Exercise 1. Routh's Procedure

In this exercise you will learn to apply the Routh's procedure to a central potential problem.

Suppose we have a system of n degrees of freedom, and $n-s$ coordinates are cyclic. We label them as q_{s+1}, \cdots, q_{n}. Then we introduce the Routhian:

$$
\begin{align*}
& R\left(q_{1}, \cdots, q_{n} ; \dot{q}_{1}, \cdots, \dot{q}_{s} ; p_{s+1}, \cdots, p_{n} ; t\right)=\sum_{i=s+1}^{n} p_{i} \dot{q}_{i}-\mathcal{L} \tag{1}\\
& =H_{\mathrm{cycl}}\left(p_{s+1}, \cdots, p_{n}\right)-\mathcal{L}_{\mathrm{noncycl}}\left(q_{1}, \cdots, q_{s} ; \dot{q}_{1}, \cdots, \dot{q}_{s}\right) \tag{2}
\end{align*}
$$

Then it is apparent that

$$
\begin{gather*}
\frac{d}{d t} \frac{\partial R}{\partial \dot{q}_{i}}-\frac{\partial R}{\partial q_{i}}=0 \quad i=1, \cdots, s \tag{3}\\
\frac{\partial R}{\partial p_{i}}=\dot{q}_{i}, \quad \frac{\partial R}{\partial q_{i}}=-\dot{p}_{i}=0, \quad i=s+1, \cdots, n \tag{4}
\end{gather*}
$$

so the Routhian is Hamiltonian on the cyclic variables and Lagrangian on the non-cyclic ones.

In order to understand the Routh's procedure better, consider the Lagrangian for central potential:

$$
\begin{equation*}
\mathcal{L}=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-U(r) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
U(r)=-\frac{k}{r^{n}} \tag{6}
\end{equation*}
$$

a) Determine the cyclic variable and write down the Routhian.
b) Apply the Euler-Lagrange equations (3) to the noncyclic coordinate to obtain the equation of motion.
c) Apply now the Hamilton's equation (4) to the cyclic variable.

Exercise 2. Canonical Transformations

The transformation equations between two sets of coordinates are

$$
\begin{array}{r}
Q=\log \left(1+q^{1 / 2} \cos p\right) \\
P=2\left(1+q^{1 / 2} \cos p\right) q^{1 / 2} \sin p \tag{8}
\end{array}
$$

a) Using the symplectic criterion, show from these transformation equations that Q, P are canonical variables if q and p are.
b) Show the same thing using Poisson-brackets.
c) Show that the function that generates this transformation is

$$
F_{3}=-\left(e^{Q}-1\right)^{2} \tan p
$$

Exercise 3. Canonical transformations with two coordinates

Consider the transformation

$$
\left\{\begin{array} { l }
{ Q _ { 1 } = q _ { 1 } , } \tag{9}\\
{ Q _ { 2 } = p _ { 2 } , }
\end{array} \quad \left\{\begin{array}{l}
P_{1}=p_{1}-2 p_{2}, \\
P_{2}=-2 q_{1}-q_{2}
\end{array}\right.\right.
$$

Prove that such a transformation is canonical
a) using the symplectic criterion,
b) using Poisson brackets.

Exercise 4. Hamiltonian with dissipative force

A particle of mass m moves in one dimension q in a potential $V(q)$ and is subject to a damping force $F=-2 m \gamma \dot{q}$ proportional to its velocity.
a) Show that the equation of motion can be obtained from the lagrangian

$$
\begin{equation*}
L[q, \dot{q}, t]=e^{2 \gamma t}\left[\frac{1}{2} m \dot{q}^{2}-V(q)\right] . \tag{10}
\end{equation*}
$$

b) Compute the canonical momentum p conjugate to q and find the Hamiltonian $H[q, p, t]$.
c) Using the generating function

$$
\begin{equation*}
F_{2}(q, P, t)=q P e^{\gamma t}, \tag{11}
\end{equation*}
$$

find the transformed Hamiltonian $K[Q, P, t]$.
Now consider a harmonic oscillator of potential

$$
\begin{equation*}
V(q)=\frac{1}{2} m \omega^{2} q^{2} . \tag{12}
\end{equation*}
$$

d) Which of the Hamiltonians H and K is a constant of motion? Why?
e) In the underdamped case $\gamma<\omega$, obtain the solution $q(t)$ and express the integration constant related to the oscillation amplitude in terms of the conserved quantity.

