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Exercise 1. Particle in a 1/rn potential

Consider a mass m moving on a circular orbit of radius r0 under the influence of a central force
whose potential is given by

V (r) = −km
rn

(1)

where k is some constant. Show that if n < 2, the circular orbit is stable under small oscillations,
i.e. the mass will oscillate about the circular orbit.

Exercise 2. The Central Drill

Consider a satellite m orbiting around a planet of mass M , whose positions are ~r1 and ~r2
respectively. Let ~R be the position of the centre of mass of the planet-satellite system with
R ≡ |~R| and ~r = ~r1 − ~r2 the relative coordinate with r ≡ |~r|. Also, let k = GMm, where G is
Newton’s gravitational constant.

(i) Making use of Newtonian mechanics show that the equations of motion are given by:

µ~̈r = −k ~r
r3

and ~̇R = constant

Find µ, the reduced mass of the system.

Hint : The centre of mass of a N body system is given by:

~R =

∑
imi~ri∑
imi

where mi and ~ri are the masses and positions of the bodies.

(ii) The Lagrangian of the system has been obtained in the lecture and reads

L =
1

2
µ
(
ṙ2 + r2θ̇2

)
− V (r), (2)

where r, θ are polar coordinates in the relative reference frame. Rotate your system by a
little amount:

θ → θ + ε

and use Noether’s theorem or a careful observation of the Lagrangian to show that the
angular momentum is conserved:

µr2θ̇ = constant = M.

(iii) About five centuries ago, Kepler figured out that the area swept by r in a given time is
constant. Can you use conservation of angular momentum to conclude the same in 2015?

(iv) Verify that by taking the time derivative of the total energy you can recover the equation
of motion in r.
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Exercise 3. Symmetry of the orbit

In the lecture we have seen that the two body problem can be reduced to a single body problem
with reduced mass µ and a Lagrangian given by

L =
1

2
µ
(
ṙ2 + r2θ̇2

)
− V (r). (3)

(a) Using conservation of angular momentum, show that the equation of motion for the radius
can be expressed as:

µr̈ − M2

µr3
= −∂V

∂r
(4)

(b) Starting from conservation of angular momentum, convert equation (4) for r(t) into the
following equation for r(θ):

M2

µr2
d

dθ

(
1

r2
dr

dθ

)
− M2

µr3
= f(r), (5)

where f(r) is the conservative force due to the potential V (r).

(c) Using the substitution u = 1
r , show that the differential equation for the orbit satisfies

u(θ) = u(−θ). What does this imply for a practical construction of the orbit?

Exercise 4. Virial mass of clusters

Among the applications of the virial theorem, there is an important one in astrophysics.
Consider an isotropic globular cluster of stars or galaxies, modelled as a uniform distribution of
point-like masses mi located at positions ~ri. Use the virial theorem to prove that, if one is able
to measure the size and the distribution of velocities of the cluster, its mass M can be obtained
as

M =
5

3

R〈v2〉
G

, (6)

where R is the radius of the cluster and 〈v2〉 an appropriate mean square velocity. Typically,
it is not possible to directly observe the velocities of the single stars or galaxies, which have
to be inferred from Doppler shifts. What is actually measured is thus only the distribution of
velocities along the line of sight. Re-express 〈v2〉 in terms of the mean square Doppler velocity
σ2, and substitute it into the formula for M .
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