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Exercise 1. The Optimal Tunnel

Suppose that we can build a tunnel through the Earth’s crust connecting a city A to another city
B (Fig. 1). If the friction is negligible, a train departing A with zero velocity would accelerate
as the train gets closer to the center and decelerate as it moves away from the center. Due to
energy conservation, the train would arrive at B with exactly zero velocity. In this problem we
want to determine the profile of the tunnel that will be traversed in the shortest time.
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Figure 1: Sketch of an imaginary tunnel connecting cities A and B.

Model the Earth as a uniform solid sphere of radius R and mass M with constant density.
Knowing that the tunnel lies in the plane defined by the two cities and the center of earth,
parametrize it with a curve (ϕ, r(ϕ)). The goal is to find the curve that gives the shortest
amount of time when the train moves only due to gravity.

Note that this problem is very similar to the brachistochrone discussed in the lecture notes. The
main difference is that in this problem the direction and the strength of the gravitational force
changes along the path. At a point (ϕ, r(ϕ)) with distance r from the center, the acceleration
due to gravity points toward the center and has a magnitude of

|gr| =
GM

R3
r = g

r

R
, (1)

where G is Newton’s gravitational constant.

(a) Using the conservation of energy show that the velocity of the train at point (ϕ, r(ϕ)) is
given by

v =

√
g

R

√
R2 − r2. (2)

(b) Show that for a given curve the travel duration is

TA→B =

√
R

g

∫ ϕB

ϕA

√
r2 + r′(ϕ)2√
R2 − r2

dϕ , (3)

where ϕA (ϕB) denotes starting (end) angle of the two cities with respect to the origin of
earth and some reference point.
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(c) By using the Euler-Lagrange equation show that the curve that minimizes the travel time
TA→B is a hypocycloid, whose parametric equation is

r′(ϕ)2 =
R2

r20

[
r2(r2 − r20)

R2 − r2

]
, (4)

where r0 denotes the minimal distance to the center of earth.

(d) Rewrite the the expression for TA→B as an integral over r instead of ϕ and use Eq. (4) to
find

TA→B = π

√
R2 − r20
gR

(5)

(e) To find the constant r0 as a function of the distance between the two cities ϕB − ϕA, we
need to actually solve the equation of motion. This is not straight forward, for which reason
we want to use a shortcut, taking advantage of the optimal path beeing a hypocycloid.
One way to construct a hypocycloid is to take a circle with radius R and a second one with
radius ρ < R. The curve traced out by a fixed point on the smaller circle, while rolling it
within the bigger circle, is a hypocycloid. Use this knowledge, to express the constant r0
as a function of the distance ϕB − ϕA between the two cities, and show that

T (∆ϕ) =

√
R

g

√
∆ϕ(2π −∆ϕ) , ∆ϕ = ϕB − ϕA . (6)

Exercise 2. Atwood’s Machine

In this exercise you will consider the Atwood’s machine and learn how to use the Lagrangian
formalism for this case.

A simple Atwood’s machine consists of two different masses, m1 and m2 connected by a rope of
length l, as shown in the figure.

a) Using the x as the generalized coordinate, first write down the potential energy U , and
the kinetic energy T for the system.

b) Now using
L = T − U (7)

write down the Lagrangian and find the equations of motion, in terms of x.

c) Solve the equation of motion in terms of the acceleration ẍ. Can you use this equation to
determine g and how can you make it more accurate?

d) Now obtain the same result by this time using the Newton’s second law for each of the
masses. Note the differences between the Lagrangian method and the Newtonian method.
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Figure 2: Atwood’s Machine

Figure 3: The three pendulum systems considered in exercise 3, 4 and 5.

Exercise 3. Simple pendulum

Consider a simple, ideal pendulum of length R that oscillates in the x-z plane under the action
of the gravitational force.

1) After having chosen an appropriate generalized coordinate, write down the lagrangian for
the simple pendulum (without assuming small oscillations).

2) Derive the equation of motion.

3) How does it simplify when small oscillations are assumed?

4) Under this approximation, find an explicit solution for the system’s motion. If you need
integration constants, comment on their physical meaning.

Exercise 4. Coupled pendulum

Now consider two identical pendulums with the same characteristics, attached to the same roof
at a distance d from each other along the x axis. In addition, the two weights are coupled by
an ideal spring of characteristic constant k and length at rest d.

1) Write down the Lagrangian for the described system.

2) Derive the equations of motion.

3) Simplify the system of differential equations in the case of small oscillations around the
equilibrium position.
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4) Diagonalize and solve the system of differential equations.

5) Comment on the meaning of the variables that allow equations of motion to be decoupled.

Exercise 5. Double pendulum

Consider a pendulum attached to the end of another - a system also known as “double pendu-
lum”. Call the generic lengths of the pendulums R1 and R2, and take their masses to be m1

and m2 respectively.

1) Write down the lagrangian in terms of the angles φ1 and φ2 indicated in the picture.
Hint. In order to make calculations more manageable, check if you can use

cosφ1 cosφ2 + sinφ1 sinφ2 = cos(φ1 − φ2).

2) Derive the equations of motion.

3) Simplify the system of differential equations in the case of small oscillations around the
equilibrium position.
Hint. To understand which terms are small, it is convenient to set φi(t) = εϕi(t) and take the

limit ε→ 0 assuming all other parameters are of order 1.

Now consider the somewhat simpler case m1 = m2 = m, R1 = R2 = R. Assuming that
the solutions can be written as a linear combination of normal modes, i.e. simple oscillatory
solutions, corresponds to making the ansatz

ϕj(t) = Re
∑
k

Ajke
iαkt. (8)

4) Solve the system of differential equations to find the configuration of the double pendulum
as a function of time.
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