regular
representation ρreg,7 is defined as

ρreg(a)eb := eab. (3.46)

By applying the above concepts to the regular representation, we find some useful
identities.

The character of the regular representation is given by

χreg(a) =

{
|G| for a = 1,

0 for a 6= 1.
(3.47)

The character of 1 is always This follows from the fact that the identity element
maps all |G| basis vectors to themselves while any other element a maps any basis
vector some other one.

Let us now decompose the regular representation into irreducibles. We find

〈χreg, χk〉 = χk(1) = dim ρk. (3.48)

Thus any irreducible representation ρk of G appears in the regular representation
with multiplicity equals its dimension

ρreg ≡
⊕

k
ρ⊕ dim ρk
k . (3.49)

A corollary is that the order of the group equals the sum of squares of the
dimensions of the irreducible representations

dim ρreg = |G| =
∑

k
(dim ρk)

2. (3.50)

In our example of S3, we see that 6 = 1 + 1 + 22 and thus ρ1, ρ1′ , ρ2 form a
complete set of irreducible representations up to equivalence.

Another useful statement is that the characters form a basis of the class functions.
A class function is a function f : G→ C which is constant on the conjugacy
classes, i.e. f(a) = f(bab−1) for all a, b ∈ G.

Let us prove the statement: First show that a representation ρ[f ] ∈ End(V) of the
class function f

ρ[f ] =
1

|G|
∑
a∈G

f(a−1)ρ(a) (3.51)

is a module homomorphism for

ρ[f ]ρ(a) =
1

|G|
∑
b∈G

f(b−1)ρ(ba)

=
1

|G|
∑

aba−1∈G

f(ab−1a−1)ρ(ab)

= ρ(a)ρ[f ]. (3.52)

7Another canonical representation is by conjugation ρconj(a)eb := eb−1ab. Note that this
representation has very different properties from the regular representation.
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By Schur’s lemma this function is proportional to the identity if ρ is irreducible.
By taking the trace of ρ[f ] we can evaluate the coefficient

tr ρ[f ] =
1

|G|
∑
a∈G

f(a−1)χ(a) = 〈f, χ〉, ρ[f ] =
〈f, χ〉
dim ρ

id . (3.53)

By linearity we can extend the statement to the regular representation

ρreg[f ] =
∑

k

〈f, χk〉
dim ρk

idk . (3.54)

Suppose f is orthogonal to all characters w.r.t. the bilinear form 〈·, ·〉. Then we
find ρreg[f ] = 0. On the other hand, the regular representation is faithful because
every group element is mapped to a different permutation of the basis vectors. In
other words, the map f 7→ ρreg[f ] is bijective and therefore f = 0. This proves that
the characters of the irreducible representations form an (orthonormal) basis of
class functions.

A corollary is that there are as many irreducible representations as there are
conjugacy classes. In the example of S3 this number is 3.
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4 Point and Space Groups

In this chapter we will investigate discrete subgroups of the euclidean group
(consisting of rotations and translations in three dimensions) which play a role in
the presence of matter (crystal lattices). Regular lattices (in higher dimensions)
also play an important role in the theory of Lie algebras and their representations.

4.1 Point Groups

Suppose we put some matter in the form of a crystal into space. If the matter has
a macroscopic shape which is rotationally symmetric, the residual symmetry group
of the body is SO(2) for a single symmetry axis or SO(3) for a spherically
symmetric object like a ball. However, this residual symmetry does not hold at the
microscopic level which is relevant for orbital energies of individual atoms or
energy bands of the body. Here, the crystal nature comes into play, and breaks the
group of rotations even further. This group must map special axes of the crystal
among themselves allowing only for a discrete set of rotations.1 Thus the group
SO(3) of rotations in three-dimensional space is broken by the crystal lattice to a
discrete (and thus finite) subgroup.

Discrete Subgroups of SO(3). Let us therefore find all the finite subgroups of
the group SO(3) (up to equivalence). Assume G is a finite subgroup. The central
tool to classify the subgroups is a consistency argument about the action on the
unit sphere S2, fixed points, orbits and stabiliser subgroups.

First we consider a non-trivial element a ∈ G. We know that every rotation in
SO(3) is given by an axis and an angle. This implies that a has exactly two fixed
points on the unit sphere.

(4.1)

1The macroscopic shape of the body has negligible influence on the microscopic properties.
Therefore we will assume the crystal to have infinite extent in all directions so that the
macroscopic shape does not spoil any symmetry.
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Next consider the set P of all fixed points on S2 of the (non-trivial) elements in G.

(4.2)

It is evident that G must map these fixed points to themselves, thus it has a closed
action on P . The set P furthermore splits into orbits Pi under G, let us suppose
there are r such orbits.

It turns out to be useful to sum the multiplicities |Gm| − 1 of the fixed points

N =
∑
m∈P

(
|Gm| − 1

)
. (4.3)

On the one hand, |Gm| − 1 equals the number of non-trivial elements of G for
which m is a fixed point. Each non-trivial element has precisely two fixed points
and thus contributes a summand of 2 to N

N =
∑
a6=1∈G

2 = 2
(
|G| − 1

)
. (4.4)

On the other hand, we can split the above sum into orbits. The contribution of
each of the |Pi| = |G|/|Gm| points m on the orbit Pi is the same and it equals
ni − 1. Thus we also have

N =
r∑
i=1

|G|
|Gm|

(
|Gm| − 1

)
. (4.5)

Altogether we find a simple equation involving n := |G| and r further unknowns
ni := |Gm| with m ∈ Pi

2− 2

n
=

r∑
i=1

(
1− 1

ni

)
. (4.6)

This equation is very useful because it constrains the allowable values of r and ni
substantially. We know that ni ≥ 2 and thus each summand on the r.h.s. is at
least 1/2. So we find 2 > r/2 or r < 4. On the other hand, r = 1 can be excluded
because ni ≤ n and the equation has no solution. It remains to discuss the cases
r = 2 and r = 3.

Cyclic Group. The easiest case is r = 2 where the equation reduces to

2

n
=

1

n1

+
1

n2

. (4.7)

We know that ni ≤ n which only leaves the solution n1 = n2 = n. In this case
there are only two fixed points and thus a single axis. The group consists of
rotations by multiples 2π/n. This is the cyclic group Cn of order n. It is in fact a
subgroup of SO(2) rotations in the plane.
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Dihedral Group. For r = 3 we have

1 +
2

n
=

1

n1

+
1

n2

+
1

n3

, (4.8)

where we can assume n1 ≤ n2 ≤ n3. We can argue that for n1 > 2 the equation has
no solution because the r.h.s. is less or equal 1. Similarly, n2 > 3 yields a r.h.s. less
or equal 1. The simplest solution is (n1, n2, n3) = (2, 2, k). This group is the
dihedral group Dk of order 2k. It describes the symmetries of a dihedron which is a
flat polyhedron with two faces (front and back) each being a regular k-sided
polygon. The group consists of the identity element, k − 1 rotations around the
centre of the polygon by multiples of 2π/k as well as k rotations by 180◦ around
axes within the plane of the polygon. From a two-dimensional point of view the
latter can also be viewed as reflections in the plane: As such the dihedral group is
a subgroup of O(2), but the action on the coordinate orthogonal to the plane is
different from the embedding into SO(3).

Polyhedral Groups. The remaining solutions for (n1, n2, n3;n) are

(2, 3, 3; 12)→ T, (4.9)

(2, 3, 4; 24)→ O, (4.10)

(2, 3, 5; 60)→ I. (4.11)

One can figure out that these groups are the rotational symmetry groups of the
regular polyhedra, the five Platonic solids.

• The tetrahedral group T maps a regular tetrahedron to itself. Apart from the
identity element, there are 8 = 4 · 2 rotations about an axis joining a vertex and
the centre of the opposite face as well as 3 rotations about an axis joining the
centres of two opposite edges.
• The octahedral group O maps a regular octahedron to itself. Likewise, it maps a

cube (regular hexahedron) to itself. Since the prototype of a lattice is cubic, this
group is plays a dominant role for crystals. The symmetry group of the
octahedron (cube) has 8 = 4 · 2 rotations about the faces (vertices), 6 rotations
about the edges and 9 = 3 · 3 rotations about the faces (vertices).
• The icosahedral group I maps a regular icosahedron to itself; similarly, it maps a

regular dodecahedron to itself. Even though these polyhedra have the largest
amount of symmetry, the group does not apply to crystals as we shall see
below.2 As a symmetry group of the icosahedron (dodecahedron) it has
24 = 6 · 4 rotations of vertices (faces), 15 rotations of edges and 20 = 10 · 2
rotations of faces (vertices).

The platonic solids can also be viewed as regular tilings of the two-sphere. It is
therefore natural that they are associated to the finite subgroups of SO(3).

Reflections. So far we have restricted our attention to rotations, but we can
also consider reflections. Knowing that the determinant of such a transformation is

2Nevertheless, this and related groups can appear in nature in the form of quasi-groups.
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either +1 or −1 one can argue that there must be as many rotations as reflections
in a finite subgroup G ⊂ O(3). However, extending a finite rotational group G0 is
not unique. There are two cases to be distinguished:

• In the easier case, the reflection group contains the complete reflection − id.
Since − id commutes with all elements, also −a ∈ G for all rotational a ∈ G0.
The reflection group is the direct product G = Gh := G0 × Z2 with Z2.
• In the other case − id is not an element. Then one can argue that the reflection

group is isomorphic to a rotational group G′ which contains G0 as a subgroup:
Simply multiply the reflections in G by the overall inversion − id to obtain a
finite subgroup of SO(3). In order to classify reflection groups of this kind, note
that the subgroup G0 of G′ is normal and of order 2 and as such can be
converted back to a reflection group. This yields at most two reflection group
extensions for each rotation group.

An interesting example is the extension of the tetrahedral group T. The direct
product

Th := T× Z2 (4.12)

is straight-forward to understand. Note that the reflections in Th are not
symmetries of a tetrahedron because they map points to centres of faces and vice
versa. The reflectional symmetries of a tetrahedron are given by the non-trivial
extension Td. This is isomorphic to a rotational group of twice as many elements.
One can also argue that it must be among the polyhedral groups, hence it can only
be the octahedral group

Td ≡ O. (4.13)

Alternatively one can argue by embedding the tetrahedron into alternating vertices
of a cube.

O/T←→
−Td/T

(4.14)

Those rotations in O which do not map vertices of the tetrahedron among
themselves should be multiplied by an overall inversion. This combination
preserves the tetrahedron, but curiously the group multiplication remains as in O.
The resolution to the apparent puzzle is that Td ≡ O has two inequivalent
representations of dimension 3. One is the defining representation of T describing
the reflectional symmetries of the tetrahedron. The other one is the defining
representation of O describing the rotational symmetries of the cube or
octahedron. Finally, one can say that the latter groups are isomorphic to the
symmetric group S4 describing permutations of the 4 vertices of the tetrahedron.
Equally, the tetrahedral group T is isomorphic to the alternating group A4

T ≡ A4, Td ≡ O ≡ S4. (4.15)

Discrete Subgroups of SU(2). In the presence of half-integer spin particles,
the double cover Spin(3) ≡ SU(2) of SO(3) becomes relevant. Just like SO(3) this
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group has discrete subgroups. Here each subgroup G ⊂ SO(3) has a unique double
cover G∗ ⊂ SU(2) which includes the element (−1)F :3 There are the two towers C∗n
and D∗n of order 2n and 4n, respectively as well as the three polyhedral cases:

• binary tetrahedral group T∗ of order 24,
• binary octahedral group O∗ of order 48,
• binary icosahedral group I∗ of order 120.

Recalling that Spin(3) ≡ Sp(1), there is a curious quaternionic presentation of the
above groups: The group elements are given by unit quaternions distributed in a
regular pattern over the three-sphere S3.

4.2 Representations

Let us discuss a few aspects of the representations theory of the point groups
introduced above.

Irreducible Representations. The representation theory of the cyclic groups
Cn is trivial. The irreducible representations of the dihedral groups Dk are
one-dimensional (2 for odd k and 4 for even k) or two-dimensional (all remaining).
We will not discuss the representation theory of these groups further.

For the tetrahedral group A4 one finds as the character table:

[·] [2] [3] [3′]
# 1 3 4 4
1 1 1 1 1
1′ 1 1 e+2π̊ı/3 e−2π̊ı/3

1̄′ 1 1 e−2π̊ı/3 e+2π̊ı/3

3 3 −1 0 0

(4.16)

Note that the representations 1′ and 1̄′ form a complex conjugate pair of
representations while the others are real. It is straight-forward to infer the
decomposition of tensor products into irreducibles. Only 3⊗ 3 ≡ 3⊕ 3⊕ 1⊕ 1′ ⊕ 1̄′

requires a brief calculation.

The character table for the octahedral group S4 reads:

[·] [2] [3] [4] [2, 2]
# 1 6 8 6 3
1 1 1 1 1 1
1′ 1 −1 1 −1 1
2 2 0 −1 0 2
3 3 −1 0 1 −1
3′ 3 1 0 −1 −1

(4.17)

Note that the irreducible representations 3 and 3′ are the defining representations
of O and Td, respectively. Furthermore, the representation 1′ is the determinant of

3There are also finite subgroups of SU(2) which do not include the element (−1)F ; these are
the cyclic groups of odd order.

4.5



the defining representation of Td; the subgroup T is specified by restricting to the
group elements with positive determinant.

The icosahedral group is isomorphic to the alternating group A5. This group has 5
irreducible representations of dimensions 1, 3, 3, 4, 5 as well as 5 conjugacy classes
of sizes 1, 12, 12, 15, 20. As this group does not play a role for lattices, we will not
discuss it further.

Representations of the Binary Polyhedral Groups. The representation
theory of the binary polyhedral groups has a curious feature known as the McKay
correspondence. Let us discuss the representation theory using the McKay graph of
the group: Draw a node for each irreducible representation of the group. For each
node, consider the tensor product with the 2-dimensional defining representation
(as a subgroup of SU(2)). Draw an edge from this node to any node that appears
in the tensor product decomposition. It turns out that for the binary polyhedral
groups, each irreducible representation appears at most once and that the
connectivity is symmetric (hence no multiple lines or arrows are needed as
decorations).

The group T∗ has 7 irreducible representations of dimensions 1, 1, 1, 2, 2, 2, 3 and 7
conjugacy classes of sizes 1, 1, 4, 4, 4, 4, 6. Compared to the group T there are three
additional representations of dimension 2, 2, 2. The McKay graph takes the form:

1

2

1′ 2′ 3 2′′ 1′′

(4.18)

The group O∗ has 8 irreducible representations of dimensions 1, 1, 2, 2, 2, 3, 3, 4 and
8 conjugacy classes of sizes 1, 1, 6, 6, 6, 8, 8, 12. Compared to the group O there are
three additional representations of dimension 2, 2, 4. The McKay graph takes the
form:

1 2 3 4 3′ 2′ 1′

2′′

(4.19)

The group I∗ has 9 irreducible representations of dimensions 1, 2, 2, 3, 3, 4, 4, 5, 6
and 9 conjugacy classes of sizes 1, 1, 12, 12, 12, 12, 20, 20, 30. Compared to the
group I there are four additional representations of dimension 2, 2, 4, 6. The
McKay graph takes the form:

1234564′2′

3′

(4.20)

Finally, the McKay graph for the cyclic groups and the binary dihedral groups
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take the form:

11

1

1

1 1

1

1

2222

1

1

1

(4.21)

The above graphs are the so-called extended ADE-graphs. They also play a role in
the classification of simple finite-dimensional Lie algebras.

Splitting of Representations. In quantum mechanics the orbital motion of
particles (electrons) around a central point (nucleus) is given in terms of spherical
harmonics Yl,m. As we have seen above, the set of functions Yl,m with fixed l
correspond to a representation of SO(3) with spin l. Rotational symmetry of the
potential then implies that the energy levels must not depend on m.4

If, however, the atom resides within actual matter, the potentials of the
surrounding atoms break the rotational symmetry. Consequently, the degeneracies
of energy levels are also broken. If the disturbance is small, the symmetry still
holds approximately, and only minor deviations in the energy levels are expected.
Conversely, large disturbances may completely distort the spectrum and obscure
the symmetry of free space. The situation in a crystal is different because there can
be residual symmetries which still hold (at least to a good approximation). Then
the continuous rotational symmetries reduce to the finite point group of the lattice.
This will break some degeneracies of energy levels while others are preserved.
Here, representation theory gives a precise answer for the expected degeneracies.

Let us discuss the example of a simple cubic lattice where the octahedral group O
is the relevant residual symmetry. We start with a particle in an orbit with
angular momentum L. In a spherically symmetric potential all 2L+ 1 states
within this orbit have the same energy because they transform in an irreducible
representation of SO(3). Within a lattice with orthogonal symmetry this
representation is clearly reducible for L > 1 because there are no irreducible
representations of O of dimension greater than 3. We have learned above how to
decompose representations using characters.

Let us therefore compute the character of the spin-L representation of SO(3). The
resulting formula remains valid for all subgroups when the group element is
restricted to the subgroup. We know that the character depends only on the
conjugacy class. Therefore we need to understand the conjugacy classes of SO(3).
A rotational element is specified by an axis ~n ∈ S2 and an angle 0 ≤ ψ ≤ π.
Conjugation of this element changes the axis to some other direction on S2, but it
does not alter the angle. Therefore the conjugacy classes are formed by rotations
with equal angles. In order to compute the character we choose a rotation around

4For the Coulomb potential, they actually also do not depend on l. The reason for the further
degeneracy is a hidden SO(4) symmetry related to the Runge–Lenz vector.
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the z-axis. By construction the states |m〉 are eigenstates under this rotation with
eigenvalue eı̊mψ. The spin-L character is thus given by the sum

χL(ψ) =
L∑

m=−L

eı̊mψ =
eı̊(L+1/2)ψ − e−̊ı(L+1/2)ψ

e̊ıψ/2 − e−̊ıψ/2

=
sin
(
(L+ 1

2
)ψ
)

sin
(

1
2
ψ
) . (4.22)

We have to evaluate the representation for the 5 conjugacy classes of O. These are
elements with rotational angles ψ = 0, π, 2

3
π, 1

2
π, π for [·], [2], [3], [4], [2, 2],

respectively. The results reads

χL(0) = 2L+ 1,

χL(π) = 1,−1, for L = 0, 1 (mod 2),

χL(2
3
π) = 1, 0,−1, for L = 0, 1, 2 (mod 3),

χL(1
2
π) = 1, 1,−1,−1, for L = 0, 1, 2, 3 (mod 4). (4.23)

Using orthonormality and the character table of O one finds the branching rules
for SO(3)→ O where the spin-L representations are labelled by their dimension
2L+ 1:

1→ 1,

3→ 3,

5→ 2⊕ 3′,

7→ 1′ ⊕ 3⊕ 3,

9→ 1⊕ 2⊕ 3⊕ 3,

. . . . (4.24)

This table repeats after 12 lines with a certain shift of the multiplicities. In terms
of physics, one expects pairwise and triple degeneracies of energy levels in a crystal
with a cubic structure.

Suppose further, the cubic symmetry O is just approximate and breaks further to
dihedral symmetry D3. In order to understand the splitting of irreducible
representations, note that D3 is isomorphic to the symmetric group S3 and it
consists of elements from the conjugacy classes [·], [2], [3] of O. Comparing the
character tables of both groups one finds

1→ 1,

1′ → 1′,

2→ 2,

3→ 1′ ⊕ 2,

3′ → 1⊕ 2. (4.25)

This list tells us the all the pairwise degeneracies in the cubic crystal are preserved
while all threefold degeneracies are expected to split into pairs and singlets.
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4.3 Crystallographic Groups

Finally, we discuss the implications of the lattice on the allowable discrete
symmetry groups.

Crystallographic Point Groups. We have found several infinite families of
discrete point symmetry groups as well as some special cases related to the regular
polyhedra. Gladly, only finitely many are suitable for lattice structures. There is a
simple argument to prove this fact.

A lattice is described by three vectors which span an elementary cell. Under a
rotation these vectors are not necessarily mapped to themselves because the
elementary cell could be mapped to another elementary cell. This implies that the
basis vectors should be mapped to some vectors on the lattice. In other words,
their image must be an integer linear combination of the basis vectors. When the
rotation matrix is expressed in the lattice basis, it must have integer coefficients
only, i.e. it must belong to SL(3,Z). Now the lattice basis is typically not
orthonormal, and it is not easy to understand which matrices are both orthogonal
and integer. Here the character is of help because it is independent of the choice of
basis. The trace of an integer matrix must be integer. As we have seen above, the
trace of a 3× 3 orthogonal matrix (spin-1 representation of SO(3)) equals

χ1(ψ) =
sin
(

3
2
ψ
)

sin
(

1
2
ψ
) = 1 + 2 cosψ. (4.26)

There are only 5 integer solutions, namely ψ = 0◦, 60◦, 90◦, 120◦, 180◦ or

ψ =
2π

n
with n = 1, 2, 3, 4, 6. (4.27)

The order of the group elements cannot be 5 or greater than 6. This reduces the
rotational point groups suitable for crystals to just 11

{1},C2,C3,C4,C6,D2,D3,D4,D6,T,O. (4.28)

In particular, the 5-fold symmetry of the dodecahedron and icosahedron excludes
the group I. If reflections are included, one obtains the 32 crystallographic point
groups or crystal classes.

Space Groups. So far we have only discussed the symmetries that leave a point
fixed. However, in an (infinite) lattice there are also translational symmetries. The
combination of rotations and translations is called a space group G∞. A space
group is based on one of the 32 crystallographic point groups G0. Group elements
take the form (R,~t) with the group multiplication

(R1,~t1)·(R2,~t2) = (R1R2,~t1 +R1
~t2). (4.29)

Translations by any lattice vector are admissible, i.e.

(R,~t) ∈ G∞ =⇒ (R,~t+ nk~̀k) ∈ G∞, nk ∈ Z, (4.30)

4.9



and therefore space groups are infinite.5 We have seen above that the basis vectors
must be mapped in a particular way by the rotations, but this restriction still
leaves some choices. Moreover, it is not even guaranteed that (R,~0) ∈ G∞ for all
R ∈ G0; some space groups have this property, others not. In other words, G0 is
not necessarily a subgroup of G∞. The classification of all distinct space groups is
a tedious case-by-case study and leads to 230 cases altogether.

The representation theory of these space groups imposes constraints on the
electronic band structure of the crystals which we will not discuss in this course.

5In order to remain with finite groups and their favourable properties, one can impose
periodic boundary conditions.
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5 Structure of Simple Lie Algebras

In this chapter we will discuss the structure of a general simple Lie algebra g as
preparation for the representation in the following chapter. A simple Lie algebra is
defined as having no non-trivial ideals, i.e. it is minimal in a certain sense and its
adjoint representation is irreducible.1

5.1 The Algebra su(3)

Throughout this chapter and the following we will use the Lie algebra su(3) to
illustrate the general results by means of a simple example.

The Lie group SU(3) is the group of all 3× 3 matrices U which are unitary
(U † = U−1) and have unit determinant (detU = 1). This group plays an
important role in low-energy hadronic physics where it serves as the approximate
symmetry group of the hadronic particles made from the lightest 3 of the 6
elementary quark flavours.

The Lie algebra su(3) is the infinitesimal form of the Lie group SU(3). It is
spanned by all 3× 3 traceless anti-hermitian matrices L

su(3) = {L ∈ End(C3);L† = −L, trL = 0}. (5.1)

In physics, the so-called Gell-Mann matrices λk, k = 1, . . . , 8, are often used as an
imaginary basis for su(3). They are a straight-forward generalisation of the 2× 2
Pauli matrices to 3× 3 matrices. For our analysis of the representation theory they
will not be immediately applicable.

5.2 Cartan–Weyl Basis

First, we introduce a basis of generators suitable for the construction of
representations.

Complexification. We will proceed in analogy to so(3) in Section 2.3 and
introduce a basis of generators which measure, raise or lower certain charges. This
basis involved complex combinations Jz, J± of the generators, and more accurately
we discussed the complex Lie algebra so(3,C) = sl(2,C) and its representation
theory. Along the same lines it is convenient to consider the Lie algebra g to be
complex, such that we can naturally take arbitrary complex linear combinations of
basis elements. After the work is done, one can reduce to a real form of the algebra
and obtain certain restrictions on its representation theory. In our example, the

1Furthermore, one commonly excludes the one-dimensional abelian Lie algebra.
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complexification of su(3) is the Lie algebra sl(3,C). Let us for the time being
assume all Lie algebras to be complex, and abbreviate sl(N,C) as sl(N).

Cartan Subalgebra. For sl(2), the generator Jz was used to measure a certain
charge which allowed us to partition the representation space into subspaces with
fixed eigenvalue of the charge. For the bigger algebra sl(3) there is no single such
element, but rather a two-dimensional subalgebra h of diagonal (traceless) matrices

h = {diag(a1, a2, a3); ak ∈ C, a1 + a2 + a3 = 0}. (5.2)

The elements of h allow to decompose a space into subspaces specified by two
charge eigenvalues. In general, the Cartan subalgebra h is the maximal abelian
subalgebra of the Lie algebra g that is self-normalising meaning that provided
some L ∈ g with JH,LK ∈ h for all H ∈ h implies L ∈ h.2 The requirement that all
elements of h have trivial Lie brackets

JH,H ′K = 0 for all H,H ′ ∈ h, (5.3)

is essential because their representations mutually commute and can be
diagonalised simultaneously allowing to determine several charges at the same
time. Note that the choice of Cartan subalgebra is not unique; for example, one
can apply some similarity transformation to h. However, the dimension of h is
well-defined, it is called the rank r = dim h of the Lie algebra. The earlier example
sl(2) is the unique simple Lie algebra of rank r = 1. The present example sl(3) has
rank r = 2 which adds several complications to the analysis. This example is as
difficult as it gets among the simple Lie algebras, and the treatment of all
higher-rank simple Lie algebras follows along the same lines.

Cartan–Weyl Basis. The Cartan subalgebra acts on the Lie algebra by the
adjoint representation, and thus we can decompose the Lie algebra into
eigenspaces of the Cartan algebra.3 This is achieved via the eigenvalue equation

ad(H)L = JH,LK = αL(H)L for all H ∈ h, (5.4)

where αL(H) is a linear function h→ C which describes the charges of the
eigenvector L ∈ g.4 The charges of the elements of the Cartan subalgebra are zero
by construction.

For concreteness, we perform this decomposition for sl(3): Consider a Cartan
element H ∈ h and a generic algebra element L ∈ g

H =

a1 0 0
0 a2 0
0 0 a3

 , L =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 (5.5)

2The actual definition of Cartan subalgebras is in fact slightly different. Our definition refers
to the maximal Cartan subalgebra of a simple Lie algebra.

3In fact, this statement relies on diagonalisability of the adjoint representation of the Cartan
subalgebra which holds for simple Lie algebras.

4In physics one would pick a basis for h and define the charges as the eigenvalues of the two
basis elements. The above statement is equivalent but independent of a choice of basis.
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with a1 + a2 + a3 = b11 + b22 + b33 = 0. Then

JH,LK =

 0 (a1 − a2)b12 (a1 − a3)b13

(a2 − a1)b21 0 (a2 − a3)b23

(a3 − a1)b31 (a3 − a2)b32 0

 , (5.6)

and we can immediately see that the eigenvectors are given by the matrices Lij
with a 1 in row i and column j and 0 everywhere else. Noting that the matrices
obey the algebra LijLkl = δjkLil we find

JH,LijK = αij(H)Lij, where αij(H) = ai − aj. (5.7)

Analogously we can pick a basis for h consisting of the diagonal matrices

L11 − L22 = diag(1,−1, 0), L22 − L33 = diag(0, 1,−1). (5.8)

Altogether a so-called Cartan–Weyl basis for sl(3) is given by the generators

L11 − L22, L22 − L33, L12, L13, L21, L23, L31, L32. (5.9)

5.3 Root System

Having identified a set of generators with well-defined charges, we now proceed to
analyse the charges and their relationships.

Roots. We have decomposed our Lie algebra as

g = h⊕
⊕
α∈∆

gα. (5.10)

Here gα is the subspace of g defined by the above eigenvalue equation

JH,LK = α(H)L for all H ∈ h, L ∈ gα, (5.11)

and ∆ defines the set of permissible non-zero eigenvalues. The linear function
α : h→ C is by definition an element of the dual space h∗ of the Cartan algebra.
The permissible non-zero eigenvalues α ∈ ∆ are called the roots of the Lie algebra
g, and the subspace gα is the corresponding root space. The subspace g0

corresponding to the zero vector in h∗ is the Cartan subalgebra h. However, the
zero vector is usually not called a root and 0 /∈ ∆.

A very useful feature is that the Lie brackets preserve the charges. For two
generators L,L′ with charges α, α′ the Jacobi identity implies

q
H, JL,L′K

y
=
(
α(H) + α′(H)

)
JL,L′K (5.12)

meaning that the Lie bracket JL,L′K carries the sum of charges α + α′. For the
root subspace this implies the relationship

Jgα, gα′K ⊂ gα+α′ , (5.13)
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where the Lie bracket has to be zero when α + α′ /∈ ∆ ∪ {0}.
In our example, the set of roots is given by

∆ = {α12, α13, α21, α23, α31, α32}. (5.14)

The corresponding root spaces gij = CLij are all one-dimensional. Moreover, the
negative of every root is a root as well, ∆ = −∆. The latter two facts conveniently
extend to all simple Lie algebras. Only the subspace g0 = h corresponding to
0 ∈ h∗ has a higher dimension. The Cartan–Weyl basis thus consists of a basis for
the Cartan subalgebra together with one generator Lα for each root α ∈ ∆.

α12

α13

α23α21

α31

α32

(5.15)

Positive and Negative Roots. Our construction of finite-dimensional irreps of
sl(2) made use of a state which was distinguished by having the highest charge. For
rank r > 1 the charge is specified by more than one number, and thus there is no
canonical ordering principle. However, it suffices to specify some non-zero element
H0 ∈ h 5 6 with which a partial ordering for α, β ∈ h∗ can be established via

α ≤ β ⇐⇒ α(H0) ≤ β(H0). (5.16)

It will be of no concern that two unequal α 6= β may have equal distinguished
charges α(H0) = β(H0). However, the choice must ensure that all roots have
non-zero distinguished charge

α(H0) 6= 0 for all α ∈ ∆. (5.17)

This allows us to classify the roots as either positive or negative according to

∆ = ∆+ ∪∆−, ∆− = −∆+ (5.18)

with
α(H0) > 0 for all α ∈ ∆+. (5.19)

In terms of the distinguished charge, one can understand the positive and negative
roots to correspond to raising and lowering generators. Altogether the Lie algebra
splits into a positive part g+, a negative part g− and the Cartan subalgebra

g = g+ ⊕ h⊕ g− with g± :=
⊕
α∈∆±

gα. (5.20)

5It does not matter much which element is chosen.
6Strictly speaking, the spaces h and h∗ are complex and ordering would make no sense, but in

fact for the finite-dimensional simple Lie algebras there are canonical real slices for these spaces.
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Note that all of these form subalgebras of g as well as the so-called Borel
subalgebras b± := g± ⊕ h.

g+hg−

L12

L13

L23L21

L31

L32

H

∆+∆−

(5.21)

In our example, a useful choice for the distinguished Cartan element is

H0 = diag(+1, 0,−1). (5.22)

With this choice the positive roots are

∆+ = {α12, α13, α23}. (5.23)

These correspond to a basis L12, L13, L23 for strictly upper triangular 3× 3
matrices. The corresponding negative generators L21, L31, L32 are the strictly lower
triangular matrices, while the diagonal matrices belong to the Cartan subalgebra.

Simple Roots. Furthermore, it makes sense to distinguish some basis for h∗ in
terms of the roots. Usually the number of positive roots is larger than the rank
r = dim h∗ of the algebra, and there must be linear dependencies among the
positive roots. The charge relationship Jgα, gα′K ⊂ gα+α′ paired with simplicity of
the Lie algebra then implies that some positive roots should be linear combinations
of other positive roots with non-negative integer coefficients. The remaining
positive roots which cannot be expressed in terms of others in this way are called
simple. There are always precisely r simple roots and they form a basis for h∗.

In our example, the simple roots are α12 and α23 while α13 = α12 + α23 is
composite. The corresponding simple generators L12 and L23 obey the Lie bracket

JL12, L23K = L13, (5.24)

and thus all relations involving L13 can in principle be expressed in terms of the
simple generators. Note that the simple generators are next-to-diagonal matrices
while the non-simple generator is further away from the diagonal.

Chevalley–Serre Generators. Following these lines, we can reduce the
algebraic relations to minimal set. First, we denote the simple roots by (k = 1, 2)

αk := αk,k+1. (5.25)

We then introduce a notation for the generators corresponding to these simple
roots (k = 1, 2)

Ek := Lk,k+1, Fk := Lk+1,k, Hk := Lk,k − Lk+1,k+1. (5.26)
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These so-called Chevalley–Serre generators form a basic set of Lie generators
which are reminiscent of r = 2 copies of the raising, lowering and charge generators
J± and Jz for sl(2). The two remaining composite generators are given by

E12 := JE1,E2K = L13, F12 := JF2,F1K = L31. (5.27)

E1

E12

E2F1

F12

F2

H1

H2

α1

α2

(5.28)

The Lie algebra relations can be expressed in a uniform way (j, k = 1, 2)

JHj,HkK = 0, JEj,FkK = δjkHk,

JHj,EkK = αk(Hj)Ek, JHj,FkK = −αk(Hj)Fk, (5.29)

where the simple roots evaluated on the basis of the Cartan algebra read

αk(Hj) =

(
+2 −1
−1 +2

)
. (5.30)

The Lie brackets among the positive and among the negative generators are not
yet specified allowing for composites like E12 and F12 to form. Nevertheless,
constraints are needed to remove unwanted generators. These are the Serre
relations which read for sl(3)

q
E1, JE1,E2K

y
= 0,

q
F1, JF1,F2K

y
= 0,

q
E2, JE2,E1K

y
= 0,

q
F2, JF2,F1K

y
= 0. (5.31)

5.4 Invariant Bi-Linear Forms

We can equip the various vector spaces we have encountered with canonical
bi-linear forms. This will be of use for various relations later on.7

Killing Form. A Lie algebra has a canonical symmetric bi-linear form
κ : g× g→ C. Up to a prefactor this form is given by the Killing form which is
defined via the adjoint representation as

κ(L,L′) ∼ tr
[
ad(L) ad(L′)

]
. (5.32)

For a simple algebra we can alternatively use any other irreducible representation ρ

κ(L,L′) ∼ tr
[
ρ(L)ρ(L′)

]
. (5.33)

7. . . and cheer up the physicist who would not know how to handle a vector spaces without a
scalar product.
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By construction this form is invariant under the adjoint action of g as follows

κ(ad(L′′)L,L′) + κ(L, ad(L′′)L′) = 0. (5.34)

The bi-linear form is non-degenerate for simple Lie algebras. Furthermore, for a
real Lie algebra, the bi-linear form has a definite signature if and only if the Lie
group corresponding to the Lie algebra is compact. Finally, the invariance
property ensures that the Killing form is non-zero only for opposite root spaces,
κ(gα, gα′) = 0 for α + α′ 6= 0. As an aside, note that the Killing form is the inverse
of the quadratic Casimir invariant which we encountered earlier.

For sl(3) the bi-linear form is determined by providing the non-zero components.
We choose a normalisation based on the defining representation and obtain

κ(E1,F1) = κ(E2,F2) = κ(E12,F12) = 1 (5.35)

and
κ(H1,H1) = κ(H2,H2) = 2, κ(H1,H2) = −1. (5.36)

Upon inversion we obtain the quadratic Casimir invariant which reads for sl(3)

C = 2
3
H1 ⊗ H1 + 1

3
H1 ⊗ H2 + 1

3
H2 ⊗ H1 + 2

3
H2 ⊗ H2

+ E1 ⊗ F1 + E2 ⊗ F2 + E12 ⊗ F12

+ F1 ⊗ E1 + F2 ⊗ E2 + F12 ⊗ E12 (5.37)

or more concisely
C = Ljk ⊗ Lkj − 1

3
Ljj ⊗ Lkk. (5.38)

Scalar Product on h∗. We can use the Killing form on g to obtain a scalar
product for the space h∗. We thus restrict the bi-linear form to the Cartan
subalgebra where it remains invertible. By inverting and dualising the restricted
form we obtain a scalar product 〈·, ·〉 : h∗ × h∗ → C on h∗.

In our example, the restricted Killing form reads

κ(Hj,Hk) = Ajk, A =

(
+2 −1
−1 +2

)
. (5.39)

The scalar product on h∗ thus takes the form

〈H∗j ,H∗k〉 = A−1
jk , A−1 =

(
2
3

1
3

1
3

2
3

)
, (5.40)

where the dual H∗k ∈ h∗ are defined by the relationship H∗j(Hk) = δjk. However, we
normally do not express elements of h∗ in the basis of H∗k, but rather in terms of
the simple roots αk which are related to Hj by

αk(Hj) = Ajk. (5.41)

Combining the various relationships we find αk = AkjH
∗
j and finally

〈αj, αk〉 = Ajk = (AA−1A)jk. (5.42)
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This implies that the simple roots do not form an orthonormal basis of h∗.8

The matrix A which appears frequently in the above is called the Cartan matrix.
For more general Lie algebras, the Cartan matrix is defined as9

Ajk :=
2〈αj, αk〉
〈αj, αj〉

= αk(Hj) . (5.43)

The Cartan matrix will later be used to construct general simple Lie algebras from
scratch and to classify them.

8The above figures of root configurations use an orthonormal coordinate systems, and one can
observe that the roots are not orthogonal.

9In our example all roots have the same length, 〈αj , αj〉 = 2, and thus Ajk equals the scalar
product of roots.
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6 Finite-Dimensional Representations

We are now in a good position to investigate the representation theory of a generic
simple Lie algebra g, and construct finite-dimensional irreducible representations.
Again, su(3) and its complexification sl(3) will serve as the main example to
illustrate the mostly general results.

6.1 Representations of su(3)

We already know at least 4 representations of su(3): There is the trivial
one-dimensional representation and the adjoint representation which is
eight-dimensional. These two representations are evidently real. Then there is the
defining three-dimensional representation. As a (truly) complex representation it
has a complex conjugate representation which is distinct. The latter two are also
called the fundamental and anti-fundamental representations. All of these
representations are irreducible, and often irreps are labelled by a bold number
giving their dimensionality:

1 = triv, 8 = adj, 3 = fund, 3̄ = 3∗ = fund∗. (6.1)

Here the two fundamental representations have the same dimension and thus they
should be distinguished somehow.

Clearly, su(3) has many more distinct irreps and the goal of this chapter is to
understand their representation theory. In order to construct further
representations, we can use the tensor product of the above representations and
then decompose them into irreps. For example, one finds

3⊗ 3 = 6⊕ 3∗,

3⊗ 3∗ = 8⊕ 1,

3∗ ⊗ 3∗ = 6∗ ⊕ 3. (6.2)

Apart from the previously known four representations, there are is a new pair of
complex conjugate six-dimensional irreps. When they are used within tensor
products, further irreps can be produced.

One may wonder why the tensor product 3⊗ 3 decomposes and how. The crucial
point is that the two tensor factors are equivalent. In this case the tensor product
space and the representation can be decomposed (at least) into symmetric and
anti-symmetric contributions. The symmetric product forms the new irrep 6 while
the anti-symmetric product happens to yield the anti-fundamental representation
3∗ in the case of su(3). In fact, there is a general principle governing the tensor
products of equivalent representations. Applied to the defining representation, this
will actually determine the representation theory of the algebras su(N) in terms of
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the representation theory of the symmetric group. A general finite-dimensional
irrep of su(3) turns out to be labelled by two non-negative integers [n1, n2]. This is
analogous to the representation theory of su(2) which uses one non-negative label
[n] related to the spin j = n/2 of an irrep.

6.2 Highest-Weight Representations

Our aim is to construct finite-dimensional irreducible representations. This leads
us to a class of representations which is somewhat more general and from which
the finite-dimensional irreps can be deduced.

Weights. Consider a finite-dimensional irrep ρ : g→ End(V). We shall assume
that the representation of the Cartan subalgebra h on V is diagonalisable.1 We
proceed as in the case of sl(2) and decompose the representation space into
eigenspaces Vλ

V =
⊕
λ∈Λρ

Vλ (6.3)

under the representation of the Cartan subalgebra2

ρ(H)|v〉 = λ(H)|v〉 for all H ∈ h, |v〉 ∈ Vλ. (6.4)

The charges λ ∈ Λρ ⊂ h∗ are called weights,3 the corresponding eigenspaces
Vλ ⊂ V are called weight spaces, and their dimension mλ := dimVλ is called the
multiplicity of the weight λ. Clearly, the roots of the Lie algebra (including the
zero weight) are also weights, namely those of the adjoint representation,

Λad = ∆ ∪ {0}, mλ =

{
1 for λ ∈ ∆,
r for λ = 0.

(6.5)

The weights are additive in the sense4

ρ(Lα)Vλ ⊂ Vα+λ for all Lα ∈ gα, (6.6)

as can be confirmed straight-forwardly using the representation property involving
the Cartan subalgebra. This implies that the weighs of an irreducible

1The latter requirement in fact follows from our setup, but the subsequent analysis is
simplified substantially if we can assume it from the start.

2It would suffice to abbreviate the representation of a generator L ∈ g on a state |v〉 ∈ V by
L|v〉 := ρ(L)|v〉 whenever there is a canonical representation ρ on V and no ambiguities arise.
This is common practice at least in the physics literature.

3The weights are vectors of the dual Cartan subalgebra h∗, but note that the term weight
vector usually refers to vectors of the representation space |v〉 ∈ Vλ with definite charges. In
order to avoid potential ambiguities, we will refer to vectors of representation spaces as states, i.e.
|v〉 ∈ Vλ is a weight state.

4As usual we declare Vλ := {0} if λ /∈ Λρ.
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representation must be evenly spaced, i.e. differences should be integer linear
combinations of the (simple) roots. The weights of a representation lie on a lattice

Λρ ⊂ λ+ Z∆ = λ+
∑
α∈∆

Zα with λ ∈ Λρ. (6.7)

In our example sl(3), we already understand the adjoint representation, and the
trivial representation is trivial. Let us therefore consider the two three-dimensional
fundamental representations. For the defining representation we declared

ρ(H1) = diag(1,−1, 0), ρ(H2) = diag(0, 1,−1). (6.8)

The matrices are already diagonalised and therefore the three weights of the
representation read (H = a1H1 + a2H2)

λ1(H) = a1, λ2(H) = a2 − a1, λ3(H) = −a2. (6.9)

The weights of the conjugate representation are just the opposites

λ̄1(H) = −a1, λ̄2(H) = a1 − a2, λ̄3(H) = a2. (6.10)

We can express the above weights as linear combinations of the simple roots (recall
α1(H) = 2a1 − a2, α2(H) = 2a2 − a1)

λ1 = +2
3
α1 + 1

3
α2, λ̄1 = −2

3
α1 − 1

3
α2,

λ2 = −1
3
α1 + 1

3
α2, λ̄2 = +1

3
α1 − 1

3
α2,

λ3 = −1
3
α1 − 2

3
α2, λ̄3 = +1

3
α1 + 2

3
α2, (6.11)

and plot their configuration in a so-called weight diagram along with the roots:

α1

α2

λ1

λ2

λ3

λ̄1

λ̄2

λ̄3

(6.12)

Highest Weight and Descendants. In the construction of irreps for sl(2) we
singled out the state with the highest charge, and derived all other states from it.
We have no canonical ordering on the set Λρ of higher-dimensional charges, but we
already introduced a partial ordering based on some Cartan element H0. This
partial ordering singles out a highest weight µ ∈ Λρ with the maximum value of
λ(H0). A priori, the highest weight is not necessarily unique, nor does it have
multiplicity 1. We are free to choose any highest-weight state |µ〉 ∈ Vµ and we
shall later see that this state is indeed unique for an irrep.
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We know by construction that all the positive roots α ∈ ∆+ obey α(H0) > 0.
Therefore, the highest-weight state must be annihilated by all positive generators

ρ(L)|µ〉 = 0, for all L ∈ {Lα;α ∈ ∆+}. (6.13)

In fact, it suffices to demand that all simple positive generators Ej, j = 1, . . . , r
annihilate the state, ρ(Ej)|µ〉 = 0, because all other positive generators are
composed from the Ej. Furthermore, the action of the Cartan subalgebra is
determined by the weight µ

ρ(H)|µ〉 = µ(H)|µ〉. (6.14)

All other states of the representation must be generated by acting repeatedly with
the negative generators L−α, α ∈ ∆+ on |µ〉. The representation space V is
spanned by (not necessarily independent or non-trivial) states

ρ(Ln) · · · ρ(L1)|µ〉, where Lk ∈ {L−α;α ∈ ∆+}. (6.15)

These states can be called descendants of |µ〉. Again it would suffice to restrict the
Lk to the negative simple generators Fj, j = 1, . . . , r because the non-simple
generators can be written as commutators which are also accounted for by longer
chains of operators acting on |µ〉.
In order to show that the representation closes on the space spanned by these
states, we have to apply the operator ρ(L) and show that we obtain a linear
combination of states of the same form:

• For all negative contributions to L we clearly obtain a state of the same form
but with one additional generator.
• Our aim is then to bring the remainder of the operator closer to the

highest-weight state |µ〉. In each iteration, the operator is commuted one step
closer to |µ〉.
• Each commutator produces a new term with a new operator ρ(L′). All negative

contributions to L′ merely produce a state of the above form which we do not
have to consider further. The remainder is also one step closer to |µ〉 than the
original operator ρ(L).
• After a finite number of iterations, all non-negative operators ρ(L′′) reside right

next to |µ〉. The positive contributions to L′′ annihilate the state, and the
remaining Cartan contribution multiply the state by a number.
• At the end of the day we obtain a linear combination of states of the above form.

This argument also shows that there is a unique highest-weight state |µ〉 in an
irreducible representation.

Basis. We now have a set of states ρ(Ln) · · · ρ(L1)|µ〉 with negative Lk to span
the representation space, but we do not know which ones are trivial or linearly
dependent. For the individual states, the ordering of the Lk is relevant. However,
changing the ordering amounts to adding a state where two adjacent Lk are
replaced by their Lie bracket. The latter is another negative generator and hence it
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is state of the same form but with lower n. Here we are interested in the span of
all states, where the latter state is already accounted for. For our purposes the
ordering therefore does not matter, and we can reduce the relevant states to

|µ; `〉 :=

 ∏
α∈∆+

ρ(L−α)`α

 |µ〉, `α ∈ Z+
0 . (6.16)

One can show that all of these states are algebraically independent supposing that
they exist. Our assumption of a finite-dimensional representation implies that
almost all of them do not in fact exist, i.e. there are only finitely many non-trivial
weight spaces Vλ. However, this assumption complicates the analysis, and for the
time being we shall assume all of the above states to be non-trivial and
independent. In other words, the above states |µ; `〉 with `k ∈ Z+

0 form a basis for
an infinite-dimensional space Vhw. On this space, we have established a
representation ρµ : g→ Vhw which is a so-called highest-weight representation. For
a generic highest weight µ this representation is irreducible, but if µ satisfies
certain integrality constraints, it becomes reducible. After factoring out all
sub-representations we will later obtain a finite-dimensional representation.

Multiplicities. We thus consider the complete highest-weight representation
space where all states |µ; `〉 are independent. Then we can more easily count the
multiplicities of the weights. The weight λ` of the state |µ; `〉 is given by

λ` = µ−
∑
α∈∆+

`αα. (6.17)

Now the elements of ∆+ are dependent and therefore some of the λ` coincide and
lead to multiplicities. How these degeneracies come about depends on the details
of the Lie algebra g and its set of positive roots.

We shall therefore continue the analysis for sl(3). Here the only relationship
among the positive roots is

α12 + α23 = α13. (6.18)

Given a weight
λk1,k2 = µ− k1α1 − k2α2, (6.19)

there are min(k1, k2) + 1 ways of writing it in terms of a positive integer linear
combination of α12 = α1, α23 = α2 and α13 = α1 + α2. In other words, the
multiplicity of λk1,k2 reads

mk1,k2 = min(k1, k2) + 1. (6.20)

For sl(3) the highest-weight representations have a pattern of linearly increasing
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multiplicities starting at the highest weight and along the direction −α1 − α2:

µ

−α1

−α2

(6.21)

This completes the description of highest-weight representations.

6.3 Finite-Dimensional Representations

The next step is to reduce a highest-weight representation to a finite-dimensional
irreducible representation.

Sub-Representations. The above construction produces infinitely many states
which are related by a representation of g. To obtain a finite-dimensional
irreducible representation with the same highest-weight state, we have to declare
infinitely many of these states (or linear combinations thereof) to be trivial. Now,
the representation on the reduced space is only consistent if the states to be
projected out transform under a sub-representation. The resulting representation
is the quotient of the highest-weight representation by all of its non-trivial
sub-representations. Furthermore, we have to make sure that the resulting
representation is finite-dimensional.

The standard approach to eliminate the unwanted states in highest-weight
representations is to look for further states |µ′〉 which are annihilated by all
positive roots. Clearly they have a definite weight and thus they satisfy all the
above properties of highest-weight states. They therefore reside at the top of
another highest-weight representation which is also a sub-representation of the
original highest-weight representation. If we declare this highest-weight state to be
zero, then all of its descendants will have to be set to zero as well due to the
representation property. This leads to various dependencies among the basis states
|µ; `〉. Gladly, the sub-representation with the new highest weight µ′ has very
much the same structure as the original highest-weight representation. Therefore it
will be sufficient to know all secondary highest weights µ′ to understand the
structure of the finite-dimensional irrep.

Weight Lattice. As emphasised above, a generic highest-weight representation
is irreducible; it becomes reducible only for specific highest weights µ. In order to
derive the constraints on µ it is convenient to rely on our earlier results for the
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representation theory of sl(2). The latter is a subalgebra of sl(3) and as such, the
irreps of the latter should decompose into a direct sum of irreps of the former.
Moreover, there are inequivalent ways of embedding sl(2) into sl(3). This provides
us with several constraints which are necessary for our multi-dimensional weight
space.

An sl(2) subalgebra is generated by H1,E1,F1. In our normalisation

JH1,E1K = α1(H1)E1 with α1(H1) = 2. (6.22)

We know that for sl(2) the weights of the finite-dimensional representations are
integer or half-integer multiples of the simple root. Therefore

λ(H1) ∈ 1
2
α1(H1)Z = Z for all λ ∈ Λρ. (6.23)

This statement derives from the representation of some generator in sl(3) and
therefore it applies to the representation as a whole. If the highest-weight
representation is to contain finite-dimensional components, the above constraint
will have to be satisfied.

A second choice of sl(2) subalgebra is generated by H2,E2,F2. Likewise we obtain
the integrality constraint λ(H2) ∈ Z. A third choice would be the subalgebra
generated by H1 + H2, E12, F21, but this merely implies λ(H1 + H2) ∈ Z which does
not correspond to an independent constraint.

Altogether we find one constraint for each basis vector of h∗

λ(Hj) ∈ Z for j = 1, . . . , r and all λ ∈ Λρ. (6.24)

Alternatively, the constraints can be formulated via the scalar product on h∗

2〈λ, αj〉
〈αj, αj〉

∈ Z for j = 1, . . . , r. (6.25)

The above implies that the weights of finite-dimensional representations reside on
a lattice fixed by the algebra g, the so-called weight lattice Ω.5

Ω :=
r∑

k=1

ωkZ, (6.26)

where the lattice vectors ωk, k = 1, . . . , r are determined by being dual to the
simple roots αj w.r.t. the scalar product on h∗

2〈ωk, αj〉
〈αj, αj〉

= ωk(Hj) = δjk. (6.27)

For sl(3) the weight lattice vectors reads

ω1 := 2
3
α1 + 1

3
α2, ω2 := 1

3
α1 + 2

3
α2. (6.28)

5Although the algebra g and its Cartan subalgebra h are complex, the weight lattice resides in
a real slice of h∗. This is related to the fact that finite-dimensional representations are unitary in
the compact real form of g.
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0

α1α1

α2

ω1

ω2

(6.29)

Notice that the weight lattice is not necessarily spanned by the simple roots. As a
consequence, the weights of a given irrep only populate a sub-lattice of the weight
lattice which is spanned by the simple roots. In our example sl(3) we have three
sub-lattices while the earlier example sl(2) led to two sub-lattices (integer and
half-integer spin). In fact, this discrepancy of lattices translates to the centre of
the simply connected compact Lie group corresponding to the Lie algebra. We will
not prove this fact, but merely note that the centre of SU(2) is Z2 while the centre
of SU(3) is Z3.6 The centre acts on all states of the representation with a common
eigenvalue and this eigenvalue distinguishes the sub-lattices. Note that the roots
reside on the sub-lattice based at zero.

Finite-Dimensional Representations. A further constraint derived from the
sl(2) subalgebras is that all weights must be symmetrically distributed about the
origin. More concretely, given some λ with λ(H1) = 0 we can make some
statements about the multiplicities of the weights related by H1,E1,F1 spanning
an sl(2). These weights reside on the line λ+ nα1/2, and we know that they are
distributed symmetrically

dimVλ+nα1/2 = dimVλ−nα1/2. (6.30)

Moreover, the multiplicities of the weights on the same sub-lattice should not
decrease towards the centre. In other words, for m ≡ n (mod 2), |m| < |n|

dimVλ+mα1/2 ≥ dimVλ+nα1/2. (6.31)

0
µ

23

1

4

2
3

(6.32)

6 The centre of SU(3) is given by the identity matrix times the third roots of unity 1, e2π̊ı/3,
e−2π̊ı/3.
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Equivalent statements hold for the other sl(2) subalgebra based on the second set
of Chevalley–Serre generators.

Note that the above equality of multiplicities is based on a reflection in h∗

σ1 : λ+ xα1 7→ λ− xα1, where λ(H1) = 0. (6.33)

The second sl(2) subalgebra yields a second reflection

σ2 : λ+ xα2 7→ λ− xα2, where λ(H2) = 0. (6.34)

These reflections generate a group W called the Weyl group. For sl(3) it is the
symmetric group W = S3 which is also the reflectional symmetry group of the
equilateral triangle. With reference to our discussions of crystal lattices one can
also say that the Weyl group is the point group of the lattice.

0
µ

σ1

σ2

(6.35)

The highest weight µρ now has up to five images under the Weyl group. However,
these must be all smaller than µρ itself. This implies that the highest weight must
be in the highest of the 6 Weyl chambers for sl(3) which are fundamental domains
of h∗ under the action of the Weyl group.

0

α1α1

α2

ω1

ω2

σ1

σ2

(6.36)

Together with the fact that µρ ∈ Ω we can deduce that

µρ = n1ω1 + n2ω2 with n1, n2 ∈ Z+
0 . (6.37)

A finite-dimensional irrep of sl(3) is thus uniquely specified by a pair of
non-negative integers [n1, n2]. The labels of the trivial, adjoint and fundamental
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representations read

ρ0 : [0, 0], ρad : [1, 1],

ρ3 : [1, 0], ρ3∗ : [0, 1],

ρ6 : [2, 0], ρ6∗ : [0, 2]. (6.38)

The sample representation in the above figures has labels [1, 2].

For a general rank-r algebra, a finite-dimensional irrep is specified by r
non-negative integers [n1, . . . , nr], the so-called Dynkin labels of the representation,
which are related to the highest weight µ as follows

µ =
r∑
j=1

nrωr with nj =
2〈µ, αj〉
〈αj, αj〉

∈ Z+
0 . (6.39)

Sub-Representations. We know so far that a finite-dimensional irrep is
described by a number of weights which are arranged symmetrically w.r.t. the
Weyl group around the origin of h∗. We also know that there is a unique highest
weight µ and that the multiplicities can increase towards the origin of h∗. In some
cases, this may suffice to determine the structure of the representation, otherwise
we must be more specific about the multiplicities.

Here we can again make use of the sl(2) subalgebras and their representation
theory. Let us consider the k-th subalgebra generated by Ek,Fk,Hk. The
highest-weight state carries the charge µ(Hk) = nk. We thus know that acting
nk + 1 times with ρ(Fk) on the highest-weight state |µ〉 yields a state

|µ′k〉 = ρ(Fk)
nk+1|µ〉 (6.40)

which is not within the finite-dimensional sl(2) irrep. According to our above
discussions, it must satisfy ρ(Ek)|µ′k〉 = 0. Furthermore, it trivially satisfies
ρ(Ej)|µ′k〉 = 0 for all other j 6= k. Therefore, |µ′k〉 is a secondary highest-weight
state, Moreover, there is one such secondary highest weight µ′k for each of the r
sl(2) subalgebras.

The remaining complication is that the sub-representations can have further
highest-weight states and sub-representations. In other words, we have to find all
the would-be highest-weight states among the |µ; `〉. Noting that the above map
from µ 7→ µ′ can be understood as a Weyl reflection, the full Weyl group W will be
of help. The complete set of would-be highest weights µ′ is given by the Weyl
reflections acting on the original highest weight

µ′ ∈ {σ(µ+ δ)− δ;σ ∈W}. (6.41)
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0−δ
µ

µ′1

µ′2

µ′′1

µ′′2

µ′′′

(6.42)

More accurately, these Weyl reflections are not centred at the origin, but rather at
the point −δ where δ ∈ h∗ is given by half the sum of all positive roots

δ :=
1

2

∑
α∈∆+

α. (6.43)

After quotienting out all sub-representations, the remaining irrep turns out to be
finite-dimensional.7

For the example sl(3), there are 5 additional highest-weight states in a
finite-dimensional highest-weight representation

µ = [n1, n2],

µ′1 = [−n1 − 2, n1 + n2 + 1],

µ′2 = [n1 + n2 + 1,−n2 − 2],

µ′′1 = [−n1 − n2 − 3, n1],

µ′′2 = [n2,−n1 − n2 − 3],

µ′′′ = [−n2 − 2,−n1 − 2], (6.44)

where [k1, k2] := k1ω1 + k2ω2. Observing which of the highest weights are within
the representations of some other highest weights we can establish the full
highest-weight spaces W in terms of the irreducible components V

W′′′ = V′′′,
W′′j = V′′j ⊕ V′′,
W′j = V′j ⊕ V′′1 ⊕ V′′2 ⊕ V′′′,
W = V⊕ V′1 ⊕ V′2 ⊕ V′′1 ⊕ V′′2 ⊕ V′′′. (6.45)

We are interested in the irreducible vector spaces, and therefore we have to
“invert” these relations:

V′′′ = W′′′,
V′′j = W′′j 	W′′,
V′j = W′j ⊕W′′1 ⊕W′′2 ⊕W′′′,
V = W	W′1 	W′2 ⊕W′′1 ⊕W′′2 	W′′′. (6.46)

7One can also rephrase the integrality conditions for finite-dimensional irreps as follows: All
images of the highest weight µ under the shifted Weyl reflections must be descendants of µ (so
that their sub-representations can be quotiented out).
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Here the subtraction of vector spaces can be understood as a subtraction of
multiplicities of corresponding weights. We obtain the following structure for the
weights of a finite-dimensional sl(3) representation and their multiplicities:

0

µ

n2

n1

n2

n1

n2

n1

|n1 − n2|

(6.47)

• The weights are bounded by a hexagonal shape with triangular symmetry
centred at the origin.
• The length of the sides alternates between n1 and n2.
• The multiplicity along the perimeter of the hexagon is 1.
• The multiplicity increases linearly by one unit per step towards the centre.
• The multiplicity reaches a plateau once the level set has degenerated from a

hexagonal shape to a triangular shape. The maximum multiplicity is
min(n1, n2) + 1 on a triangle of side length |n1 − n2|.

Character Polynomials. We can phrase our above results on the structure of
the finite-dimensional irreps of sl(3) in terms of character polynomials. Since we
have two charges to describe states and generators, we introduce a pair of variables
q := (q1, q2) and compute the character

Pρ(q) = χ(qH1
1 qH2

2 ) = tr ρ(qH1
1 qH2

2 ). (6.48)

Within this polynomial a monomial mqλ describes a state with weight λ and
multiplicity m. Here we have introduced the notation

q[k1,k2] := qk11 q
k2
2 where [k1, k2] := k1ω1 + k2ω2. (6.49)

Using the properties of geometric series one can figure out that the character
polynomial for the full highest-weight representation reads

P hw
µ (q) =

qµ

(1− q−α1)(1− q−α2)(1− q−α1−α2)
. (6.50)

After reducing to the finite-dimensional components we obtain

Pµ(q) =
qµ − qµ′1 − qµ′2 + qµ

′′
1 + qµ

′′
2 − qµ′′′

(1− q−α1)(1− q−α2)(1− q−α1−α2)
. (6.51)

This formula agrees perfectly with the structure of the representation discussed
above.
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Furthermore, we can compute the dimension of the representation with highest
weight µ = [n1, n2]: A direct computation based on the above structure yields the
following results (we assume n1 ≤ n2)

dim ρµ =

n1−1∑
j=0

3(n1 + n2 − 2j)(j + 1)

+ 1
2
(n1 + 1)(n2 − n1 + 1)(n2 − n1 + 2)

= 1
2
(n1 + 1)(n2 + 1)(n1 + n2 + 2). (6.52)

Here the first term accounts for the hexagonal perimeter while the second term
accounts for the central triangular plateau. It is straightforward to confirm the
dimensions of the representations encountered above

dim ρ[0,0] = 1, dim ρ[1,1] = 8,

dim ρ[1,0] = 3, dim ρ[0,1] = 3,

dim ρ[2,0] = 6, dim ρ[0,2] = 6,

dim ρ[1,2] = 15. (6.53)

One can also find formulas for the quadratic and cubic Casimir invariants
evaluated on the finite-dimensional irreps8

C2 ∼ n2
1 + n1n2 + n2

2 + 3n1 + 3n2,

C3 ∼ (n1 − n2)(n1 + 2n2 + 3)(n2 + 2n1 + 3). (6.54)

The character and dimension formulas generalise to arbitrary simple Lie algebras.
The character polynomial is given by the Weyl character formula9

Pµ(q) =

∑
σ∈W

sign(σ)qσ(µ+δ)−δ∏
α∈∆+

(1− q−α)
. (6.55)

Note that the Weyl group is a group of reflections and thus there is an associated
Z2-grading. The dimension of this representation follows by setting q1 = q2 = 1.
The character polynomial formula is singular, and by properly taking the limit one
obtains the Weyl dimension formula

dim ρµ =
∏
α∈∆+

〈µ+ δ, α〉
〈δ, α〉

. (6.56)

6.4 Hadronic Physics

The group SU(3) plays an important role in hadronic physics and (in a different
way) for the underlying quarks and the strong interactions among them.

8These combinations are invariant under the Weyl reflections based at −δ, whereas the above
expression for the dimension flips the sign. In fact, this property singles them out.

9The denominator equals the numerator at µ = 0.
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Isospin. The lightest (bosonic and fermionic) hadronic particles are the pion
triplet (π−, π0, π+) of pseudo-scalar mesons and the nucleon doublet N := (n0, p+)
consisting of the proton p+ and the neutron n0. Although these particles all carry
different electrical charges, they are also similar in their masses: The meson masses
are around 135–140 MeV while the nucleon masses are around 938–940 MeV. This
suggests that the mesons transform in a spin I = 1 irrep of some approximate
SU(2) symmetry, while the nucleons transform in a spin I = 1

2
irrep. Note that the

former is a real representation, and indeed the anti-particles of the pion triplet are
given by the pion triplet itself (with the charged pions interchanged). Conversely,
the latter irrep is complex (or quaternionic) which means that the anti-particles of
the nucleons are distinct particles: anti-proton and anti-neutron.

This SU(2) group is called the isospin symmetry. It is in fact part of the gauge
group of the weak interactions which is spontaneously broken. For the purposes of
the strong interaction the breaking effects are small and the masses of the particles
within the multiplets are similar. The most evident difference between the particles
in each multiplet is the electrical charge Q. After symmetry breaking, it can be
expressed as a combination of the isospin component I3 and the baryon number B

Q = I3 + 1
2
B. (6.57)

The nucleons are baryons and thus carry baryon number B = 1 while the mesons
are uncharged, B = 0. Conservation of the baryon number charge is expressed by
the stability of the proton. As the lightest charged particle, it cannot decay into
anything else.10

Hadronic SU(3). Given more powerful particle physics experiments, new
hadronic particles and resonances were discovered. They come along with an
additional charge named strangeness. This charge is not exactly conserved, but
strangeness-violating decays have a substantially longer decay time than those
which preserve the charge. Moreover, processes which violate strangeness by more
than one unit are even further suppressed. This fact was attributed to
conservation of strangeness by the strong interactions whereas weak interactions
can violate strangeness by one unit. The strong interactions take place on a time
scale which is several orders of magnitude faster than the typical weak interaction
time scale. The introduction of particles carrying strangeness necessitates to adapt
the formula for the electrical charge

Q = I3 + 1
2
Y, Y = B + S. (6.58)

Here Y is called the hypercharge.

Now the various hadronic particles and resonances can be classified by their spin,
parity, baryon number, isospin component I3 and hypercharge Y . For each given
set of quantum numbers, several hadrons with different masses and decay widths

10In the presence of anti-protons with B = −1, it could decay into lighter uncharged particles
such as the pions. However, there are hardly any anti-protons around at our present location
within the universe.
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have been identified. Here we consider only the lightest few of these particles. Let
us fix the spin, parity and baryon number and plot the lightest particles in a
diagram with horizontal axis I3 and vertical axis Y . For the pseudo-scalar mesons
(spin 0, negative parity, baryon number 0) we obtain the following diagram:

K̄0K−

π+

K+K0

π−
π0

η η′

π 137 MeV
K 496 MeV
η 548 MeV
η′ 958 MeV

(6.59)

Note that the provided masses are approximate. One observes that the new
particles, in this case the kaons K, also form SU(2) multiplets because their masses
agree up to a few percent. The eta particle η and its heaver cousin η′ form singlets
of SU(2). Therefore isospin continues to be an approximate symmetry.11 The new
particles, however, have a substantially higher mass, and thus they are not related
to the pions by some approximate symmetry.

The next set of particles are the vector mesons (spin 1, positive parity, baryon
number 0):

K̄∗0K∗−

ρ+

K∗+K∗0

ρ−
ρ0

ω φ

ρ 775 MeV
K∗ 892 MeV
ω 782 MeV
φ 1019 MeV

(6.60)

Again isospin is a good approximate symmetry, and also 8 of the 9 particle masses
are reasonably nearby so that they might be related by a broken symmetry. In any
case, one observes precisely the same hexagonal pattern of isospin I3 and
hypercharge Y as for the pseudo-scalar mesons.

Finally, there are also generalisations of the nucleons with half-integer spin. There
are 8 light baryons with spin 1

2
, positive parity and baryon number 1:

Ξ0Ξ−

Σ+

p+
n0

Σ−
Σ0

Λ

N 939 MeV
Λ 1116 MeV
Σ 1193 MeV
Ξ 1318 MeV

(6.61)

Furthermore, there are 10 light baryons with spin 3
2
, positive parity and baryon

11However, it not longer coincides with the SU(2) group of the weak interactions which also
acts on strangeness.
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number 1:

Ξ∗0Ξ∗−

Σ∗+

∆+∆0

Σ∗−
Σ∗0

Ω−

∆++∆−

∆ 1232 MeV
Σ 1385 MeV
Ξ 1533 MeV
Ω 1672 MeV

(6.62)

Again their structure is reminiscent of the mesons.

We observe an ordering pattern which we can clearly identify as the Lie group
SU(3).12 The above particles appear to form multiplets which follow the structure
of SU(3) irreps. In particular we find octets (8 = [1, 1]) sometimes joined by
singlets (1 = [0, 0]) as well as a decuplet (10 = [3, 0]). This hadronic SU(3) is
broken to the SU(2) hadronic isospin at an energy scale of several 100 MeV. In
other words, for light particles this symmetry is hardly apparent, only its subgroup
SU(2) is more manifest. Conversely, for heavy particles SU(3) becomes more of an
approximate symmetry. However, at all energy levels the charge distribution is
reminiscent of SU(3) (provided that the particles are grouped correctly).

Masses. The masses in the multiplets also follow a certain pattern which derives
from the breaking of SU(3) symmetry to SU(2). We align the basis of sl(3) such
that the residual sl(2) algebra is given by E1,F1,H1, i.e. it acts on the first two
elements of the defining vectors space C3. The symmetry breaking can be achieved
by an element in the adjoint representation, namely diag(1, 1,−2) which is the
defining representation of H1 + 2H2. Incidentally this combination is proportional
to the hypercharge

Y = 1
3
H1 + 2

3
H2. (6.63)

All the symmetry breaking effects should be explained by using this algebra
element.

Let us consider the baryon decuplet first, where the symmetry is most apparent.
One finds that the mass decreases with the strangeness S with around 150 MeV for
each unit of strangeness. This dependency can be expressed in a simple ansatz for
the mass matrix M . In a situation where the symmetry breaking effect is small,
the symmetry breaking element Y should appear only in first order. The mass
matrix for particles transforming in a representation ρ can be expressed as

M = m0 +m1ρ(Y ) + . . . . (6.64)

The two coefficients m0 and m1 determine the approximate mass structure in the
multiplet. For particles transforming in the decuplet this is indeed the only linear

12In reality this ordering pattern was not so easy to identify: The particles were identified one
by one, masses were not accurately determined at first, the decay widths are substantial, several
other particles with comparable energies exist and some quantum numbers are not easy to read
out from collider experiment.
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term because the tensor product of a decuplet with an octet (Y ) yields only a
single decuplet

10⊗ 8 = 35⊕ 27⊕ 10⊕ 8. (6.65)

For the baryon octet one can admit one further linear term in the mass matrix
because the decomposition of the tensor product of the octet (particles) with
another octet (Y ) yields two octets:

8⊗ 8 = 27⊕ 10⊕ 10∗ ⊕ 8⊕ 8⊕ 1. (6.66)

The elements of the mass matrix can be expressed in terms of the structure
constants fabc and the cubic Casimir coefficients dabc

Mab = m0δab +m1fabcY
c +m′1dabcY

c + . . . . (6.67)

These determine the 4 isospin multiplets in the octet in terms of 3 undetermined
constants. Furthermore, the relationship is linear, and one can extract one
constraint, the so-called Gell-Mann–Okubo (GMO) relation

2M2 + 2M2′ = 3M1 +M3. (6.68)

Here Mk denotes the mass of the isospin multiplet consisting of k states. Adding
up both sides for the baryon octet yields the masses 4514 MeV and 4541 MeV
which are indeed very close and which confirms the results of the approximate
symmetry.

The situation for the vector mesons is more complicated: First of all this multiplet
contains its own anti-particles. Therefore the mass matrix must be symmetric
which excludes the term involving the structure constants fabc. Secondly, there is a
ninth vector meson which plays an important role. It is an SU(3) singlet, and
normally one would not expect any influence from it. Here, however the singlet
appears in the tensor product of the octet (particles) with another octet (Y ), see
above. This allows for mixing effects between the two multiplets. The resulting
mass matrix reads (the index a = 0 denotes the singlet)

Mab = m0δab +m′0δa0δb0 +m′1dabcY
c +m′′1(δa0Yb + δb0Ya) + . . . . (6.69)

Here we find 4 undetermined constants for 4 masses and therefore the symmetry
allows almost arbitrary mass configurations. However, one might still consider the
parameter values and find that they all have a natural magnitude.

Finally, there are the pseudo-scalar mesons. Here the mixing of the octet and the
ninth state η′ is not important, and one might expect the GMO relation to hold.
However, this yields a bad approximation. Instead one finds better GMO relation
for the squares of the masses

2M2
2 + 2M2

2′ = 3M2
1 +M2

3 . (6.70)

The number on both sides of the equation read (959 MeV)2 and (992 MeV)2 which
are not too far apart. In fact, there are several good reasons why the squared
masses appear in the relation:
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• The Lagrangian for scalar fields contains the squared masses rather than the
masses, and thus it is natural to expand the matrix of squared masses.
• The pseudo-scalar multiplet is the lightest of all multiplets. It is well below the

symmetry breaking scale and non-linear effect become important. Above the
symmetry breaking scale, linearisation is typically a good approximation.
• These particles can be viewed as the Goldstone bosons for the breaking of our

(approximate) symmetry. As such, they require a special treatment.

The latter point also explains to some extent why there is little mixing with the
ninth singlet particle η′. Namely the U(1) symmetry for which it serves as the
Goldstone boson is broken more violently and by different means than the SU(3).
This implies the rather large mass observed for the η′ and suppressed mixing with
η.

Strong SU(3). Just three types of hadron multiplets were observed in nature
(1, 8 and 10) while there are many more finite-dimensional irreps in SU(3). One
may wonder why this is the case. An obvious guess is that the hadrons are
composite particles made as bound states of some more elementary particles, the
so-called quarks. Assuming that there are three reasonably light types of quarks
which transform in the defining representation (3) of some SU(3) and its conjugate
(3∗) one can accommodate for all the meson and baryon multiplets by the two
tensor products

3⊗ 3∗ = 8⊕ 1,

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (6.71)

The three light quark flavours are called up, down and strange

q = u, d, s. α1

α2

d̄

s̄

ū

u

s

d
(6.72)

The particle content of the mesons and baryons is given in the following weight
diagrams:

sd̄sū

ud̄

us̄ds̄

dū
qq̄

ussdss

uus

uududd

dds
uds

sss

uuuddd

(6.73)
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Moreover the arising hadron spins are explained by declaring the quark to be
spin-1

2
particles. Then the tensor products of the SU(2) representations naturally

yield the observed meson and baryon spins

1
2
⊗ 1

2
= 1⊕ 0,

1
2
⊗ 1

2
⊗ 1

2
= 3

2
⊕ 1

2
⊕ 1

2
. (6.74)

In this model, the masses of the up and down quarks are approximately the same
while the strange quark is substantially heavier. This means that the quark mass
matrix is a linear combination of the identity matrix and of ρdef(Y ). Therefore one
can view the symmetry breaking to be induced by the quark mass matrix.

However, there is one surprise: On the one hand, the decuplet wave function is
both symmetric in the quark flavours and in the spin degrees of freedom. In fact,
also the baryon octet wave function is totally symmetric under interchange of the
quarks

(3, 1
2
)∨3 = (10, 3

2
)⊕ (8, 1

2
). (6.75)

On the other hand, the quarks are spin-1
2

particles and the spin-statistics theorem
demands that their wave function is totally anti-symmetric.

The resolution to this mismatch is to introduce additional degrees of freedom for
the quarks. In addition to flavour and spin, a quark also carries a colour degree of
freedom, which can take one of three values (red, green, blue). The anti-quarks
carry the conjugate colours. The colour degrees of freedom transform under a new
SU(3) symmetry, which is the gauge symmetry of the strong interaction alias
quantum chromodynamics. This symmetry confines, and thus only singlets can be
observed at sufficiently low energies. For the baryons, the colour degrees of
freedom transform in the triple tensor product of the defining representation

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1, 3∧3 = 1. (6.76)

This contains one singlet which is in fact totally anti-symmetric. Taking these
degrees of freedom into account, the baryon wave function is totally
anti-symmetric as it should. Also the tensor product for mesons contains a singlet

3⊗ 3∗ = 8⊕ 1, (6.77)

so mesons can exist, but there are no further constraints on the particle content.
Finally, the additional degrees of freedom account for some factors of three
required in places to match theory with experiment, and all is well.
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7 Representations of SU(N)

Finally we will consider the representation theory of the unitary group SU(N) of
general rank N − 1 and its complexified Lie algebra sl(N). We will introduce a
description of irreps in terms of certain diagrams.

7.1 Tensor Powers and Permutations

The complete finite representation theory for the algebras sl(N) can be obtained
by repeated tensor products of the defining representation. We therefore consider
the m-th tensor power

Vm := (Vdef)
⊗m, ρm :=

m∑
j=1

ρdef,j, (7.1)

where ρdef,j denotes the defining representation ρdef acting on the j-th factor in
(Vdef)

⊗m (and by the identity on the remaining factors).

The definition of the tensor power representation is manifestly symmetric under
any permutation of the tensor factors

ρ(π)ρm =
m∑
j=1

ρdef,π(j)ρ(π) = ρmρ(π). (7.2)

Here π ∈ Sm is a permutation of a set of m elements and ρ(π) ∈ Aut(Vm) is its
representation on the tensor power space.1 This means that ρ(π) is a module
endomorphism2 of Vm for all permutations π ∈ Sm. As there is more than one
permutation, Schur’s lemma (which does apply to finite-dimensional
representations of Lie algebras) tells us that the tensor power representation is
reducible.

By taking linear combinations of the permutations, we can construct projectors to
certain symmetric components of the tensor power space. For instance, the
available projectors for two tensor factors are the symmetriser and the
anti-symmetriser

1
2

(
ρ(1)± ρ(σ)

)
. (7.3)

These are module endomorphism of ρm as well, but they map the symmetric and
anti-symmetric subspaces V∨2 and V∧2 of Vm to themselves. This implies that
ρ2 ≡ ρ∨2 ⊕ ρ∧2 decomposes into a symmetric and an anti-symmetric
sub-representation.

1As before, one might abbreviate the representation of π on Vm by π itself because it does not
lead to ambiguities.

2A module homomorphism from the vector space to itself.
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A characteristic feature of the defining representation of sl(N) is that the
sub-representations obtained by complete symmetrisations of the tensor power are
in fact all irreducible. In other words, the representation theory of the symmetric
group Sm, determines the irreps in the m-th tensor power ρm of ρdef in sl(N).

7.2 Orthogonal Symmetrisers

As the projectors are linear combinations of representations of group elements, it
makes sense phrase them in terms of the group algebra C[Sm]. For instance, the
above projectors on ρ2 can be written more generally as

1
2

(
e1 ± eσ

)
∈ C[S2]. (7.4)

Moreover, the two elements form a basis of C[S2].

We can easily construct a set of projectors for m tensor factors given some irrep ρµ
of Sm

Pmµ
ab :=

dim ρµ
m!

∑
π∈Sm

〈a|ρµ(π)|b〉 eπ. (7.5)

Here |b〉 and 〈a| are some states in the representation space of ρµ and its dual and
they are used to extract a matrix element of ρµ.

Using the orthogonality relations of Sm we can show

Pmµ
ab P

mν
cd

=
(dim ρµ)(dim ρν)

m!2

∑
π1,π2∈Sm

〈a|ρµ(π1)|b〉〈c|ρν(π2)|d〉 eπ1π2

=
(dim ρµ)(dim ρν)

m!2

∑
π1,π∈Sm

〈a|ρµ(π1)|b〉〈c|ρν(π−1
1 )ρν(π)|d〉 eπ

= δµνδbc
dim ρν
m!

∑
π∈Sm

〈a|ρν(π)|d〉 eπ

= δµνδbcP
mµ
ad . (7.6)

This orthogonality relation implies that the projectors Pmµ
ab are independent.

Moreover there are
∑

µ(dim ρµ)2 = m! such projectors which therefore form a basis
of C[Sm]. Consequently, for each irrep ρµ of Sm, there are dim ρµ diagonal
projectors ρ(Pmµ

aa ) acting on the space Vm. Provided that these do not map the
whole of Vm to zero, one obtains an irreducible representation of sl(N)

ρmµ,a := ρ(Pmµ
aa )ρm. (7.7)

7.3 Young Tableaux

There is a useful alternative to enumerate the representations and a basis for their
representation spaces in terms of diagrams.
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Young Diagrams and Standard Fillings. Let us first introduce the diagrams:
Consider a configuration of m boxes arranged into rows and columns. All the rows
should be filled starting from a straight line on the left. Likewise, all the columns
should be filled from a straight line on the top. In other words, the lower-left
boundary of the collection of boxes takes the form of a staircase.3 Such a diagram
is called a Young diagram. For example, the following are Young diagrams:4

• (7.8)

We furthermore introduce a filling of the Young diagram by some numbers called a
Young tableau. Many of the relevant Young tableaux respect a certain ordering
(increasing or decreasing) among the rows as well as among the columns. The
ordering is typically strict among the columns whereas the rows may have identical
entries. A standard filling is a filling with the following three properties:

• All numbers 1, . . . ,m appear once.
• The numbers in each row are increasing from left to right.
• The numbers in each column are increasing from top to bottom.

For example, the following are standard fillings of a given Young diagram:

1 2 3
4 5 6
7

1 4 6
2 5 7
3

1 4 5
2 6 7
3

(7.9)

There exists a simple algorithm for computing the number |µ| of standard fillings
for a given Young diagram µ: Fill all boxes with the hook length of the box. The
hook length of a box is defined as the number of boxes in the hook based at the
former box

8 7 5 4 1
6 5 3 2
5 4 2 1
2 1

(7.10)

In other words, the hook length equals 1 plus the number of boxes directly below
and directly to the right of a given box. The number of standard fillings then
equals

|µ| = m!∏
j∈boxes(µ)

hook-length(j, µ)
. (7.11)

For example, for a particular Young diagram of 5 boxes we obtain the following 5
standard fillings:

µ = , |µ| = 5!
4 2
3 1
1

= 5 :
1 2
3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

(7.12)

3. . . defying the laws of gravity.
4The empty diagram might be denoted by a dot.
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Young Symmetriser. For each standard filling a = 1, . . . , |µ| of a Young
diagram µ we can construct a Young symmetriser as the product

Yµ,a :=
|µ|
m!

Sµ,aAµ,a ∈ C[Sm] (7.13)

with the total symmetriser of rows Sµ,a and total anti-symmetriser of columns Aµ,a

Sµ,a :=
∏

j∈rows(µ,a)

∑
π∈S(j)

eπ,

Aµ,a :=
∏

j∈columns(µ,a)

∑
π∈S(j)

sign(π) eπ. (7.14)

Here S(j) ⊂ Sm denotes the subgroup of permutations acting on the subset defined
by a row or column j. The Young symmetrisers have the following properties
(without proof):

• Every Yµ,a is a projector,
Yµ,aYµ,a = Yµ,a. (7.15)

• The product of symmetrisers for different Young diagrams µ 6= µ′ is zero,

Yµ,aYµ′,a′ = 0 if µ 6= µ′. (7.16)

Note that the product of symmetrisers for different fillings a, a′ of the same
Young diagram µ is not necessarily zero, although for many examples of small
Young tableaux this is the case.5

• The image of each symmetriser is the space of an irreducible sub-representation
of the regular representation ρreg acting on the group algebra C[Sm]. Two of
these sub-representations are equivalent if and only if the Young diagrams
match.
• The group algebra C[Sm] is the direct sum of all images of the symmetrisers

C[Sm] =
⊕
µ,a

Yµ,aC[Sm]. (7.17)

The correspondence between the diagrams and the representation theory of Sm is
therefore as follows:

• The Young diagrams are in one-to-one correspondence to the irreps of Sm.6

• The number of standard fillings equals the dimension of the corresponding
representation. One might use the standard fillings to label a basis for the
representation space.

5The minimal example of a non-zero product is between the fillings 1, 2, 3/4, 5 and 1, 3, 5/2, 4
for m = 5 boxes.

6Curiously, the equivalence classes of Sm can be enumerated by the same diagrams. An
equivalence class is specified by its cycle structure. Ordering the cycles by their lengths, we
associate to it a row of boxes of the same length and stacks these rows into Young diagram. At
least this shows that the number of Young diagrams agrees with the number of irreps of Sm.
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For example, for m = 3 there are four standard Young tableaux:

1 2 3
1
2
3

1 2
3

1 3
2

(7.18)

The former two correspond to the trivial and determinant representation. The
latter two correspond to the two-dimensional representation (which appears twice
in the regular representation). Correspondingly, there are four irreducible
representations in the tensor product of three defining representations of sl(N) (for
N ≥ 3).

7.4 Young Tableaux for sl(N)

Above, we have established a correspondence between the irreps of Sm and those of
sl(N). This is used to label the irreps of sl(N) by Young diagrams. Based on
these, there are simple algorithms to compute the irrep dimensions and to perform
other tasks.

Correspondence. Let us first of all establish the correspondence for the most
basic representations: By construction, a single box corresponds to the defining
representation

ρdef ≡ . (7.19)

A vertical stack of N − 1 boxes corresponds to total anti-symmetrisation of N − 1
defining representations. This yields the N -dimension dual defining representation,
e.g. for N = 4

ρ∗def ≡ . (7.20)

Finally, the adjoint representation is given by a hook of N − 1 in the first column
and 1 box in the second

ρad ≡ . (7.21)

Next we have to limit the set of applicable Young diagrams. It is obvious that a
Young diagram with a column of k boxes yields a symmetriser which involves an
anti-symmetrisation of k tensor factors. As there are only N linearly independent
states in the defining representation space CN one cannot anti-symmetrise more
than N tensor factors. The height of the Young diagram should therefore be
bounded by N . Moreover, anti-symmetrisation of N boxes projects the
corresponding tensor factors to a one-dimensional space on which only the trivial
representation can act. A Young diagram with some columns of maximum height
corresponds to the same irrep as the Young diagram where these columns are
eliminated, e.g. for maximum height N = 4:

≡ (7.22)
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Finally, the dual representation7 corresponds to a dual Young diagram which is
obtained by cutting out the original Young diagram from a rectangular block of
maximum height N , e.g. for N = 5:

∗

≡


 (7.23)

Note that some irreps, e.g. the adjoint, are self-dual. In the real algebra su(N)
they are thus real or quaternionic while all other irreps are complex.

Dimension. There is a simple algorithm for the dimension of the sl(N) irreps
given by the Young diagram. Here we fill the number N in the upper left corner of
the diagram. The rows are filled with numbers increasing by 1 per box, and the
columns are filled with numbers decreasing by 1 per box, for example for N = 4:

4 5 6 7 8
3 4 5 6
2 3 4 5
1 2

(7.24)

The product of these numbers divided by the product of all hook lengths equals
the dimension of the sl(N) irrep:

dim ρ =

∏
j∈boxes(µ)

(
N + column(j)− row(j)

)
∏

j∈boxes(µ)

hook-length(j, µ)
. (7.25)

For example, for N = 4 one obtains

dim =

4 5 6 7 8
3 4 5 6
2 3 4 5
1 2

8 7 5 4 1
6 5 3 2
5 4 2 1
2 1

= 36. (7.26)

Dynkin Labels. Finally, we want to determine the highest weight of the irrep
corresponding to a Young diagram. We thus fill the Young diagram with numbers
k = 1, . . . , N corresponding to the states |k〉 ∈ CN . Note that the numbers in each
column should all be distinct such that the state is not automatically destroyed by
anti-symmetrisation. In order to maximise the weight8 there should be as many 1’s
as possible. The remaining boxes should be filled with as many 2’s as possible, and
so on. Consequently, the k-th row should be filled with all equal numbers k:

1 1 1 1 1
2 2 2 2
3 3 3 3
4 4

(7.27)

7The dual representation is the complex conjugate representation for su(N).
8As before we assume the canonical ordering where the positive and negative generators of

sl(N) correspond to upper and lower triangular matrices.
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The highest-weight state can be described schematically as a Young symmetriser
acting on

|µ〉 '
N⊗
k=1

|k〉⊗lk , µ =
N∑
k=1

lkλk, (7.28)

where lk denotes the number of boxes on the k-th row. The weight of a state |k〉
expressed in the simple roots αj, j = 1, . . . , r, r = N − 1 is given by

λk = −
r∑
j=1

j

N
αj +

r∑
j=k

αj. (7.29)

and the scalar product with the simple roots by

〈λk, αj〉 = δk,j − δk−1,j. (7.30)

Therefore the Dynkin labels [n1, . . . , nr], of the highest-weight representation read

nj = 〈µ, αj〉 =
N∑
k=1

lk(δk,j − δk−1,j) = lj − lj+1. (7.31)

We thus have a correspondence between the Dynkin labels and Young diagrams

[n1, . . . , nr] ≡

1 . n1

1 . . n2

1 nr
(7.32)

or alternatively

1 . . . . . . l1
1 . . . . l2
1 . . .

1 lN

≡ [l1 − l2, . . . , lN−1 − lN ]. (7.33)

For example, one can now show that the two dimension formulas yield coincident
number, but the general proof requires some non-trivial combinatorics.

Tensor Products. The formalism of Young diagrams for sl(N) arose from the
consideration of the m-fold tensor product of the defining representation. The
above results phrased in terms of Young diagrams provide the decomposition

(ρdef)
⊗m ≡

⊕
µ with m boxes

(ρµ)⊕|µ|. (7.34)

Note that the multiplicity of the irrep labelled by µ is given by the number |µ| of
standard fillings of the Young tableau µ. For example

⊗ ⊗ ≡ ⊕ ⊕ ⊕ . (7.35)
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Note that this rule applies to all sl(N), even for sl(2) where it reads
1
2
⊗ 1

2
⊗ 1

2
≡ 3

2
⊕ 1

2
⊕ 1

2
. The final term must be left out because the total

anti-symmetrisation of three two-dimensional spaces does not exist.

The formalism of Young diagrams is also very useful for decomposing tensor
products of two arbitrary irreps. In particular, there is a simple algorithm for
computing the tensor product of an irrep ρ with the defining representation:

⊗ (7.36)

The resulting diagrams should be a sum of diagrams with one additional box. All
of these Young diagrams are obtained by adding a single box to the diagram of ρ.
Since the resulting terms should be Young diagrams as well, one has to make sure
to add the boxes only in certain allowed places, i.e. where the Young diagrams has
a concave corner:

⊕ ⊕ ⊕ (7.37)

The tensor product decomposition is simply the sum of all permissible additions of
boxes to the original diagram. There are analogous but more involved rules for
computing the tensor product decomposition for two generic Young diagrams.
Also for other tasks in group theory the Young tableaux can come in handy.
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8 Classification of Simple Lie Algebras

In this chapter we want to classify all finite-dimensional simple Lie algebras and
derive some of their properties and applications. We will again start with complex
Lie algebras and later consider their various real forms.

8.1 Classification of Complex Algebras

We start with explaining how the classification of simple Lie algebras works and
list some relevant features.

Chevalley–Serre Relations. We have already identified a useful set of
generators of a complex simple Lie algebra g: These are the simple generators
(Ej,Fj,Hj), j = 1, . . . , r along with non-simple positive and negative generators
obtained as Lie brackets among the Ej and among the Fj, respectively. Their Lie
brackets are reminiscent of r copies of the algebra sl(2) with a suitable set of
interactions between the factors

JHj,HkK = 0, JEj,FkK = δjkHk,

JHj,EkK = AjkEk, JHj,FkK = −AjkFk. (8.1)

The set of non-simple generators is constrained by the Serre relations (j 6= k)

ad(Ej)
1−AjkEk = 0, ad(Fj)

1−AjkFk = 0. (8.2)

The Cartan matrix Ajk is related to the roots as follows:

Ajk := αk(Hj) =
2〈αj, αk〉
〈αj, αj〉

. (8.3)

In particular this implies that all diagonal elements equal 2,

Akk = 2. (8.4)

The interactions between the sl(2) factors can be understood as follows: The
above relations for j 6= k can be written as

ad(Hj)Ek = AjkEk, ad(Hj)Fk = −AjkFk,
ad(Fj)Ek = 0, ad(Ej)Fk = 0,

ad(Ej)
1−AjkEk = 0, ad(Fj)

1−AjkFk = 0. (8.5)

They express that Ek is the lowest-weight state under a representation of the sl(2)
spanned by (Ej,Fj,Hj); likewise Fk is the highest-weight state of an equivalent
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representation. From the constraints on the Cartan charges for a finite-dimensional
representation of sl(2) we know that Ajk must be a non-positive integer

Ajk ∈ Z−0 . (8.6)

This ensures that ad(Ej)
−AjkEk is a highest-weight state within a lowest-weight

representation and thus ad(Ej)
1−AjkEk must be zero; likewise for Fk.

For a finite-dimensional algebra, the scalar product 〈·, ·〉 on h∗ must be positive
definite and likewise the Cartan matrix must be positive definite. One immediate
corollary of the definition of Ajk is that

Ajk = 0 ⇐⇒ Akj = 0. (8.7)

Another corollary is that
AjkAkj = 4 cos2 ψjk < 4, (8.8)

where ψjk denotes the angle between αj and αk as measured by the definite scalar
product 〈·, ·〉. Finally, by construction of A there is an invertible diagonal matrix
D (given by Djj = 〈αj, αj〉) such that DA is symmetric.

Putting these constraints together, every pair of off-diagonal elements of the
Cartan matrix can only take one of 4 combinations

{Ajk, Akj} ∈
{
{0, 0}, {−1,−1}, {−1,−2}, {−1,−3}

}
. (8.9)

Dynkin Diagrams. Now that we know the properties of Cartan matrices for
finite-dimensional simple Lie algebras, we can turn the logic around, and construct
the latter algebras from scratch. One can show that the above algebra relations,
where Ajk is a suitable Cartan matrix, describe a finite-dimensional semi-simple
Lie algebra. This reduces the classification of finite-dimensional simple Lie
algebras to the classification of matrices with the properties derived above.

There is a useful representation of Cartan matrices in terms of so-called Dynkin
diagrams :

• For each diagonal element Ajj = 2 of the Cartan matrix draw a white dot.1 In
total there are r dots where r is the rank of the Lie algebra.
• Two dots j 6= k are connected by 0 ≤ max(|Ajk|, |Akj|) ≤ 3 lines. In particular,

two dots are not connected if Ajk = Akj = 0.
• When |Ajk| > |Akj| draw an arrow head from dot k to dot j on top of the lines.

No arrow is drawn if Ajk = Akj = 0.2

For example, the Cartan matrix for sl(3) is described by two dots connected by a
line

Ajk =

(
2 −1
−1 2

)
≡ . (8.10)

1One may also associate the dots with the simple roots αj .
2One can also view the arrow from a long to a short root as an inequality sign between the

lengths of the corresponding simple roots αj .
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A useful feature of the Dynkin diagrams is that the ordering of simple roots plays
no particular role, and one can identify a Lie algebra by a brief look at a diagram
instead of the detailed table of matrix elements (most of which are typically 0).

Dynkin diagrams can be characterised by two properties: A connected Dynkin
diagram corresponds to a simple Lie algebra; a disconnected diagram then
evidently corresponds to a semi-simple Lie algebra where each connection
component corresponds to a simple factor. Here we shall mostly consider
connected diagrams. Furthermore, a Lie algebra whose Dynkin diagram has only
single lines is called simply laced. Here all roots have the same norm 〈αj, αj〉. An
example of a simply laced Lie algebra is the above sl(3). Conversely, a Lie algebra
whose Dynkin diagram has multiple lines with arrows is called non-simply laced.
Here the roots have different lengths. An example of a non-simply laced Lie
algebra is so(5) whose Cartan matrix is described by the Dynkin diagram

Ajk =

(
2 −1
−2 2

)
≡ . (8.11)

Here, the long root α1 corresponds to the dot on the left and the short root α2

corresponds to the dot on the right.

Classical Lie Algebras. A complete enumeration of Dynkin diagrams for
finite-dimensional Lie algebras yields four infinite families called ar, br, cr, dr:

ar : sl(r + 1)

br : so(2r + 1)

cr : sp(2r)

dr : so(2r) (8.12)

These correspond to the three families of classical Lie algebras sl/su, so and sp.3

Here r describes the rank of the Lie algebras; their dimensions are given by

dim sl(n) = (n− 1)(n+ 1), dim ar = r(r + 2),

dim so(n) = 1
2
n(n− 1), dim dr = r(2r − 1),

dim br = r(2r + 1),

dim sp(2n) = n(2n+ 1), dim cr = r(2r + 1). (8.13)

Note that ar and dr are simply laced while br and cr are non-simply laced.

The classical Lie algebras correspond to the matrix algebras

sl(n) =
{
A ∈ End(Cn); trA = 0

}
,

so(n) =
{
A ∈ End(Cn);A+H−1ATH = 0

}
,

sp(2n) =
{
A ∈ End(C2n);A+ E−1ATE = 0

}
, (8.14)

3Note that there is a distinction between the orthogonal algebras for even and odd dimension.
This can be related to the fact that one of the eigenvalues of odd-dimensional rotational matrices
is always 1 while there is no such restriction for the even-dimensional ones.

8.3



where H and E are invertible symmetric and anti-symmetric matrices,
respectively. The concrete choice of H and E leads to equivalent algebras, and in a
notation where each block corresponds to an n× n matrix the canonical choice is

H =
(
1
)
, E =

(
0 −1

+1 0

)
. (8.15)

Small Rank. For small rank r, not all of the above sequences of diagrams make
sense. Let us give some note-worthy cases at low rank:

a1 = b1 = c1 :

d1 :

d2 : ⊕
d3 :

b2 = c2 : (8.16)

Here a shaded dot is meant to represent the one-dimensional abelian Lie algebra C
which is usually not considered simple. These follow from identities among the
classical Lie algebras at low rank which are related to the spinor representations of
the orthogonal algebras

so(2) = gl(1), d1 = C,
so(3) = sp(2) = sl(2), b1 = c1 = a1,

so(4) = sp(2)⊕ sp(2), d2 = a1 ⊕ a1,

so(5) = sp(4), b2 = c2,

so(6) = sl(4), d3 = a3. (8.17)

Note that the algebras d1 = so(2) and d2 = so(4) are not simple.4

Exceptional Lie Algebras. In addition to the four classical Lie algebras, there
are five exceptional Lie algebras :

e6 : dim e6 = 78 = 6 · 13

e7 : dim e7 = 133 = 7 · 19

e8 : dim e8 = 248 = 8 · 31

f4 : dim f4 = 52 = 4 · 13

g2 : dim g2 = 14 = 2 · 7 (8.18)

4With some imagination one can visualise how the Dynkin diagram d2 arises at the lower end
of the sequence dr.
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Their existence is often attributed to the existence of the division algebra of
octonions. This fourth division algebra is non-associative and hence it does not
make sense to construct arbitrary matrices with octonionic entries. This is possible
only in some restricted cases, expressed by the exceptional algebras.

Note that the sequence of algebras er can be extended to lower rank as particular
combinations of the classical Lie algebras:5

e2 := a1 ⊕ d1 : ⊕ sl(2)⊕ gl(1)

e3 := a2 ⊕ a1 : ⊕ sl(3)⊕ sl(2)

e4 := a4 : sl(5)

e5 := d5 : so(10) (8.19)

This finite sequence of exceptional algebras plays a role in various subjects of
theoretical physics such as grand unified theories, supergravity and string theory.

Casimir Operators. It is good to know the degrees of the higher Casimir
invariants:6 7

ar = sl(r + 1) 2, 3, . . . , r + 1
br = so(2r + 1) 2, 4, 6, . . . , 2r
cr = sp(2r) 2, 4, 6, . . . , 2r
dr = so(2r) 2, 4, 6, . . . , 2r − 2, r
e6 2, 5, 6, 8, 9, 12
e7 2, 6, 8, 10, 12, 14, 18
e8 2, 8, 12, 14, 18, 20, 24, 30
f4 2, 6, 8, 12
g2 2, 6 (8.20)

8.2 The Exceptional Algebra g2

Here we want to briefly discuss g2 as one of the exceptional and non-simply laced
algebras.

Roots. The Cartan matrix reads

Ajk =
2〈αj, αk〉
〈αj, αj〉

=

(
2 −3
−1 2

)
≡ . (8.21)

5Again, with some imagination, one can see how the sequence is continued to at least e3.
6For instance, the cubic Casimir invariant is related to chiral anomalies in four-dimensional

quantum field theories. The table shows that these can appear only in connection to groups ar,
r > 1 as well as d3 (which equals a3). The higher Casimir invariants are related to anomalies in
higher dimensions.

7The dimension of the Lie algebra equals twice the sum of the Casimir ranks minus r. It also
equals r times the highest rank plus r.
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This means that the root α2 is
√

3 as long as the root α1 and that they are at an
angle of 150◦. The Serre relations read

ad(E2)2E1 = ad(E1)4E2 = 0. (8.22)

They imply that there are four non-simple positive generators of the form

E12 = ad(E1)E2 = − ad(E2)E1,

E112 = ad(E1)E12 = ad(E1)2E2,

E1112 = ad(E1)E112 = ad(E1)3E2,

E21112 = ad(E2)E1112 = ad(E2) ad(E1)3E2. (8.23)

By means of the Jacobi identities and Serre relations one can show that all other
combinations are trivial

ad(E2)E12 = ad(E2)E112 = ad(E1)E1112 = ad(Ej)E21112 = 0. (8.24)

The Lie algebra g2 therefore has dimension 14. The distribution of roots is
summarised in a diagram:

H E1

E2 E12 E112 E1112

E21112

F1

F2F12F112F1112

F21112

(8.25)

The dual basis is given by the vectors

ω1 = 2α1 + α2, ω2 = 3α1 + 2α2, (8.26)

and one can convince oneself that the weight lattice Ω is spanned by the simple
roots.

The dimensions of the smallest few irreps can be obtained from the Weyl
dimension formula

[1, 0] = 7, [0, 1] = ad = 14, [2, 0] = 27, [1, 1] = 64. (8.27)

The decomposition of the smallest tensor products can be deduced as Diophantine
equations

7⊗ 7 = (27⊕ 1)∨ ⊕ (14⊕ 7)∧,

7⊗ 14 = 64⊕ 27⊕ 7. (8.28)
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Octonions. The classical Lie algebras are related to the algebras of matrices
(with certain additional properties). How can the exceptional algebras be
interpreted?

For example, g2 is known to be the automorphism algebra of the octonions. The
octonions O form a non-associative non-commutative division algebra of real
dimension 8. They are spanned by the real unit ê0 = 1 and 7 imaginary units êk,
k = 1, . . . 7,

x = x0 +
7∑

k=1

xkêk ∈ O. (8.29)

As for the complex numbers and the quaternions, the real unit commutes with
everything and squares to itself while the imaginary units square to minus the real
unit

(ê0·êj) = (êj·ê0) = êj, (ê0·ê0) = −(êj·êj) = ê0. (8.30)

Furthermore, the imaginary units anti-commute according to the rule

(êj·êk) = ±êl,
(êk·êj) = ∓êl,

6

7 53

12
4

e.g.

(ê2·ê7) = +ê6,

(ê7·ê4) = −ê1,

(8.31)

Here ±êl is determined by the diagram such that l lies on a common line with j, k;
the sign is the parity of the permutation that orders the indices j, k, l according to
the direction of the arrows along the line.8

The conjugate of an octonion is defined by

x∗ = x0 −
7∑

k=1

xkêk, (8.32)

the square norm as

|x|2 := (x∗·x) = (x·x∗) =
7∑
j=0

x2
j ∈ R+

0 , (8.33)

and consequently the inverse takes the form x−1 = x∗/|x|2.

The exceptional algebra g2 has a 7-dimensional irrep which can act on the
imaginary part of octonions. Combined with the trivial representation to act on
the real part, it has a representation on the octonions

ρoct(A)x :=
7∑

j,k=1

ρ7(A)jkxj êk. (8.34)

8For instance, this implies that any two x, y ∈ O generate an algebra of quaternions H. A
third element z ∈ O is needed to generate the whole of O.
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This representation is an isomorphism in the sense

(ρoct(A)x·y) + (x·ρoct(A)y) = ρoct(A)(x·y). (8.35)

For an element g of the corresponding Lie group G2 the isomorphism statement is
(ρoct(g)x·ρoct(g)y) = ρoct(g)(x·y).

Subalgebras. Note that the isomorphisms of the imaginary octonions preserve
the norm | · | by construction. Since the norm is spherically symmetric in the space
R7, the algebra g2 preserves the sphere S6 ∈ R7. This means that g2 is a
subalgebra of so(7) = b3.

One may wonder how to characterise this subalgebra. For that we can look at the
splitting of some irreps under so(7)→ g2

7→ 7,

8→ 7⊕ 1,

21→ 14⊕ 7,

27→ 27,

48→ 27⊕ 14⊕ 7. (8.36)

In particular, the 8-dimensional spinor representation splits into a singlet and a
7-dimensional irrep. Furthermore, the adjoint splits into the adjoint and the same
7-dimensional irrep. This implies that g2 is the stabiliser subalgebra of a
(non-zero) spinor of so(7).

Conversely one may ask about the biggest classical subalgebra of g2. The regular
triangular lattice of roots and weights suggests that this is sl(3). One finds the
following splitting of irreps for g2 → sl(3)

7→ 3⊕ 3∗ ⊕ 1,

14→ 8⊕ 3⊕ 3∗. (8.37)

Again this pattern of splittings tells that sl(3) is the stabiliser of a non-zero
element in the 7 of g2.

8.3 Real Forms

In physics one is often interested in unitary representations, and those make sense
only in real forms of the complex Lie algebra. A real form gR of a complex Lie
algebra gC is specified by a complex conjugation on gC which obeys

JA∗, B∗K = JA,BK∗. (8.38)

The real slice gR := {A ∈ gC;A = A∗} of the complex algebra is a real Lie algebra.
Real forms are commonly classified by so-called Satake or Vogan diagrams which
are decorations of Dynkin diagrams describing the complex conjugation. We will
not introduce them here, but merely list the resulting real forms.
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Classical Algebras. For the classical Lie algebras based on matrix algebras, the
real forms follow a regular pattern. There are ten families of classical real forms
listed along with their maximally compact subalgebras:

so(p, n− p) so(p)⊕ so(n− p)
so(n,C) so(n)

so(n,H) su(n)⊕ R
sl(n,R) so(n)

sl(n,C) su(n)

sl(n,H) sp(n)

su(p, n− p) su(p)⊕ su(n− p)⊕ R
sp(2n,R) su(n)⊕ R
sp(2n,C) sp(n)

sp(p, n− p) sp(p)⊕ sp(n− p) (8.39)

These algebras are defined analogously to their complex counterparts introduced
before.9

Some comments are in order:

• The algebras are based on traceless (sl), anti-symmetric (so), anti-symplectic
(sp) or anti-hermitian, traceless (su) matrices over the real (R), complex (C) or
quaternionic (H) numbers. The hermitian property only applies to the field of
complex numbers.
• The default fields for so, su, sp are R, C, H, respectively. For these, the vector

spaces are equipped with a metric of signature (p, n− p) whose ordering does
not matter. The definite signature (n, 0) is abbreviated by (n).
• We use the convention that the number(s) indicate the dimension over the

defining field. In other conventions the dimension of the complexified algebra is
used. This leads to notational differences for matrices over the quaternions; here
(n,H) refers to Hn, elsewhere it may refer to Hn/2 ≡ Cn. Yet other conventions
divide the dimension for sp(2n,R) and sp(2n,C) by two.
• The algebras based on quaternions are frequently denoted alternatively as:

usp(2p, 2n− 2p)→ sp(p, n− p),
so∗(2n)→ so(n,H),

su∗(2n)→ sl(n,H). (8.40)

Small Rank. For small rank, there are some equivalences between the various
real forms. All the one-dimensional abelian Lie algebras are equal

so(2) = so(1, 1) = so(1,H) = u(1) = gl(1,R) = R. (8.41)

9In order to define the quaternionic matrix algebras, note that for q = w + xı̂+ ŷ+ zk̂ the
transpose is defined by qT := w + xı̂− ŷ+ zk̂ and the trace by tr q := w. The canonical
quaternionic symplectic metric is defined by E = diag(±1, . . . ,±1)̂.
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For the non-abelian Lie algebras the equivalences are related to the spinor
representations of the orthogonal algebras:

so(3) = sp(1) = sl(1,H) = su(2),

so(2, 1) = sp(2,R) = sl(2,R) = su(1, 1),

so(4) = sp(1)⊕ sp(1),

so(3, 1) = sp(2,C),

so(2, 2) = sp(2,R)⊕ sp(2,R),

so(2,H) = sp(1)⊕ sp(2,R),

so(5) = sp(2),

so(4, 1) = sp(1, 1),

so(3, 2) = sp(4,R),

so(6) = su(4),

so(5, 1) = sl(2,H),

so(4, 2) = su(2, 2),

so(3, 3) = sl(4,R),

so(3,H) = su(3, 1),

so(6, 2) = so(4,H). (8.42)

For instance, one can convince oneself that the maximally compact subalgebras of
the equivalent real forms coincide.

Standard Real Forms. There are always at least three real forms related to
each complex simple Lie algebra g.

The compact real form is obtained by the conjugation

H∗k = −Hk, E∗k = −Fk, F∗k = −Ek. (8.43)

The algebraic relations are preserved by this conjugation. It has the distinguished
property that the Killing form has (negative) definite signature. The associated
Lie group is compact. The compact real forms of the complex algebras so(n),
sl(n), sp(2n) are the real algebras so(n), su(n), sp(n), respectively.

The split real form is the opposite of the compact real form. It is obtained by
declaring all the Chevalley–Serre generators to be real

H∗k = Hk, E∗k = Ek, F∗k = Fk. (8.44)

The defining algebraic relations are real, and therefore this conjugation defines a
proper real form of the algebra. The split real forms of the complex algebras
so(2n), so(2n+ 1), sl(n), sp(2n) are the real algebras so(n, n), so(n, n+ 1),
sl(n,R), sp(2n,R), respectively.

Finally, there is the complex real form of g⊕ g which is largely equivalent to the
complex Lie algebra g. Here, a Lie algebra over the complex numbers is
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interpreted as a Lie algebra over the real numbers with twice the dimension. Note
that formally the complex real form is a real Lie algebra and thus different from
the complex Lie algebra. For instance, the complex algebra has only complex
representations whereas the real algebra can also have real or quaternionic
representations. The compact real forms of the complex algebras so(n), sl(n),
sp(2n) are the real algebras so(n,C), su(n,C), sp(n,C), respectively.

Exceptional Algebras. For the exceptional algebras gr there are several real
forms denoted by gr(p−q) where (p, q) is the signature of the Killing form and where
q is the dimension of the maximally compact subalgebra. We have seen above that
there always exist the compact and the complex real forms; there is not much to
say about these. For the split real forms gr(r) we specify the signature and the
maximally compact subgroups:

g2(2) (8, 6) su(3)

f4(4) (28, 24) so(7)⊕ su(2)

e6(6) (42, 36) sp(4)

e7(7) (70, 63) su(8)

e8(8) (128, 120) so(16) (8.45)

Furthermore, there are a few more real forms:

f4(−20) (16, 36) so(9)

e6(−26) (26, 52) f4

e6(−14) (32, 46) so(10)⊕ R
e6(2) (40, 38) su(6)⊕ su(2)

e7(−25) (54, 79) e6(−78) ⊕ R
e7(−5) (64, 69) so(12)⊕ su(2)

e8(−24) (112, 136) e7(−133) ⊕ su(2) (8.46)

8.4 Affine Algebras

The above formalism to classify simple finite-dimensional Lie algebras can be
extended to construct some useful infinite-dimensional algebras. The construction
uses the same algebra relations as above, however the Cartan matrices are now
allowed to be positive semi-definite with one degenerate direction. This results in
two classes of so-called affine Kac–Moody algebras.
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Affine Algebras. The first class are the untwisted affine algebras. There is
precisely one algebra ĝ = g(1) for each finite-dimensional simple Lie algebra g:10

âr−1 :

1

1

1
1

1

1

1

sl(r)(1)

b̂r−1 :

1

2 2 2 2 2

1

so(2r − 1)(1)

ĉr−1 : 1 2 2 2 2 1 sp(2r − 2)(1)

d̂r−1 :

1

2 2 2 2

1

1

1

so(2r − 2)(1)

ê6 :

1

2

1 2 3 2 1

ê7 :
1 2 3 4 3 2 1

2

ê8 :
12345642

3

f̂4 : 12342

ĝ2 : 123 (8.47)

Note that the diagram of ĝ of rank r is obtained by adding one node to the Dynkin
diagram of the corresponding finite-dimensional simple algebra g of rank r − 1.
Moreover, this node j = 0 is attached in accordance with the Dynkin labels of the
adjoint representation of g. The numbers bj indicated on the nodes11 describe the
kernel of the Cartan matrix

r−1∑
j=0

Akjbj = 0. (8.48)

The affine algebra ĝ can be described conveniently in terms of the
finite-dimensional algebra g: It is an extension of the loop algebra g[x, x−1] by a
central element C and a derivation D

ĝ = g[x, x−1]⊕ CC⊕ CD. (8.49)

10The Dynkin diagrams of âr, d̂r and êr are composed from simple lines only. They make
appearance in diverse topics in mathematics and theoretical physics, see Section 4.2, and they are
called the ADE-graphs.

11The numbers bj also determine the dimension of the underlying finite-dimensional Lie
algebra as dim g = (r − 1) + (r − 1)

∑
j bj where r − 1 is the rank of g.
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The loop algebra g[x, x−1] := g⊗ C[x, x−1] is the tensor product of a Lie algebra g
with Laurent polynomials in one (formal) variable x. Thus g[x, x−1] is spanned by
the elements Ja ⊗ xn, n ∈ Z where Ja, a = 1, . . . , dim g denotes a basis of g. The
Lie brackets for ĝ are given by

JA⊗ xm, B ⊗ xnK = JA,BK⊗ xm+n +mδm+n,0〈A,B〉C,
JD, A⊗ xmK = mA,

JC, A⊗ xmK = JC,DK = 0, (8.50)

Furthermore, there exist an invertible bilinear form12

〈A⊗ xm, B ⊗ xn〉 = δm+n,0〈A,B〉,
〈C,D〉 = 1. (8.51)

Note that the central charge C is related to the kernel of the transpose Cartan
matrix

C =
r−1∑
j=0

b∗jHj where
r−1∑
j=0

b∗jAjk = 0. (8.52)

This implies that JC,EkK = JC,FkK = 0. The derivation D is not accounted for by
the Chevalley–Serre generators.13

Twisted Affine Algebras. There also exist affine Dynkin diagrams which do
not extend the ones of the finite-dimensional simple algebras. These take the form:

a
(2)
2r−3 :

1

22221

1

sl(2r − 2)(2)

a
(2)
2r−2 : 1 2 2 2 2 2 sl(2r − 1)(2)

d(2)
r : 1 1 1 1 1 1 so(2r)(2)

e
(2)
6 : 12321

d
(3)
4 : 121 so(8)(3) (8.53)

All of these algebras exist because some of the finite-dimensional Lie algebras
possess outer automorphisms. These are related to symmetries of the Dynkin

12The value assigned to 〈C,D〉 is required to make the bilinear form non-singular and to define
the quadratic Casimir invariant consistently.

13The affine algebra is not simple. A simple algebra is obtained by dropping the derivation D
and quotienting out the central charge C. The resulting algebra is the loop algebra g[x, x−1].
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diagrams:14

ar :

dr :

e6 :

d4 : (8.54)

Among these, the diagram d4 is special because it has a three-fold symmetry as
compared to the two-fold reflectional symmetries of the others.

The above Dynkin diagrams correspond to twisted affine algebras g
(k)
r .15 They can

be considered as subalgebras of the above affine algebras g
(1)
r := ĝr determined by

the outer automorphism σ of order k. The elements A⊗ xn of the subalgebra are
characterised by satisfying

σA⊗ xn = e2π̊ın/kA⊗ xn. (8.55)

Small Rank. Again the sequences of classical affine algebras should be specified
more clearly at low rank. The lower untwisted affine algebras are described by the
following Dynkin diagrams:

â1 = b̂1 = ĉ1 : 11 so(3)(1) = sp(2)(1)

b̂2 = ĉ2 : 121 so(5)(1) = sp(4)(1)

d̂2 : 11 ⊕ 11 so(4)(1)

d̂3 : 1

1

1

1

so(6)(1) = sl(4)(1)

d̂4 :
1

2

11

1

so(8)(1) (8.56)

Here the double line without an arrow16 describes a pair of equal off-diagonal
elements {Ajk, Akj} = {−2,−2} of the Cartan matrix.

The small-rank twisted affine algebras are described by the following Dynkin

14The twisted affine Dynkin diagrams are related to foldings of the untwisted Dynkin diagrams
under the symmetry.

15The index r of g
(k)
r is not directly related to the rank of the twisted affine algebra.

16Other conventions use double arrow or a quadruple line.
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diagrams:

a
(2)
2 : 21 sl(3)(2)

a
(2)
3 = d

(2)
3 : 111 sl(4)(2) = so(6)(2)

a
(2)
4 : 221 sl(5)(2) (8.57)

Note that for affine algebras also a quadruple line with an arrow is permitted,
which describes a pair of off-diagonal elements {Ajk, Akj} = {−1,−4} of the
Cartan matrix.

8.5 Subalgebras

The Dynkin diagrams of the finite-dimensional algebras and their affine extensions
can be used to construct many related algebras.

Construction. Often one is interested in finding subalgebras of a given algebra.
For example, so(p+ q) has as subalgebras so(p) and so(q) as well as their direct
sum so(p)⊕ so(q). How can this be seen from the Dynkin diagrams? Suppose
p, q > 2 are even, then the relevant Dynkin diagrams are all of the form:

(8.58)

By eliminating some nodes one can obtain so(p) and so(q), but not their direct
sum. However, the direct sum is contained in the affine Dynkin diagram of
so(p+ q)(1):

(8.59)

This trick also works if one of p, q is even and the other one is odd:

(8.60)

If both p, q are odd, however, the subalgebra so(p)⊕ so(q) has lower rank than
so(p+ q) and it cannot be obtained in this way. Here, the relevant Dynkin
diagram is the twisted affine so(p+ q)(2):

(8.61)

This method to obtain (large) subalgebras works for general simple Lie algebras. It
is based on the fact that the affine Lie algebras contain infinitely many copies of a
given simple Lie algebra under the projection A⊗ xn → A. By removing a node
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from the Dynkin diagram one obtains a subalgebra. When one node is removed
from an affine Dynkin diagram, the resulting subalgebra is a direct sum of
finite-dimensional simple algebras.

An alternative to obtain further subalgebras is to eliminate a node from a
finite-dimensional Dynkin diagram. For example, so(2n) has a
gl(n) = sl(n)⊕ gl(1) subalgebra given by the elimination:

(8.62)

The difference w.r.t. the above cases is that we keep the associated Cartan element
Hk which yields the additional abelian component C = gl(1) = so(2). This is not
an option when starting with an affine Dynkin diagram because Hk essentially
corresponds to the central element C which is unrelated to the finite-dimensional
algebra.

By using the above splitting method on the various Dynkin diagrams and iterating
the procedure one obtains a wealth of subalgebras for any given simple Lie algebra.
In particular, the rank is preserved (unless the twisted affine algebras are used).
However, there are also many other subalgebras which do not follow from this
procedure, e.g. g2 ⊂ so(7) discussed above.

Grading. From the above construction of subalgebras one can further deduce a
Zn grading structure on the decomposition. This means that the Lie algebra g
decomposes

g =
n−1⊕
k=0

gk such that Jgj, gkK ⊂ gj+k. (8.63)

The subalgebra is the component g0 at grading 0. The label on the deleted node of
the untwisted affine Dynkin diagram determines the order n of the grading. For a
twisted Dynkin diagram g(k) the order of the grading is the product nk. When
deleting a node from the finite Dynkin diagrams, the order is 2n where n is the
label on the associated affine diagram.

Understanding the grading is useful for constructing coset models which are based
on coset spaces G/H of a Lie group G and a Lie subgroup H. For instance, the Z2

cosets of Lie groups are called symmetric spaces and they have particularly nice
properties.

Real Forms. The real form of the finite-dimensional Lie algebras can be
obtained by considering their maximally compact subalgebras. These are given by
the even part of a Z2 automorphism. Therefore there is a close correspondence
between the real forms and the symmetric spaces, and the real forms can be
classified via affine Dynkin diagrams:
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• Remove a node of an untwisted affine Dynkin diagram with label 1. This
corresponds to the compact real form because the remaining Dynkin diagram
describes the original finite-dimensional Lie algebra.
• Remove a node of an untwisted affine Dynkin diagram with label 2. This

corresponds to the real forms so(2p, 2q), so(2p, 2q − 1), sp(p, q), e6(2), e7(−5), e7(7),
e8(−24), e8(8), f4(−20), f4(4), g2(2).
• Remove two nodes of an untwisted affine Dynkin diagram with labels 1. This

corresponds to the real forms whose maximally compact subalgebra contains a
factor of R, namely so(p, 2), so(n,H), su(p, q), sp(2n,R), e6(−14), e7(−25).
• Remove a node of a Z2 twisted affine Dynkin diagram with label 1. This

corresponds to the real forms whose maximally compact subalgebra has lower
rank, namely sl(n,R), sl(n,H), so(2p− 1, 2q − 1), e6(−26), e7(−25).
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9 Conformal Symmetry

So far we have mainly discussed compact symmetry algebras with
finite-dimensional representations. However, also the non-compact symmetry
algebras play an important role in physics. In particular, in quantum field theory
the unitary irreps of the Poincaré group can be used to classify the various kinds of
particles. Here, we shall consider the somewhat bigger group of conformal
symmetries, which are the transformations that preserve angles but not necessarily
distances. Physical models with conformal symmetry are called conformal field
theories. We shall see that the construction of suitable representations for such
models is analogous to our previous constructions.

9.1 Conformal Field Theory

In the following, we will briefly introduce a few elements of conformal symmetry
and conformal field theory.

Conformal Symmetry. Conformal transformations are the transformations of a
space that preserve all angles between two intersecting smooth curves. We shall
assume that the space is flat. In that case, the rotations and translations clearly
preserve all angles. Furthermore, scale transformations, x 7→ αx, do preserve
angles, but they evidently do not preserve distances. Finally, also inversions about
a point, x 7→ x/x2, turn out to preserve angles. When combining inversions with
translations, one finds the conformal boosts as additional continuous
transformations.

(9.1)

Altogether the (continuous) conformal transformations in d spatial dimensions
extend the euclidean transformations to the conformal algebra so(d+ 1, 1). For a
d-dimensional spacetime, the conformal algebra is so(d, 2). We shall mainly
consider the latter case here. Denote the generators of (Lorentz) rotations so(d) or
so(d− 1, 1) by Mµν = −Mνµ and the generators of translations by Pµ. The
additional generators of conformal symmetries are the dila(ta)tion generator D
and the conformal boost generators Kµ.
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The conformal action on the coordinates is specified by

Pµx
ν = ı̊δνµ, Kµxν = ı̊xµxν − ı̊

2
ηµνx2,

Dxν = ı̊xν , Mµνx
ρ = ı̊δρνxµ − ı̊δρµxν . (9.2)

The corresponding conformal algebra therefore reads

JD,PµK = −̊ıPµ,

JD,KµK = +̊ıKµ,

JPµ,K
νK = −̊ıMµ

ν + ı̊δνµD,

JD,MµνK = 0. (9.3)

Conformal Field Theory. A conformal field theory is a special kind of
quantum field theory where the spacetime symmetries are given by the conformal
group. Examples are given by classical electromagnetism as well as physical
systems at a phase transition.1

Typically, the objects of interest in a conformal field theory are local operators
O(x). These are some combinations of the fields of the theory evaluated at a
particular point x in space(time). Often the local operators are not specified
explicitly through particular combination of fields, but rather implicitly through
their properties (spin, charges, quantum numbers). The observables related to
these local operators are the n-point correlation functions〈

O1(x1) . . .On(xn)
〉
. (9.4)

Conformal symmetry imposes constraints on the form of correlation functions. For
example, translation symmetry evidently implies that two-point functions are
functions of the difference of points x12 := x1 − x2. Moreover, rotational symmetry
implies that only x2

12 can appear. Finally, the scaling and conformal boost
symmetries imply the very concrete form〈

O(x1)O(x2)
〉

=
C

(x2
12)∆

. (9.5)

Here, O is assumed to be a scalar primary, ∆ is its conformal dimension, and C is
a normalisation constant. A primary operator is a local operator which is
annihilated by the conformal boosts at the origin x = 0 2 and which has a definite
scaling dimension ∆ 3

ρO(Kµ)O(0) = 0, ρO(D)O(0) = −̊ı∆O(0). (9.6)

Furthermore, a scalar operator satisfies ρO(Mµν)O(0) = 0.

1When tuning the parameters of a model between two phases, its correlation functions become
long-ranged and are described by conformal field theory.

2The point x = 0 is a fixed point of all conformal transformations except the translations.
3The origin is chosen as the reference point so that the conformal transformations on the

coordinate x are as simple as possible.
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Operators with spin transform in some non-trivial representation of so(d) or
so(d− 1, 1) at the origin, and consequently they carry some vector (or spinor)
indices. In n-point functions the vector indices of primary operators are typically
contracted by the combination

Iµν12 (x12) := ηµν − 2
xµ12x

ν
12

x2
12

. (9.7)

For example, a two-point function of vector primaries takes the form

〈
Oµ(x1)Oν(x2)

〉
=
CIµν(x12)

(x2
12)∆

. (9.8)

Most operators are not primary, but they are all related to some primary. A
descendant operator is obtained from a primary operator by applying the
translation generator

O′µ1...µn(x) = ρO(Pµ1) . . . ρO(Pµn)O(x) = (−̊ı)n∂µ1 . . . ∂µnO(x). (9.9)

Since descendants are partial derivatives of the primary, their correlation functions
are all determined through the correlators of primaries. Therefore it largely suffices
to focus attention to the primary operators; the descendants are encoded into the
coordinate-dependence.

Global Aspects. The conformal group for spacetime has non-trivial topological
features which are also relevant for the representation theory. In order to
understand them, consider the following argument involving a finite conformal
boost as the conjugation of a translation by an inversion. The inversion of a point
in the distant past yields a point in the near future. A reasonably small translation
can shift this point between near future and near past. A subsequent inversion
maps this point to the distant future. This shows that even small conformal
transformations relate the distant past and future.

Consequently, the corresponding regions of spacetime should be topologically
nearby. In other words, spacetime appears to have closed time-like curves, a
feature which is highly undesirable from the point of view of causality. Spacetime
has a conformal topology of S1 × Sd−1/Z2 where the circle S1 describes time. The
resolution to the problem is to consider the conformal completion of spacetime.
The topology of the completed spacetime is R× Sd−1 where the time-like circle is
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unwound to a full time axis R as depicted in the following Penrose diagram4

tτ
Rd−1,1

Rd−1,1

Rd−1,1

Rd−1,1

Rd−1,1

R

Sd−1

(9.10)

The corresponding feature in group theory is that the (orthochronous proper)
conformal group SO(d, 2)+ has the maximal compact subgroup SO(d)× SO(2).
The factor SO(2) describes time translations, and it has the topology of a circle

S1. This circle can be unwound, and one obtains a group S̃O(d, 2) which is an
infinite covering of SO(d, 2)+.5 Now the group SO(d, 2)+ acts as the conformal

transformations on ordinary spacetime whereas the infinite cover S̃O(d, 2) acts on
the conformal completion of spacetime. A relevant feature for representation
theory will be that the fundamental group Z of the circle provides the central
elements of S̃O(d, 2).

The inversions are also large conformal transformations. However, they correspond
to reflections in the conformal completion of spacetime and thus they are not part
of SO(d, 2)+ or S̃O(d, 2). Here, we shall not discuss the discrete extensions like
inversion, parity or time reversal.

9.2 Representations of sl(2,R)

Let us start with the simplest case in d = 1 where the corresponding algebra has
rank 1. The ordinary definition of conformal symmetry in one dimension does not
actually make sense because there are no angles. Nevertheless the general
conformal group in d dimensions can be specified to d = 1 dimension where it

4Penrose diagrams display the global topology of a curved spacetime respecting angles (in
particular, light-like directions are at 45◦) but not distances.

5It is somewhat cleaner to describe this group at the level of the double covering spin group
Spin(d, 2): Its fundamental group is the fundamental group of the circle. The universal cover

S̃pin(d, 2) is a double cover of S̃O(d, 2).
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becomes the group PSL(2,R) 6 of real Möbius transformations7

x 7→ ax+ b

cx+ d
. (9.11)

We already know the corresponding complexified Lie algebra sl(2,C), but the
unitary representation theory of the split real form sl(2,R) is much more diverse
than the one of the compact real form su(2).

Principal Series Representations. Gladly, the complete representation theory
of sl(2,C) derives from a single family of representations, the so-called principal
series representation. Let us therefore discuss this representation in detail.

It acts on an infinite-dimensional vector space Vps spanned by the states |m〉 with
m ∈ Z. The representation of the generators Jz, J± is determined by two
parameters γ, α

ρps
γ,α(J+)|m〉 = δm(m+ α + γ + 1

2
)|m+ 1〉,

ρps
γ,α(Jz)|m〉 = (m+ α)|m〉,

ρps
γ,α(J−)|m〉 = −δ−1

m−1(m+ α− γ − 1
2
)|m− 1〉. (9.12)

The parameters δm determine the relative normalisation of the states |m〉 and
|m+ 1〉, hence they do not count as parameters of the representation.8

(9.13)

A further equivalence of representations is given by shifting the labels of the states
by some integer n and at the same time shifting α by n

ρps
γ,α ≡ ρps

γ,α+n, n ∈ Z. (9.14)

Finally, one can flip the sign of γ by multiplying δm by
(m+ α + 1

2
− γ)/(m+ α + 1

2
+ γ). The resulting representation is also equivalent

ρps
γ,α ≡ ρps

−γ,α. (9.15)

The two parameters can be understood as follows: The eigenvalue of the Casimir
invariant on the representation is determined by the parameter γ

ρps
γ,α(J2)|m〉 = (γ2 − 1

4
)|m〉. (9.16)

6The group PSL(n) is SL(n) modulo its centre Zn. In particular, flipping the sign of all
coefficients a, b, c, d does not change the map (but leaves the determination constraint
unchanged).

7Composition of transformations is equivalent to multiplication of 2× 2 matrices whose entries
are a, b, c, d.

8Under some conditions, some of the δn can be zero or infinite. We shall exclude this case for
the time being.
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Conversely, the parameter α is related to the centre Z of the simply connected
group S̃L(2,R). The centre is given by powers of the group element Z defined by

Z = exp(2π̊ıJz). (9.17)

This element is central as can be seen from

Ad(Z)J± = ZJ±Z
−1 = e±2π̊ıJ± = J±. (9.18)

The representation of the centre is determined by the parameter α (mod 1)

ρps
γ,α(Z)|m〉 = e2π̊ıα|m〉. (9.19)

The eigenvalue of the centre is important for selecting representations of the
non-simply connected Lie groups SL(2,R) and PSL(2,R) = SL(2,R)/Z2. In the
former case α ∈ 1

2
Z while the latter case further restricts α ∈ Z.

Reducibility. For generic parameters γ, α, the principal series representation is
irreducible. For reducibility some of the coefficients (m+ α± γ + 1

2
) should be

zero; without loss of generality let this be at the state m = 0. With a suitable
choice of δm the representation is decomposable into a highest-weight and a
lowest-weight representation9

ρps
±(α−1/2),α+Z ≡ ρhw

α−1 ⊕ ρlw
α . (9.20)

(9.21)

The lowest-weight representation is given by (m ∈ Z+
0 )

ρlw
α (J+)|m〉 = δm(m+ 2α)|m+ 1〉,
ρlw
α (Jz)|m〉 = (m+ α)|m〉,

ρlw
α (J−)|m〉 = −δ−1

m−1m|m− 1〉. (9.22)

Note that the equivalence between α and α + n does not hold here because the
lowest-weight state |0〉 is now singled out. Furthermore, there is no equivalence
between α and 1− α. The corresponding highest-weight representation based on
the highest-weight state |−1〉 reads (m ∈ Z−)

ρhw
α (J+)|m〉 = δm(m+ 1)|m+ 1〉,
ρhw
α (Jz)|m〉 = (m+ 1 + α)|m〉,

ρhw
α (J−)|m〉 = −δ−1

m−1(m+ 1 + 2α)|m− 1〉. (9.23)

Note that the quadratic Casimir eigenvalues are given by

ρlw
α (J2) = α(α− 1), ρhw

α (J2) = α(α + 1). (9.24)

9The representation is decomposable if both δm(m+ α+ γ + 1
2 ) for m = −1 and

−δ−1
m−1(m+ α− γ − 1

2 ) for m = 0 approach zero while taking the limit for the parameters γ, α. If
one of them remains finite, i.e. for δ0 = 1 or δ0 = (m+ α− γ + 1

2 )/(m+ α+ γ + 1
2 ), the

representation is merely reducible.
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Under yet more special conditions, all the representations can be split even further
(n ∈ Z+

0 )

ρlw
−n/2 ≡ ρfin

n/2 ⊕ ρlw
n/2+1,

ρhw
n/2 ≡ ρhw

−n/2−1 ⊕ ρfin
n/2,

ρps
±(n+1)/2,−n/2+Z ≡ ρhw

−n/2−1 ⊕ ρfin
n/2 ⊕ ρlw

n/2+1. (9.25)

Here we find the (n+ 1)-dimensional representation ρfin
n/2 with spin s = n/2.

(9.26)

Reality and Unitarity. Now we can consider the real form sl(2,R) of the
algebra and the constraints due to unitarity of the above three kinds of
representations. The reality conditions can be imposed in different ways
corresponding to the freedom of choice for a metric with a given signature. We
chose them such that the above representations can admit a straight-forward
unitary structure without an additional change of basis10 11

J∗x = +Jx, J∗y = +Jy, J∗z = −Jz (9.27)

With J± := Jx ± ı̊Jy this implies J∗± = J∓ and a unitary representation must obey

ρ(Jz)
† = ρ(Jz), ρ(J±)† = −ρ(J∓). (9.28)

Let us first discuss the principal series representation. The first condition implies
α ∈ R and the equivalence α ≡ α + Z further allows us to restrict to the
fundamental domain −1

2
< α ≤ 1

2
. The second condition can be translated to the

statement

|δm|2 =
m+ α + 1

2
− γ

m+ α + 1
2

+ γ∗
for all m ∈ Z. (9.29)

The obvious solution is γ ∈ ı̊R and δm some unspecified pure complex phase.
There is also a less obvious solution with γ ∈ R where one has to make sure that
|δm|2 > 0 for all m ∈ Z. This holds provided that |γ| < 1

2
− |α| (with |α| ≤ 1

2
) and

the representation is called complementary series representation.12

The above inequality (with solutions in R and ı̊R)

γ2 < (1
2
− |α|)2 (9.30)

is called the unitarity bound for the principal series. One may wonder what
happens at the unitarity bound? Quite generally, the representation becomes

10Compared to the compact real form with J∗k = −Jk we flip two signs for so(1, 2).
11The equivalent choice J∗x = +Jx, J∗y = −Jy, J∗z = +Jz would more clearly reflect the real

structure of sl(2,R) formulated in terms of the real basis Jz and J±, but it would be harder to
understand the unitarity of the above representations.

12It can be viewed as the analytic continuation of the principal series representation to the
range − 1

4 ≤ ρ(J2) < −|α|(1− |α|) for the eigenvalue of the quadratic Casimir.
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reducible, as can be verified with the above splitting formula. The reason for this
behaviour is that the signature of the representation space changes when crossing
the unitarity bound. At the unitarity bound the signature must therefore be
indefinite. One can convince oneself that the null subspace admits a
sub-representation.

For the lowest- and highest-weight representations also α ∈ R, but there is no
longer an equivalence for shifts by integers. The unitarity condition for the
lowest-weight representation reduces to

|δm|2 =
m+ 1

m+ 2α
for all m ∈ Z+

0 , (9.31)

which implies that α > 0. The corresponding condition for the highest-weight
representation implies α < 0. Note that at the unitarity bound the representation
is again reducible and splits off a one-dimensional trivial representation.

All non-trivial finite-dimensional representations are not unitary for the real form
sl(2,R) in accordance with a general theorem for non-compact real forms.

9.3 Representations on Functions

In the following we translate the above representations to representations on
spaces of functions and thus make contact to field theory.

Periodic Functions. The above infinite-dimensional representations naturally
act on function spaces.13

A suitable space for the principal series irreps is given by periodic functions and
their Fourier transform

f(φ) = f(φ+ 2π) =
∞∑

m=−∞

fmeı̊mφ. (9.32)

The canonical square norm defined on this space reads

|f |2 :=
1

2π

∫
dφ |f(φ)|2 =

∞∑
m=−∞

|fm|2. (9.33)

Now we can map the function to the principal series space Vps by means of the
Fourier coefficients fm

|f〉 =
∞∑

m=−∞

fm|m〉. (9.34)

For the principal series representation we set δm = 1 for convenience which is
compatible with the unitarity conditions for γ ∈ ı̊R.14 Then the representation

13More precisely, one would typically restrict to square integrable functions in order to control
issues of convergence and topology.

14In order to make the complementary series representations with γ ∈ R unitary, one must
choose a different (non-local) square norm for f .

9.8



reads

ρps
γ,α(Jz)|f〉 =

∞∑
m=−∞

(m+ α)fm|m〉

=
∣∣(−̊ı∂φ + α)f

〉
,

ρps
γ,α(J+)|f〉 =

∞∑
m=−∞

(m+ α + γ − 1
2
)fm−1|m〉

=
∣∣eı̊φ(−̊ı∂φ + α + γ + 1

2
)f
〉
,

ρps
γ,α(J−)|f〉 =

∞∑
m=−∞

(−m− α + γ + 1
2
)fm+1|m〉

=
∣∣e−̊ıφ(̊ı∂φ − α + γ + 1

2
)f
〉
. (9.35)

We can thus view the principal series representation as a representation on the
function space L2(S1) by differential operators and write

ρps
γ,α(Jz) = −̊ı∂φ + α,

ρps
γ,α(J+) = eı̊φ(−̊ı∂φ + α + γ + 1

2
),

ρps
γ,α(J−) = e−̊ıφ(̊ı∂φ − α + γ + 1

2
). (9.36)

This representation is unitary for α ∈ R and γ ∈ ı̊R due to the hermitian
conjugation property ∂†φ = −∂φ of the derivative operator with respect to the
above square norm.

Functions of Time. Now we want to compare this representation to the
conformal action in terms of the generators H,D,K acting on the time coordinate t
as follows

Ht = ı̊, Dt = ı̊t, Kt = ı̊
2
t2. (9.37)

The sl(2,R) algebra expressed in these (imaginary) generators reads

JD,HK = −̊ıH, JD,KK = +̊ıK, JH,KK = ı̊D. (9.38)

In order to relate the representations we should match the generators with the Jk
and the time t with the coordinate φ. The appropriate transformation is

t = tan(φ/2), (9.39)

and it maps the complete time axis R to one period −π < φ < π of φ. The
relationship between the generators reads

D = ı̊Jx, H = −(Jz + ı̊Jy), K = −1
2
(Jz − ı̊Jy). (9.40)

The transformed representation on functions of time now reads

ρps
γ,α(H) = ı̊∂t − 2α

1

1 + t2
− 2̊ı(γ + 1

2
)

t

1 + t2
,

ρps
γ,α(D) = ı̊t∂t − α

2t

1 + t2
+ ı̊(γ + 1

2
)

1− t2

1 + t2
,

ρps
γ,α(K) = ı̊

2
t2∂t − α

t2

1 + t2
+ ı̊(γ + 1

2
)

t

1 + t2
. (9.41)
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Note that this representation is unitary if we impose the following hermitian
conjugation on the derivative operator

∂†t = −∂t +
2t

1 + t2
. (9.42)

This relation follows from the transformation dφ = 2dt/(1 + t2) which implies the
following square norm for functions of time15

|f |2 =

∫
2dt

1 + t2
|f(t)|2. (9.43)

We can see that the conformal action on the time coordinate is the representation
with γ = −1

2
and α = 0. This representation is right on the unitarity bound where

it splits into a pair of highest- and lowest-weight representations. These are
unitary representations, but only for a square norm which is non-local in time.

Our findings in fact also explain how the above representation on periodic
functions is relevant for conformal field theory: The periodic coordinate φ becomes
global time τ when going to the conformal completion of time S1 → R. The
representation on functions of global time reads

ρglob
γ (Jz) = −̊ı∂τ ,

ρglob
γ (J+) = eı̊τ (−̊ı∂τ + γ + 1

2
),

ρglob
γ (J−) = e−̊ıτ (̊ı∂τ + γ + 1

2
). (9.44)

In terms of physics, −Jz clearly takes the role of the Hamiltonian for global time.

This representation is the direct integral of principal series representations ρglob
γ,α

over all 0 ≤ α < 1. Namely, the representation of the central element
Z = exp(2π̊ıJz) acts as a shift over a whole period ρglob

γ (Z)f(τ) = f(τ + 2π). Then
then functions on the lattice τ + 2πZ with 0 ≤ τ < 2π fixed can be can be
decomposed according to the eigenvalues eı̊α of ρglob

γ (Z).

Local Operators. Let us find out the transformation properties of local
operators. Define a state |∆〉 = O(0) as some primary operator O at the origin
t = 0. This state is characterised by the conditions

ρ(K)|∆〉 = 0, ρ(D)|∆〉 = −̊ı∆|∆〉. (9.45)

It is a lowest-weight state with α = ∆ if we were to identify the generators as
K→ 1

2
J−, D→ −̊ıJz, H→ J+. These generators satisfy the algebra relations of

sl(2,C), but they have inconvenient reality conditions for the study of unitarity
because complex conjugation does not interchange the ladder generators K ∼ J−
and H ∼ J+. For instance, we cannot claim this representation to be unitary for
∆ > 0.

15The hermitian conjugate ∂†t follows from integration by parts between the functions f(t) and
f(t)∗, and the additional term is due to the measure factor.
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In order to study unitarity, let us first construct the complete representation on
O(t). We reconstruct the local operator by shifting the state |∆〉 to the
appropriate time t

O(t) = exp
(̊
ıtρ(H)

)
|∆〉. (9.46)

By commuting the generators past the exponential we find the representation16

ρ(H)O(t) = −̊ı∂tO(t),

ρ(D)O(t) = −̊ıt∂tO(t)− ı̊∆O(t),

ρ(K)O(t) = − ı̊
2
t2∂tO(t)− ı̊∆tO(t). (9.47)

We should now find maximal-weight states w.r.t. the original generators

Jz = −1
2
H−K, J± = −̊ıD∓ (1

2
H−K). (9.48)

It turns out that a lowest-weight state is given by

|0〉 =

∫
dt (t+ ı̊)2∆−2O(t). (9.49)

By (formally) applying integration by parts one can convince oneself that the
following properties hold

ρ(J−)|0〉 = 0, ρ(Jz)|0〉 = −(∆− 1)|0〉. (9.50)

Moreover, there is also a highest-weight state

|−1〉 =

∫
dt (t− ı̊)2∆−2O(t), (9.51)

which satisfies

ρ(J+)|−1〉 = 0, ρ(Jz)|−1〉 = +(∆− 1)|−1〉. (9.52)

Altogether, we find that the local operator representation is a sum of two
representations17

ρ ≡ ρlw
1−∆ ⊕ ρhw

∆−1. (9.53)

This representation is in fact not unitary unless ∆ < 1. This is a general feature of
local operators in a (Lorentzian) conformal field theory.18

16Note that this is a representation on the operator O(t) (which happens to be a function of t).
It is not a representation on the function O(t) (which happens to be an operator) even though it
is expressed through derivatives acing on O(t). The difference between these two notions is
important because it implies a different ordering of differential operators. In particular, this
explains the opposite sign for the differential terms which is needed to satisfy the same algebra.

17According to the logic of Fourier transformations, the positive and negative frequency parts
are separated into the highest- and lowest-weight representations, respectively.

18Perplexingly, the physically relevant local operators should satisfy the would-be unitarity
conditions derived from the lowest-weight representation based on |∆〉 in the above basis H,D,K,
i.e. ∆ > 0.
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9.4 Correlation Functions

Next we discuss some aspects of conformal correlators in general d dimensions in
order to find out about the conformal properties of various objects.

Scalar Field. Consider first a scalar field Φ(x). The scalar is a primary field of
conformal dimension ∆. The conformal correlator of two scalar fields reads〈

Φ(x1)Φ(x2)
〉

=
C

(x2
12)∆

. (9.54)

The scalar fields obey the massless Klein–Gordon equation ∂µ∂
µΦ = 0 (up to

source terms or interactions), and thus the correlation function should do as well.19

One finds 〈
∂µ∂

µΦ(x1)Φ(x2)
〉

= ∂1,µ∂
µ
1

C

(x2
12)∆

=
2C∆(2∆+ 2− d)

(x2
12)∆+1

. (9.55)

On the one hand, the result implies that an elementary scalar field has scaling
dimension ∆ = 1

2
d− 1 (which equals ∆ = 1 in d = 4 spacetime dimensions).20

Thus the scaling dimension coincides with the usual mass dimension of the field.
On the other hand, any scalar primary operator with ∆ = 1

2
d− 1 automatically

obeys the Klein–Gordon equation, be it fundamental or not. Such a field carries
substantially fewer degrees of freedom than an unconstrained field. We will discuss
the implications of this observation on representation theory further below.

Field Strength. Next we consider the field strength Fµν of electromagnetism.
The latter is a conformal field theory and the field strength a conformal primary
field,21 but now with non-trivial spin. Based on the general construction of
two-point functions, its correlator reads〈

Fµν(x1)Fρσ(x2)
〉

=
C(IµρIνσ − IµσIνρ)

(x2
12)∆

. (9.56)

Now the homogeneous Maxwell equation dF = 0 within the correlation function
yields 〈

dFκµν(x1)Fρσ(x2)
〉

=
2(2−∆)C(x12,κηµρηνσ + . . .)

(x2
12)∆+1

. (9.57)

The inhomogeneous Maxwell equation in the absence of sources reads ∂µFµν = 0,
and within the correlation function one finds〈

∂µFµν(x1)Fρσ(x2)
〉

=
2(∆− d+ 2)C(x12,ρIνσ − x12,σIνρ)

(x2
12)∆+1

. (9.58)

19We will not be interested in source terms which are localised to coincident points.
20Here we consider a free theory or the free limit of an interacting model. Furthermore, the

fundamental fields are typically not observable on their own if they are charged under some local
symmetry in which case their conformal dimension is not a meaningful quantity.

21In quantum field theory one would usually consider it as a descendant of the gauge potential
Aµ. However, the latter is not gauge invariant and the correlator not uniquely determined. The
one of the field strength is gauge-invariant and thus well-defined.

9.12



Altogether the equations imply ∆ = 2 and d = 4. This shows immediately that the
electromagnetic field is conformal in four spacetime dimensions only.

Conserved Current. A third example is a conserved current of Noether’s
theorem. Within a conformal field theory this is a primary operator J µ with a
vector index which satisfies the conservation equation ∂µJ µ. The correlation
function of a vector primary takes the form〈

J µ(x1)J ν(x2)
〉

=
CIµν

(x2
12)∆

, (9.59)

and the correlator of the divergence of the current reads

〈
∂µJ µ(x1)J ν(x2)

〉
=

2(∆− d+ 1)Cxν12

(x2
12)∆+1

. (9.60)

This implies that a conserved current must have conformal dimension ∆ = d− 1 in
accordance with its derivation from the Lagrangian density.

One current of central importance for any conformal field theory is the stress
energy tensor Tµν with two symmetric traceless vector indices. It is the current
responsible for conformal symmetry itself, and its conservation implies ∆ = d.

9.5 Representations of so(4, 2)

Finally, we shall discuss the representation theory relevant to a conformal field
theory in d = 4 spacetime dimensions. The conformal algebra is so(4, 2) which is
equivalent to the unitary algebra su(2, 2). What makes the higher-dimensional
conformal algebras interesting is that while their unitary representations are
infinite-dimensional, they also consist of finite-dimensional components
corresponding to the maximally compact subalgebra so(4). As usual, we shall
complexify the Lie algebras, e.g. the conformal algebra is so(6,C) = sl(4,C).

Local Operator Representations. The definition of a conformal primary
operator O(x) is reminiscent of the definition of a highest-weight state22

ρ(Kµ)|∆, s1, s2〉 = 0, ρ(D)O(0) = −̊ı∆|∆, s1, s2〉. (9.61)

A minor difference between the concepts is the following: A primary local operator
Oµ...ρ(x) with spin is usually considered to be the whole vector space of its so(4)
representation. Conversely, the highest-weight state is the highest-weight state of
the so(4) representation evaluated at the origin O+...+(0). The descendants of this
highest-weight state are the so(4) descendants forming the whole multiplet

22Here we assume that the weight decreases with ∆ such that the conformal boost K is a
raising generator and the momentum P a lowering operator. We use this convention so that the
finite-dimensional representations of the Lorentz subalgebra are described as usual by their
highest weight rather than their lowest weight.
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Oµ...ρ(0) as well as the conformal descendants ∂ . . . ∂O(0) forming the Taylor
expansion of the field O(x).

From the above considerations one can compute the sl(4) Dynkin labels of a local
operator representation

[p1, r, p2] with pk = 2sk and r = −∆− s1 − s2. (9.62)

The Dynkin labels are a concise way to describe the local operator representation.
The outer two labels are non-negative integers describing the spin, whereas the
middle label is a typically negative real number describing the conformal
dimension. For example [0,−1, 0] describes a scalar field with dimension 1. The
Dynkin labels are particularly useful when expressing the unitarity conditions of
representations.

The local operator representation can be summarised by the character polynomial

P∆,s1,s2(q) =
Ps1(q1)Ps2(q2) q∆D∏

m1,m2=±1

(
1− qDq

m1
1 qm2

2

) ,
Ps(q) =

q2s+1 − q−2s−1

q − q−1
, (9.63)

where q2m1
1 q2m2

2 q∆D describes a state with so(4) = sl(2)⊕ sl(2) weights (m1,m2) and
conformal dimension ∆. Here the numerator describes the so(4) representation of
the primary operator and the denominator describes the descendants w.r.t. the 4
derivatives Pµ which can act any number of times.

Particular Representations. Above, we have discussed particular local
operators and their correlation functions. Let us translate the results to
representation theory of the conformal group. The (free) scalar field Φ obeys the
equation of motion

ρ(Pµ)ρ(Pµ)Φ = 0. (9.64)

In other words, the descendant state ρ(P2)Φ is absent from the local operator
representation. We have discussed above that this is consistent only if the
descendant is a highest-weight state itself so that the corresponding
sub-representation can be projected out. Indeed, one finds that the full local
operator representation [0,−1, 0] has a sub-representation [0,−3, 0]. One can also
convince oneself that the latter weight is in the orbit of the shifted Weyl group of
the former weight. The character polynomial of the on-shell scalar fields reads

PΦ = P[0,−1,0] − P[0,−3,0]. (9.65)

The consideration for the other two examples is similar: The electromagnetic field
strength corresponds splits into chiral and anti-chiral components with
representations [2,−3, 0] and [0,−3, 2]. Their Maxwell equations are operators in
the representations [1,−4, 1]. Incidentally, this is the representation of the
conserved Noether current (for the global gauge transformations). Its divergence is
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zero which means that the sub-representation [0,−4, 0] has been projected out.
For the character polynomials one finds

PF = (P[2,−3,0] − P[1,−4,1] + P[0,−4,0])

+ (P[0,−3,2] − P[1,−4,1] + P[0,−4,0]),

PJ = P[1,−4,1] − P[0,−4,0]. (9.66)

This sequence of representations curiously continues to lower dimensions: The
shifted Weyl orbit of the trivial weight [0, 0, 0] contains virtually all the physical
objects of electromagnetism

[0, 0, 0] (∆ = 0) : global gauge transformation,

[1,−2, 1] (∆ = 1) : gauge field / local gauge transformation,

[2,−3, 0] (∆ = 2) : chiral field strength,

[0,−3, 2] (∆ = 2) : anti-chiral field strength,

[1,−4, 1] (∆ = 3) : conserved electromagnetic current,

[0,−4, 0] (∆ = 4) : Lagrangian density. (9.67)

The remaining 18 images under Weyl reflections serve as lowest-weight delimiters
of the finite-dimensional representations of sl(2)⊕ sl(2) for these 6 highest-weights.

Unitarity and Splitting. Finally, let us discuss unitarity of the above
representations for the real form so(4, 2) = su(2, 2). Unitary representations
correspond to states of a quantum (field) theory on the space R× S3 which is the
conformal completion of Minkowski space. The states’ wave functions on the
compact space S3 decompose into a tower of spherical harmonics of S3 which
transform under the unitary finite-dimensional representations of so(4).

Note that (as discussed earlier) local operators do not transform in unitary
representation,23 but their representations are nevertheless related to unitary
representations. Effectively, the local operators transform in the very same
representations of the complexified conformal algebra, but the reality conditions
are not the ones needed for proper unitarity.24

Whether or not a given highest-weight representation is unitary mainly depends on
the position of the images of the highest weight under the shifted Weyl reflections.
The crucial point is that the squared norm of states changes sign roughly at the
location of the images in h∗. There are two options to avoid a changing sign:
Either the reflected weight is higher than the highest weight and therefore does not
flip the sign within the highest-weight representation. Or the reflected weight is
lower, but it is reachable from the highest weight by an integral combination of the
negative roots. In the latter case, the representation is reducible and there is a

23For example, the momentum generator Pµ is a vector of so(3, 1) rather than the compact
so(4).

24Or something like this, it is complicated . . .
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chance that the unwanted signs are all contained in the sub-representation and can
be projected out. The above words translate to constraints for the highest weight µ

2〈µ+ δ, α〉
〈α, α〉

− 1 ∈ R− ∪ Z+
0 for all α ∈ ∆+. (9.68)

For the Dynkin labels [p1, r, p2] of a su(2, 2) representation this condition implies
that the six combinations

p1, r, p2, p1 + r + 1, r + p2 + 1, p1 + r + p2 + 2 (9.69)

are either negative real numbers or non-negative integers. More concretely, p1 and
p2 should be non-negative integers because they determine the highest weights
w.r.t. the compact subgroup su(2)⊕ su(2); conversely, r should be a non-positive
real number

p1, p2 ∈ Z+
0 , r ∈ R−0 . (9.70)

The concrete conditions for the other three combinations depend on whether some
of the Dynkin labels are zero.

The unitarity conditions for unitary irreducible highest-weight representations of
su(2, 2) can be summarised as 25

[p1, r, p2] : unitary if p1, p2 ∈ Z+
∗ , r ≤ −p1 − p2 − 2,

[p, r, 0] : unitary if p ∈ Z+
∗ , r ≤ −2− p or r = −1− p,

[0, r, p] : unitary if p ∈ Z+
∗ , r ≤ −2− p or r = −1− p,

[0, r, 0] : unitary if r ≤ −2 or r = −1 or r = 0. (9.71)

The solutions to these constraints yields the following physical objects along with
their representation splitting (at the unitarity bounds):

• The trivial representation
[0, 0, 0]. (9.72)

• The massless scalar particle (∆ = 1)

[0,−1, 0]. (9.73)

The equation of motion transforms in the sub-representation [0,−3, 0].
• Massless particle with helicity ±p/2, p ∈ Z+

∗ (∆ = 1 + p/2)

[p,−p− 1, 0] or [0,−p− 1, p], respectively. (9.74)

The equation of motion transforms in the sub-representation [p− 1,−p− 2, 1] or
[p− 1,−p− 2, 1], respectively (which itself is reducible for p > 1).
• Conserved current with spin (p1/2, p2/2), pk ∈ Z+

∗ (∆ = 2 + p1/2 + p2/2)

[p1, r, p2], p1 + r + p2 + 2 = 0. (9.75)

The conservation condition transforms in the sub-representation [p1−1, r, p2−1].

25The unitarity conditions for non-compact real forms of other Lie algebras take a similar form.
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• A generic local operator (∆ ≥ 2 + p1/2 + p2/2)

[p1, r, p2], p1 + r + p2 + 2 < 0, (9.76)

or a non-conserved operator at the unitarity bound (∆ = 2 + p/2)

[p, r, 0] or [0, r, p], p+ r + 2 = 0. (9.77)

This representation has no sub-representations among the conformal
descendants.
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Möbius transformations, 9.5
McKay correspondence, 4.6
McKay graph, 4.6

A.1



module endomorphism, 7.1
module homomorphism, 3.6

octonions, 8.7
orbit, 3.2

Penrose diagram, 9.4

quarks, 6.18

rank, 5.2
real form, 8.8

compact, 8.10
complex, 8.10
split, 8.10

representation, 1.5
adjoint, 2.10
complementary series, 9.7
completely reducible, 3.4
complex, 1.6
decomposable, 1.9
defining, 1.6
fundamental, 1.6
highest-weight, 6.5
indecomposable, 1.9
irreducible, 1.9
of a Lie algebra, 2.9
orthogonal, 1.6
principal series, 9.5
pseudo-real, 1.6
quaternionic, 1.6
quotient, 6.6
real, 1.6
reducible, 1.9
reducible but indecomposable, 1.9
regular, 3.10
symplectic, 1.6
trivial, 2.10
unitary, 1.6

representation space, 1.5
representation theory, 1.6
root, 5.3

negative, 5.4
positive, 5.4
simple, 5.5
space, 5.3

scale transformation, 9.1

scaling dimension, 9.2
Schur’s lemma, 3.6
Serre relations, 5.6
space group, 4.9
spherical harmonics, 2.14
stabiliser, 3.2
state

descendant, 6.4
highest-weight, 6.3

symmetric space, 8.16

tangent space, 2.6

unitarity bound, 9.7

weight, 6.2
multiplicity, 6.2
space, 6.2
state, 6.2
vector, 6.2

weight diagram, 6.3
weight lattice, 6.7
Weyl chamber, 6.9
Weyl character formula, 6.13
Weyl dimension formula, 6.13
Weyl group, 6.9

Young diagram, 7.3
Young symmetriser, 7.4
Young tableau, 7.3

standard filling, 7.3

A.2


	Title Page
	Copyright
	Contents
	0 Overview
	0.1 Prerequisites
	0.2 Contents
	0.3 References

	1 Two-Dimensional Rotations
	1.1 Group Basics
	1.2 Representations

	2 Three-Dimensional Symmetries
	2.1 Lie Group
	2.2 Lie Algebra
	2.3 Representations

	3 Finite Group Theory
	3.1 Finite Group Basics
	3.2 Complete Reducibility
	3.3 Orthogonality Relations

	4 Point and Space Groups
	4.1 Point Groups
	4.2 Representations
	4.3 Crystallographic Groups

	5 Structure of Simple Lie Algebras
	5.1 The Algebra su(3)
	5.2 Cartan–Weyl Basis
	5.3 Root System
	5.4 Invariant Bi-Linear Forms

	6 Finite-Dimensional Representations
	6.1 Representations of su(3)
	6.2 Highest-Weight Representations
	6.3 Finite-Dimensional Representations
	6.4 Hadronic Physics

	7 Representations of SU(N)
	7.1 Tensor Powers and Permutations
	7.2 Orthogonal Symmetrisers
	7.3 Young Tableaux
	7.4 Young Tableaux for sl(N)

	8 Classification of Simple Lie Algebras
	8.1 Classification of Complex Algebras
	8.2 The Exceptional Algebra g2
	8.3 Real Forms
	8.4 Affine Algebras
	8.5 Subalgebras

	9 Conformal Symmetry
	9.1 Conformal Field Theory
	9.2 Representations of sl(2,R)
	9.3 Representations on Functions
	9.4 Correlation Functions
	9.5 Representations of so(4,2)

	Index

