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Abstract

The subject of the course is classical mechanics. The following
topics are discussed:

• Galileian transformations and Newtonian mechanics

• Variational methods

• Principle of least action

• Lagrangian mechanics

• Symmetries and conservation laws

• Two body systems

• Oscillations

• Rigid body dynamics

• Hamiltonian mechanics

• Hamilton-Jacobi equation

• Special Relativity
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1 Principle of relativity and Galileian transfor-
mations

We will assume the existence of frames of reference (a system of coordinates)
in which the motion of a free particle (on which no force is applied) is uniform,
i.e. it moves with a constant velocity.

free particle: v = constant. (1.1)

Such reference frames are called inertial.
The principle of relativity states that the laws of physics take the

exact same form in all inertial frames.
Let us assume that we know the trajectory (position as a function of time)

of all the particles which constitute a physical system as they are observed in
one inertial reference frame S. Can we compute the trajectories in a different
inertial frame S ′? To achieve that, we need to transform the space and time
coordinates (r, t) in the frame S to the corresponding coordinates (r′, t′) in
the frame S ′. A good guess for (Cartesian) coordinate transformations are
the so called Galilei transformations:

r′ = R r − r0 − V t, t′ = t0 + t. (1.2)

or, equivalently,

r′i =
3∑
j=1

Rijrj − r0,i − Vit. (1.3)

where V is the apparent velocity for a point in the frame S ′ according to an
observer in the frame S. r0 is the position of the origin of S ′ as seen in S at
a time t = 0 and t0 is the time shown in the clock of S ′ at t = 0. The 3× 3
matrix R describes the rotation of the axes of S ′ with respect to the axes of
S and it satisfies:

RTR = 13×3 , (1.4)

where 13×3 is the 3× 3 identity matrix. Equivalently, we write

RijRik = δjk, (1.5)

where δij is the Kronecker delta symbol. In addition, the determinant of the
rotation matrix is:

detR = 1. (1.6)
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It turns out that Galileo’s transformations are only accurate for small
velocities in comparison to the speed of light: V � c. We will discuss
the correct generalisation of Galileo’s transformations (the so called Lorentz
transformations) towards the end of this course. In the mean time, we will
assume that Eq 1.2 is valid; this is an excellent approximation for a plethora
of phenomena.

1.1 Time intervals and distances in two inertial frames

Consider two events:
Event A: (tA, rA),

Event B: (tB, rB),

as observed in the reference frame S.
In the reference frame S ′ these events are described by the time and space

coordinates:

Event A: (t′A, r
′
A) = (tA + t0,RrA + r0 − V tA),

Event B: (t′B, r
′
B) = (tB + t0,RrB + r0 − V tB).

The time difference of the two events is equal in the two frames S and S ′:

t′A − t′B = tA − tB. (1.7)

Therefore, time intervals are measured to be the same in all inertial frames.
Space distances are also the same in all inertial frames. For two events
occurring at the same time t, their space distance is

∆r′ = |r′A − r′B| = |R rA −RrB| =
√

(rA − rB)TRTR(rA − rB)

=
√

(rA − rB)T (rA − rB) = |rA − rB| = ∆r. (1.8)

1.2 Vectors, scalars and rotations

The position of a particle r, under a rotation, transforms as:

r → r′ = R r, detR = 1, RTR = 1. (1.9)

The position is one of many other objects with the same transformation
under rotations. We can formally define a vector A to be a set of three
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numbers which transforms in the same way as the position vector does under
a rotation:

A→ A′ = RA, detR = 1, RTR = 1. (1.10)

For example, time derivatives of the position vector (velocity, acceleration,
. . .) are also vectors:

dr

dt
→ dr′

dt′
=
d(R r)

dt
= R

dr

dt
(1.11)

We can define a dot-product of two vectors as

A ·B =
3∑
i=1

AiBi. (1.12)

The dot product is invariant under rotations:

A ·B → A′ ·B′ =
∑
i

A′iB
′
i =

∑
ijk

(RijAj)(RikBk)

=
∑
ijk

RT
jiRikAjBk =

∑
jk

δjkAjBk =
∑
k

AkBk

= A ·B. (1.13)

All objects which are invariant under rotation transformations are called
scalars.

The cross-product of two vectors (such as the angular momentum) is also
a vector. Indeed, if A,B are vectors then their cross-product transforms as:

A×B → A′ ×B′ = R(A×B). (1.14)

To prove the above, consider the dot product

(A×B) · C =
∑
i

(∑
jk

εijkAjBk

)
Ci = det

(
A , B , C

)
Under a rotation, this dot product is invariant,

det
(
A , B , C

)
→ det

(
A′ , B′ , C ′

)
= det

(
RA , RB , RC

)
= det

{
R
(
A , B , C

)}
= det(R) det

(
A , B , C

)
= det

(
A , B , C

)
(1.15)
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and it is therefore a scalar:

(A′ ×B′) · C ′ = (A×B) · C
; (A′ ×B′) · (RC) = (A×B) · C

;

[
RT (A′ ×B′)

]
· C = (A×B) · C

; (A′ ×B′) · C =
[
R (A×B)

]
· C (1.16)

Since the above is valid for any vector C, we conclude that

A′ ×B′ = R (A×B). (1.17)

Finally, the gradient differential operator

∇ ≡
(

∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
(1.18)

is also a vector. To see this, we first note that

x′i =
∑
j

Rijxj ;
∂x′i
∂xj

= Rij (1.19)

and
xi =

∑
j

RT
ijx
′
j ;

∂xi
∂x′j

= RT
ij = Rji. (1.20)

Then
∇ → ∇′ = ∂

∂x′i
=
∑
j

∂xj
∂x′i

∂

∂xj
=
∑
j

Rij
∂

∂xj
= R∇. (1.21)

The rotation matrix R is a particular case of a Jacobian matrix, in this
case the one for a change of variables. In general, given a vector-valued
function, f : Rn → Rm which maps a vector x ∈ Rn onto a vector f(x) ∈
Rm, that is, given m functions, f1, . . . , fm, each depending on n variables,
x1, . . . , xn, the Jacobian matrix is defined as,

Jij =
∂fi
∂xj

, i = 1, . . . ,m , j = 1, . . . , n . (1.22)

Note that the gradient (1.18) is the particular case of a Jacobian matrix with
m = 1.
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Jacobian matrices are also needed to invert functions. In fact, noting that
a function is continuously differentiable if its derivative is also a continuous
function, a vector-valued function is continuously differentiable if the entries
of the Jacobian matrix are continuous functions. If m = n, we can define the
determinant of the Jacobian matrix, usually called the Jacobian,

|Jij| =
∣∣∣∣ ∂fi∂xj

∣∣∣∣ , i, j = 1, . . . , n .

The inverse function theorem states that if a continuously differentiable func-
tion f : Rn → Rn has a non-vanishing Jacobian at a point x, then f is in-
vertible near x, and the inverse function is also a continuously differentiable
function.

1.3 The form of laws in classical mechanics

The Galileian principle of relativity requires that all laws of physics are the
same in inertial reference frames. If we can cast our physics laws as vector
equalities, it is then guaranteed that they will have the same form for all
frames which are related by a rotation transformation.

Physics law in frame S: A = B

; RA = RB

; Physics law in frame with rotated axes S ′: A′ = B′ (1.23)

The principle of relativity requires that the laws of physics take the same
form not only under rotation transformations but also under “boosts” where
two reference frames appear to move with a relative velocity with respect to
each other:

r → r′ = r + V t (1.24)

Notice that the acceleration vector

a ≡ d2r

dt2
=
d2r′

dt2
= a′ (1.25)

is the same for all inertial observers with parallel axes. Newton’s law:

F = ma (1.26)
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connects the acceleration, a boost invariant quantity, to the force. As long
as the latter is also boost invariant then the Galileian principle of relativity
is satisfied.

You will soon figure out that the acceleration vector is not boost invariant
when using the correct principle of relativity as it is formulated in Einstein’s
special relativity. Therefore, we should not expect that the physical forces of
nature are boost invariant either. Having said that, we will be able to ignore
special relativity in most of our classical mechanics investigations, in the same
way that Newton and many others were oblivious about it when they set the
foundations of modern physics. In particular, our Newtonian understanding
of gravity is consistent with the Galileian principle of relativity.

Consider an isolated system of N-particles which interact with each other
through the gravitational force only. The force acting on the i-th particle in
a reference frame S is

mi
d2ri
dt2

= −G
∑
j 6=i

mimj
ri − rj
|ri − rj|3

(1.27)

According to the principle of relativity, a Galileian transformation

(t, r)→ (t′, r′) = (t+ t0,R r + V t+ r0)

should leave Eq. 1.27 invariant. Indeed, this is satisfied. In the new frame,

mi
d2ri

′

dt′2
= −G

∑
j 6=i

mimj
ri
′ − rj ′

|ri′ − rj ′|
3

; Rmi
d2ri
dt2

= −RG
∑
j 6=i

mimj
ri − rj
|ri − rj|3

; mi
d2ri
dt2

= −G
∑
j 6=i

mimj
ri − rj
|ri − rj|3

(1.28)

Question: Is the electromagnetic force boost invariant?
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2 Variational methods
Classical mechanics is usually formulated in terms of Newton’s laws in the
form of second order differential equations as in Eq. 1.27. There is an al-
ternative, where we can formulate the laws of classical mechanics by means
of the so called variational principle. It is based on a scalar quantity, called
the action. Before we present this formulation, let us warm up with a few
physics and mathematics problems in using variation calculus techniques.

2.1 The brachistochrone (βραχιστos χρoνos = shortest
time) problem

x

z
(xa, za)

(xb, zb)

~v

Figure 1: The brachistochrone problem: find which curve connecting (xa, za)
and (xb, zb) yields the fastest descent.

Consider a point-like object of massm which is let to slide without friction
on a vertical plane from a point (xa, za) to a point (xb, zb) constrained on a
curve x = x(z), where z is the height and x is the horizontal position of the
object. We can compute the velocity of the object at all points (x(z), z) of its
trajectory by using energy conservation. Assuming that the initial velocity
is zero, we have:

mgza = mgz +
1

2
mv2 ; v =

√
2g(za − z). (2.1)

The elementary distance segment on the curve x = x(z) is given by the
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Pythagorean theorem as:

ds =
√
dx2 + dz2 = dz

√
1 +

(
dx

dz

)2

(2.2)

and the magnitude of the velocity is

v =
ds

dt
; dt =

ds

v
= dz

√
1 +

(
dx
dz

)2

2g(za − z)
(2.3)

The total time for the transition is:

T =

∫
dt =

∫ zb

za

dz

√
1 +

(
dx
dz

)2

2g(za − z)
(2.4)

We are seeking the function x(z) which minimizes the time T .

2.2 Euler-Lagrange equations

The problem that we have just described above belongs to a more gen-
eral class of variational calculus problems. We seek to find which function
y(t) = ys(t) among all good-behaved functions y(t) yields an extreme value
(minimum or maximum) for the integral

I[y] =

∫ tb

ta

dtF (y(t), y′(t)) (2.5)

given that the values of the function at the initial and final points in the
integration domain y(ta) = ya, y(tb) = yb are known.

Assume that we have found the curve ys(t) with

ys(ta) = ya, ys(tb) = yb (2.6)

for which I[ys] is a minimum of I[y] 1. Consider now a small deformation
around ys(t)

y(t) = ys(t) + δys(t) , δys(t) = εη(t), ε→ 0 , (2.7)
1Notice that I[y] is an integral function of a function. Such integrals are usually called

functionals
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where η(t) is a smooth function which vanishes at the boundaries

η(ta) = η(tb) = 0, (2.8)

in order to satisfy that y(ta) = ya, y(tb) = yb. Since I[ys] is an extremum,
we must have that our small deformation (ignoring O(ε2) terms) does not
change its value,

I[ys] = I[ys + δys]

=

∫ tb

ta

dt F (ys(t) + δys(t), y
′
s(t) + δy′s(t)) . (2.9)

We observe that the operations of varying a function and taking its derivative
with respect to its argument commute:

δy′s(t) =
d

dt
δys(t) = εη′(t) (2.10)

Thus we can Taylor expand the arguments of F , and write

I[ys] =

∫ tb

ta

dt F (ys(t), y
′
s(t)) +

∫ tb

ta

dt

[
∂F

∂ys
εη(t) +

∂F

∂y′s
εη′(t)

]
+O(ε2)

= I[ys] + ε

∫ tb

ta

dt

[
∂F

∂ys
η(t) +

∂F

∂y′s
η′(t)

]
+O(ε2) (2.11)

This yields that

0 =

∫ tb

ta

dt

[
∂F

∂ys
η(t) +

∂F

∂y′s
η′(t)

]
=

∫ tb

ta

dt

[
∂F

∂ys
− d

dt

∂F

∂y′s

]
η(t) +

∫ tb

ta

dt
d

dt

[
∂F

∂y′s
η(t)

]
=

∫ tb

ta

dt

[
∂F

∂ys
− d

dt

∂F

∂y′s

]
η(t) +

∂F

∂y′s
η(t)

∣∣∣∣tb
ta

dt (2.12)

The last term is zero due to η(t) vanishing on the boundaries. Thus, the
integral ∫ tb

ta

dt

[
∂F

∂ys
− d

dt

∂F

∂y′s

]
η(t) = 0 (2.13)
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vanishes for every function η(t). In order for this to happen, we must have:

∂F

∂ys
− d

dt

∂F

∂y′s
= 0. (2.14)

This is the Euler-Lagrange equation.
A completely analogous derivation of Euler-Lagrange differential equa-

tions can be made for minimising multidimensional integrals which are func-
tionals of many functions. Given a vector-valued function, y : Rn → Rm

which maps a vector x ∈ Rn onto a vector y(x) ∈ Rm, that is, given m func-
tions, y1, . . . , ym, each depending on n variables, x1, . . . , xn, we may consider
the integral,

I[y1, . . . , ym] =

∫
dx1 . . . dxnF

[
yi(x),

∂yi(x)

∂xj

]
. (2.15)

Requiring that the above integral takes a minimum or maximum value under
small variations of the functions

yi(x)→ yi(x) + δyi(x) = yi(x) + εηi(x) , i = 1, . . . ,m ,

the integral value should be unchanged:

0 = δI[y1, . . . , ym]

= δ

∫
dx1 . . . dxnF

[
yi(x),

∂yi(x)

∂xj

]
=

∫
dx1 . . . dxn

[
m∑
i=1

∂F

∂yi
δyi(x) +

m∑
i=1

n∑
j=1

∂F

∂(∂jyi)
δ∂jyi(x)

]
, (2.16)

where we have introduced the shorthand notation,

∂j ≡
∂

∂xj
.

We use again that the operations of varying a function and taking its deriva-
tive with respect to its arguments commute:

δ∂jyi(x) = ∂jδyi(x) (2.17)
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and after performing integration by parts, we have

0 = ε

∫
dx1 . . . dxn

m∑
i=1

ηi

[
∂F

∂yi
−

n∑
j=1

∂j
∂F

∂(∂jyi)

]

+ε
∑
ij

∫
dx1 . . . dxm∂j

[
ηi

∂F

∂(∂jyi)

]
. (2.18)

The second term is a total derivative in the xj integration and it vanishes by
requiring that the variations yi(x) vanish at the boundaries of the integration.
Since the above identity must be valid for an arbitrary choice of functions
ηi(x) we arrive at the general Euler-Lagrange equations:

∂F

∂yi
−

n∑
j=1

∂j
∂F

∂(∂jyi)
= 0 , i = 1, . . . ,m . (2.19)

A particularly useful case is the one of a vector-valued function of one vari-
able, y : R → Rm which maps a variable x ∈ R onto a vector y(x) ∈ Rm,
that is, the case treated above with n = 1. Then the general Euler-Lagrange
equations become

∂F

∂yi
− d

dx

∂F

∂y′i
= 0 , i = 1, . . . ,m . (2.20)

2.3 Propagation of light

Equipped with the Euler-Lagrange equations (2.20) we consider the propa-
gation of light. Fermat formulated the homonymous principle, stating that
light travels from point to point choosing the path which yields the fastest
time. For such a transition, the total time is

T =

∫
dt =

∫
ds

v(x)
, (2.21)

where ds is the distance element and v(x) is the speed of light at the point
x. This is usually normalised to the speed of light in the vacuum c,

v(x) =
c

n(x)
, (2.22)
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where n(x) is the refraction index. Fermat’s principle requires that

T =
1

c

∫
ds n(x) =

1

c

∫ √
dx2 + dy2 + dz2n(x)

=
1

c

∫
dx

√
1 +

(
dy

dx

)2

+

(
dz

dx

)2

n(x) (2.23)

is a minimum.
Let us assume that the index of refraction is a constant,

n(x) = n = const.

Then

T =
n

c

∫
dx

√
1 +

(
dy

dx

)2

+

(
dz

dx

)2

. (2.24)

Formally, we can write it as,

T [y, z] =

∫
dxF (y′(x), z′(x)) (2.25)

with
F (y′(x), z′(x)) =

n

c

√
1 + y′2(x) + z′2(x) . (2.26)

Note that F does not depend explicitly on y and z.
The Euler-Lagrange equations read:

∂F

∂y
− d

dx

∂F

∂y′
= 0

∂F

∂z
− d

dx

∂F

∂z′
= 0 . (2.27)

Then computing the derivatives,

∂F

∂y
= 0 ,

∂F

∂y′
=
n

c

y′√
1 + y′2 + z′2

∂F

∂z
= 0 ,

∂F

∂z′
=
n

c

z′√
1 + y′2 + z′2

(2.28)

17



the Euler-Lagrange equations become,

d

dx

y′√
1 + y′2 + z′2

= 0

d

dx

z′√
1 + y′2 + z′2

= 0 , (2.29)

which can be trivially integrated,

y′√
1 + y′2 + z′2

= c1

z′√
1 + y′2 + z′2

= c2 , (2.30)

where c1 and c2 are constants. The solution of these equations is a straight
line.

Hint: In order to see it, solve first the simpler case of a light ray in the
x− y plane. Then the Euler-Lagrange equation is

d

dx

y′√
1 + y′2

= 0 (2.31)

which is integrated to
y′√

1 + y′2
= c (2.32)

where c is a constant. This can be solved in y′,

y′ = ± c√
1− c2

= a (2.33)

where a is a constant. Integrating it, we get the equation of a straight line

y(x) = ax+ b . (2.34)

Likewise, the coupled system (2.30) can be solved to find that

y(x) = a1x+ b1

z(x) = a2x+ b2 . (2.35)

which are the parametric equations of a straight line.

18



n1

n2

θI

A

θR

B

θT

C

Figure 2: The transmission and reflection of light through a boundary
separating media with different refraction indices

The principle of fastest time yields the correct laws for the reflection
and refraction of light of geometrical optics, stating that the incidence and
reflection angles are the same:

θI = θR (2.36)

and that the transmitted light from a medium with refraction index n1 to a
medium with a refraction index n2 is determined from Snell’s law:

n1 sin θI = n2 sin θT . (2.37)

Indeed, consider a light ray which passes from the point A(xa, ya) in
Fig. 2 and arrives at a point B(xb, yb) after it gets reflected on a boundary
separating two different media at the point O(0, 0). The time required for
this transition is

TA→B =

√
x2
a + y2

a

v1

+

√
x2
b + y2

b

v1

, (2.38)

where v1 = c
n1

is the speed of light in the medium at the side of the boundary
where the incident and reflected rays lie. If L = xb − xa is the horizontal
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distance with the two points, then we write:

cTA→B = n1

√
x2
a + y2

a + n1

√
(L+ xa)2 + y2

b (2.39)

Requiring the above to be a minimum, we find that the horizontal position
xa must satisfy

∂TA→B
∂xa

= 0

;
xa√
x2
a + y2

a

+
(L+ xa)√

(L+ xa)2 + y2
b

= 0

; − sin θI + sin θR = 0 , (2.40)

which yields that the incident and reflected light angles are the same,

θI = θR. (2.41)

Repeating the same steps for a transition from the point A inside the medium
with a refraction index n1 to a point C inside the medium with refraction
index n2,

∂TA→C
∂xa

= 0

; n1
xa√
x2
a + y2

a

+ n2
(L+ xa)√

(L+ xa)2 + y2
c

= 0

; −n1 sin θI + n2 sin θT = 0 , (2.42)

we find Snell’s law,
n1 sin θI = n2 sin θT . (2.43)

Interesting phenomena occur when the index of refraction is not uniform.
For example, the atmospheric air density changes with the temperature. The
non-uniformity of the density is responsible for for interesting phenomena,
such as mirage images in deserts or on the surface of a hot road in the
summer and the twinkling of stars. In such media, the trajectory of the light
is not a straight line.
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2.4 Solution of the brachistochrone problem

We can return now to the problem of subsection 2.1. The functional T of
Eq. 2.4 can be written as

T [x] =

∫ zb

za

dzF (x′(z)) (2.44)

with

F =

√
1 + x′2(z)

2g(za − z)
(2.45)

Note that F does not depend explicitly on x.
Requiring that the functional (2.44) be a minimum, we can write the

Euler-Lagrange equation 2.14

∂F

∂x
− d

dz

∂F

∂x′
= 0. (2.46)

Performing the differentiations,

∂F

∂x
= 0 ,

∂F

∂x′
=

x′√
2g(za − z)(1 + x′2(z))

, (2.47)

we obtain the second order differential equation:

d

dz

x′√
(za − z)(1 + x′2)

= 0 (2.48)

which, after a trivial first integration, gives:

x′√
(za − z)(1 + x′2)

= −C, (2.49)

with C a constant to be fixed by our boundary conditions. Solving for x′, we
obtain:

x′
2

=
C2(za − z)

1− C2(za − z)
(2.50)

For the rhs to be a positive definite variable, we must have either

z ≥ za and C2(za − z) ≥ 1,
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or
z ≤ za and C2(za − z) ≤ 1.

The first possibility is not physically allowed, since it is not satisfied by the
final point (xb, zb) which lies lower than (xa, za).

Let’s now change variables:

C2(za − z) = sin2 φ, φ ∈
[
0,
π

2

]
(2.51)

with
dz

dφ
= − 1

C2
sin(2φ). (2.52)

The differential equation for x(φ) becomes:

dx

dφ
= 2

C

|C|3
sin2 φ (2.53)

It is now straightforward to perform the integrations over φ and compute
x = x(φ), z = z(φ). We can choose that φ = 0 corresponds to the first point
(xa, za) of the curve. This gives the solutions:

x(φ) = xa +
C

2|C|3
[2φ− sin(2φ)] (2.54)

z(φ) = za −
1

2C2
[1− cos(2φ)] (2.55)

Setting φ = θ/2 with θ ∈ [0, π], we have

x(θ) = xa +
C

2|C|3
[θ − sin θ] (2.56)

z(θ) = za −
1

2C2
[1− cos θ] (2.57)

Choosing a positive value for C we obtain solutions where the curve lies to
the right of the starting point (as in Figure 1) while for C < 0 we obtain
solutions where the curve lies to the left of the starting point. For C > 0 we
have

x(θ) = xa +
1

2C2
[θ − sin θ] (2.58)
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z(θ) = za −
1

2C2
[1− cos θ] (2.59)

These are the equations of a cycloid. To determine the constant C2 we
require that the final point (xb, zb) belongs to the curve, i.e. there exists a
value θ = θb such that

xb = xa +
1

2C2
[θb − sin θb] (2.60)

zb = za −
1

2C2
[1− cos θb] (2.61)

For any specific value of the pairs (xa, za) and (xb, zb) one can use eqs. (2.60)
and (2.61) to determine numerically θb and C, and from this the radius of
the cycle generating the required cycloid curve,

r =
1

2C2
(2.62)

Exercise 2.1. Determine C and r for (xa, za) = (0, 1) and (xb, zb) = (2, 0).

You can find a nice demonstration of the brachistochrone problem in this
video.
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3 Hamilton’s principle of least action
After the observation that the behaviour of light can be understood by means
of a “least time principle” and variational techniques, the question arises
whether variational methods can also be used more generally for the study
of physical systems.

The main result of variational methods is the Euler-Lagrange differen-
tial equations. The laws of classical physics, Newton’s laws and Maxwell
equations of electrodynamics were first discovered in the form of differential
equations. The question we are posing here is a reverse-engineering prob-
lem. If we know the Euler-Lagrange equations (physics laws in differential
equations form) can we find the integral functional from which they arise?
Hamilton’s principle of least action states that this is possible.

Consider an isolated system of many particles i = 1 . . . N for which we
would like to know their trajectories, i.e their positions at all times. While it
is common to use Cartesian coordinates, ri(t), it is often useful to use other
variables such as angles, radii, or even more exotic variables to describe the
trajectory of a particle. We call these generic variables which describe a
trajectory as generalised coordinates.

Assume now that we know at an initial time ti the values of a set of
independent generalised coordinates

q1(ti), . . . , qm(ti)

as well as the initial values of their time derivarives (generalised velocities)

·
q1 (ti), . . . ,

·
qm (ti).

Hamilton’s principle of least action states that the generalised coordinates
and generalised velocities of the system are determined at a later time tf by
requiring that action:

S ≡
∫ tf

ti

dt L
[
{qj(t),

·
qj (t)}

]
(3.1)

is minimum:
δS = 0. (3.2)

The integrand L of the action is called the Lagrangian. The Euler-Lagrange
equations derived from the principle of least action for physical systems are
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called equations of motion and are given:

d

dt

∂L

∂
·
qi
− ∂L

∂qi
= 0. (3.3)

We note that the Lagrangian of a system is not uniquely defined. Consider
two Lagrangians L,L′ which differ by a total derivative:

L′ = L+
df

dt
, (3.4)

where f is an arbitrary function. The corresponding actions

S ′ =

∫ tf

ti

dt L′ =

∫ tf

ti

dt L+

∫ tf

ti

dt
df

dt
= S + f(tf )− f(ti) (3.5)

differ by a constant which vanishes upon taking a variation of the generalised
coordinates:

δS ′ = δS + δ (f(tf )− f(ti)) = δS. (3.6)

Therefore, Lagrangians which differ by a total derivative yield the same equa-
tions of motion.

3.1 The Lagrangian of a free particle in an inertial frame

We will now find Lagrangians which govern known physical systems, starting
from the simplest case. This is a free isolated particle (does not interact with
other particles) which is observed in an inertial frame. The equation of
motion of the particle is given by

a = 0, (3.7)

where the acceleration of the free particle is

a ≡ r =
(··
r1,
··
r2,
··
r3

)
. (3.8)

The Lagrangian:

L =
1

2
mv2 =

1

2
m

3∑
i=1

·
r

2

i , (3.9)
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yields the correct equation of motion:

0 =
d

dt

∂L

∂
·
ri
− ∂L

∂ri
= m

··
ri;

··
ri= 0. (3.10)

Could we have guessed a different Lagrangian, which results to the acceler-
ation being zero for a freely moving particle? For example, a Lagrangian:

L = (v2)n (3.11)

yields the equations of motion ( ·
r

2

i

)n−1 ··
ri= 0. (3.12)

For n 6= 1, in a rest frame where the particle is moving at a certain moment
with a velocity r 6= 0, we find that the acceleration must be zero. Never-
theless, such equations of motion do not conform with Galileo’s principle of
relativity which requires that under, for example, a boost

r → r′ = r + vt, (3.13)

Eq. 3.12 must maintain the same form, i.e.( ·
r
′2
i

)n−1 ··
ri
′
= 0. (3.14)

It does not, except for n = 1! Instead, one finds a frame dependent form:( ·
r

2

i

)n−1 ··
ri= 0

ri→r′i
;

(
(
·
r
′
i −vi)2

)n−1 ··
ri
′
= 0. (3.15)

A comment is appropriate on the constant factor m
2
in the Lagrangian of

the free particle of Eq. 3.9. Obviously, this factor is immaterial in deriving
the equations of motion. However, we will soon extend the Lagrangian to
account for interactions with other particles. When this happens, we will
associate m with the physical mass of the particle. The principle of least
action tells us that the physical mass is a positive quantity m > 0. Indeed,
the general solution of the equations of motion is:

r = 0 ; r(t) = A+Bt. (3.16)

26



We can fix the constants A,B for a given transition from a space-time point
(ti, ri) to a space-time point (tf , rf ). Then, the physical trajectory is given
by

rphys(t) = ri +
t− ti
tf − ti

(rf − ri) . (3.17)

The value of the action for the physical trajectory is

S [rphys(t)] =

∫ tf

ti

dtL[rphys(t)] =
1

2
m

(rf − ri)2

tf − ti
. (3.18)

According to the principle of least action, any other trajectory than the
physical that we can think of to join the space-time points (ti, ri) and (tf , rf )
should yield a value for the action which is greater. Consider, for example a
non-physical trajectory:

rnon−phys(t) = ri +

(
t− ti
tf − ti

)2

(rf − ri) . (3.19)

It must be
S [rnon−phys(t)]− S [rphys(t)] > 0. (3.20)

An explicit calculation shows that

S [rnon−phys(t)] =

∫ tf

ti

dtL[rnon−phys(t)] =
2

3
m

(rf − ri)2

tf − ti
=

4

3
S [rphys(t)] .

(3.21)
Eq. 3.20 leads to the conclusion that the value of the action for the physical
trajectory must be positive:

S [rphys(t)] =
1

2
m

(rf − ri)2

tf − ti
> 0 (3.22)

and, since tf > ti, we must have that the mass is positive m > 0.

3.2 Lagrangian of a particle in a homogeneous force
field

Consider a particle subjected to a constant force F . According to Newton’s
law, the equation of motion is

mr − F = 0, (3.23)

27



or, in components,
m
··
ri −Fi = 0. (3.24)

As for the earlier case of the free particle, the first term of the above equation
can be written as

m
··
ri=

d

dt

∂T

∂
·
ri
, (3.25)

where
T =

1

2
m
·
r

2
, (3.26)

the kinetic energy of the particle. We can write the second term as a deriva-
tive:

Fi =
∂(Firi)

∂ri
=

∂

∂ri

3∑
j=1

Fjrj = −∂(−F · r)
∂ri

(3.27)

The dot product −F ·r is the work done against the force to bring the particle
from the origin of our reference frame to the position r, or in other words
the potential energy of the particle:

U(r) = −F · r. (3.28)

Therefore, Newton’s law for a constant force takes the form:

d

dt

∂T

∂
·
ri
− ∂(−U)

∂ri
= 0. (3.29)

Given that the potential energy U does not depend on velocities
·
ri and that

the kinetic energy T does not depend on positions, we can rewrite the above
equation as:

d

dt

∂(T − U)

∂
·
ri

− ∂(T − U)

∂ri
= 0. (3.30)

This has taken the form of Euler-Lagrange equations,

d

dt

∂L

∂
·
ri
− ∂L

∂ri
= 0. (3.31)

where the Lagrangian
L = T − U (3.32)

is the difference of the kinetic and potential energy of the particle. While we
have derived this result for a constant force F , we shall see that it is more
general.
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3.3 Lagrangian of a system of particles with conserved
forces

Consider an isolated system of N -particles, i.e. particles which interact only
with each other. We will postulate that the Lagrangian of the system is the
difference of the kinetic energy of the particles and the potential energy of
the system:

L =
∑
a

1

2
mar

2
a − U (r1, . . . , rn) . (3.33)

The Euler-Lagrange equations for this Lagrangian read:

d

dt

∂L

∂
·
ra,i

=
∂L

∂ra,i
, (3.34)

where ra,i denotes the i−th component of the vector ra denoting the position
of the a−the particle. Performing the differentiations we obtain:

ma
··
ra,i= −

∂U

∂ra,i
(3.35)

or, in vector notation,
mra = −∇aU (3.36)

with ∇a ≡ (∂/∂ra,1, ∂/∂ra,2, ∂/∂ra,3). This is the known equation of motion
according to Newton’s law for a conserved force, i.e. a force which can be
written as the gradient of a potential:

Fa = −∇aU. (3.37)

As an example consider an isolated system of N particles with masses
ma which interact among themselves gravitationally. The Lagrangian of the
system is

L = T − U (3.38)

where

T =
N∑
a=1

1

2
mara (3.39)

and
U = −1

2

∑
a

∑
b6=a

G
mamb

|ra − rb|
(3.40)
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The Euler-Lagrange equations are:

mara = −∇aU, (3.41)

where the subscript in ∇a denotes that the differentiations are made with
respect to the coordinates of the a-th particle.

Exercise 3.1. To carry out the differentiations in the rhs, we first prove
that:

∇a
1

|ra − rb|
= − ra − rb
|ra − rb|3

. (3.42)

We then obtain the equations of motion:

mara = −
∑
b6=a

Gmamb
ra − rb
|ra − rb|3

, (3.43)

in agreement with Newton’s law of gravitation.

3.4 Lagrangian for a charge inside an electromagnetic
field

We now turn our attention to the force experienced by an electric charge
which is in the vicinity of other electric charges. We can sum up the effects
of all other charges into two vectors:

• E(t, r), the electric field and

• B(t, r), the magnetic field.

The force is then given by:

mr = q
(
E + r ×B

)
, (3.44)

where m is the mass of the charge q. The electric and magnetic fields are
determined from the equations of Maxwell:

∇ · E =
ρ

ε0
, (3.45)

∇× E = −∂B
∂t
, (3.46)

∇ ·B = 0, (3.47)

∇×B =
j

c2ε0
+

1

c2

∂E

∂t.
(3.48)
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where ρ(r) is the electric charge density and j is the electric current density.
ε0 is a constant, the so-called vacuum permittivity, and has the value

ε0 = 8.854187817 . . . 1012 A · s
Volt ·m

. (3.49)

c is the speed of light

c = 2.99792458 . . . 108m

s
. (3.50)

We will not attempt here to find explicit solutions of Maxwell equations
for the E and B fields, but we will assume that such solutions exist and
are known to us. Can we obtain the equation of motion Eq. 3.44 from
Hamilton’s variational principle? Unlike the example that we have seen so
far, the electormagnetic force depends not only on the position of the charged
particle but also its velocity. Nevetheless, we will be able to find a Lagrangian
which gives the correct equation of motion.

To achieve that, we introduce first the scalar and vector potentials, φ(t, r)
and A(t, r) respectively, defined as:

E = −∂A
∂t
−∇φ (3.51)

B = ∇× A (3.52)

You can easily verify that the second and third of Maxwell equations are
automatically satisfied if we substitute the electric and magnetic field with
the scalar and vector potentials. Consider now the Lagrangian:

L =
1

2
mr

2 − qφ+ qr · A. (3.53)

Euler-Lagrange equations give the form

m
··
ri +q

dAi
dt

= −q∂iφ+ q
∑
j

·
rj ∂iAj, (3.54)

where we use the shorthand notation

∂i ≡
∂

∂ri
.
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The total time derivative of the vector potential is:

dAi
dt

=
∂Ai
∂t

+
∑
j

·
rj (∂jAi) (3.55)

Then, Euler-Lagrange equations take the form

m
··
ri = q

[
−∂Ai
∂t
− ∂iφ

]
+ q

∑
j

[ ·
rj ∂iAj−

·
rj (∂jAi)

]
. (3.56)

In the first bracket, we recognize the i-th component of the electric field:

−∂Ai
∂t
− ∂iφ = Ei (3.57)

The second bracket is not as obvious to decipher, but we can prove it to
be the i-th component of the cross-product of the velocity and the magnetic
field. Indeed

(r ×B)i =
[
r ×

(
∇× A

)]
i

=
∑
jklm

εijk
·
rj (εklm∂lAm)

=
∑
jlm

(δilδjm − δjlδim)
·
rj ∂lAm

=
∑
j

[ ·
rj ∂iAj−

·
rj (∂jAi)

]
. (3.58)

Thus, we have proven that the Euler-Lagrange equations of the Lagrangian
of Eq. 3.53 give the known Lorentz equation for the force of a charge inside
an electromagnetic field:

m
··
ri= qEi + q

(
r ×B

)
i

(3.59)
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4 Dynamics of constrained systems
In the last section, we showed the equivalency of traditional Newtonian me-
chanics and Hamilton’s variational principle for a variety of forces acting on
systems of particles. In this section, we will show that the principle of least
action can be applied to dynamical systems for which we do not have a pri-
ori knowledge of all forces acting on the particles but for some of them we
only know their effect in limiting the allowed motion of the particles. For
example, particles which make up a ball are constrained to be kept together
with electromagnetic forces. It is difficult to account for these microscopic
electromagnetic interactions in our Lagrangian when our aim is simply to
describe the motion of the ball inside the gravitational field. However, in
a variety of problems with constraints an explicit description of the forces
responsible for the constraints can be avoided and we can implement directly
their effect.

4.1 Constraints

The configuration of a system ofN particles Pj is given by the positions rj and
the velocities rj of the N particles. If all possible configurations are allowed,
the system is free. If there are limitations to the possible configurations, the
motion of the system is constrained. The geometric or kinematic restrictions
to the positions rj of the particles of the system are called constraints.

We will study a class of constraints which limit the positions and/or the
velocities of the particles, through equations of the form

f(r1, . . . , rN , r1, . . . , rN , t) = 0 . (4.1)

We call these constraints differential. If a differential constraint can be cast
in a form that it does not depend explicitly on the velocities, it is called
holonomic,

f(r1, . . . , rN , t) = 0 , (4.2)

thus it will limit only the positions of the particles. If, in particular, a
holonomic constraint (Eq. 4.2) does not depend explicitly on time,

∂f

∂t
= 0 , (4.3)

it is called stationary. Constraints which are not holonomic are called non-
holonomic.
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Examples of holonomic constraints are:

1. A rigid body may be thought as a collection of N particles whose
reciprocal distances Lij define geometric stationary constraints like in
eq. (4.10),

(ri − rj)2 − L2
ij = 0 , i, j = 1, . . . , N . (4.4)

This is a stationary holonomic constraint. The rigid body may be in
motion, therefore the coordinates ri = ri(t), rj = rj(t) change with
time. However the time-dependence of Eq. 4.10 is implicit (through
the coordinates) and not explicit; thus we classify the constraint as
stationary.

2. A particle is constrained to move on a fixed surface,

f(r) = f(x, y, z) = 0 . (4.5)

This is also a stationary holonomic constraint.

3. A particle is constrained to move on a surface which is itself in motion,

f(r, t) = 0 . (4.6)

This is a holonomic constraint, but it depends explicitly on time. There-
fore, the constraint is not stationary.

4. An ideal moving fluid (i.e. without viscosity) may be thought as a
collection of N particles whose reciprocal distances Lij(t) change with
time and which define holonomic constraints which are not stationary:

(ri − rj)2 − L2
ij(t) = 0 , i, j = 1, . . . , N . (4.7)

Differential constraints may appear, at a first sight, to depend on veloci-
ties. We may then rush to conclude that they are not holonomic. However,
sometimes the apparent velocity dependence can be eliminated upon inte-
gration and we can, after all, cast the constraint in the form of Eq. 4.2 which
is manifestly holonomic. To convince you that such a possibility exists, it
suffices to observe that we can always produce a constraint with an apparent
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velocity dependence starting from a holonomic constraint. Let us start from
a constraint of the form of Eq. 4.2 and take a total time derivative:

f = 0 −→ df

dt
= 0 −→

N∑
j=1

∇j · rj +
∂f

∂t
= 0 , (4.8)

which in Cartesian coordinates rj ≡ (xj, yj, zj) is written as,
N∑
j=1

(
∂f

∂xj
ẋj +

∂f

∂yj
ẏj +

∂f

∂zj
żj

)
+
∂f

∂t
= 0 . (4.9)

In the form of Eq. 4.9, the constraint has an apparent velocity dependence.
As a concrete example, consider a pendulum which moves on the x−z plane,
and it is attached to a string of length R. This yields a holonomic stationary
constraint which is given by the equation,

r2 −R2 = x2 + z2 −R2 = 0 . (4.10)

which states that the distance of the pendulum from the center is fixed. We
can make the constraint to have an apparent velocity dependence. Differen-
tiating Eq. (4.10) with respect to time, we obtain

d

dt
(x2 + z2 −R2) = 2xẋ+ 2zż = 0 , −→ r · r = 0 , (4.11)

In this form, we read the constraint to state that the motion of the pendulum
is orthogonal to the string. Had we been given the constraint in this second
form, we would not be able to classify it as holonomic. Of course, once we
realize that the differential constraint of Eq. 4.11 is a total differential, it can
be integrated back making the form of the constraint manifestly holonomic.

Differential constraints which are total time differentials (Eq. 4.8) can be
integrated and we obtain

f(r1, . . . , rN , t) = c , (4.12)

with c an arbitrary constant. Differential constraints of the form of Eq. 4.8
are said to be integrable and they are holonomic.

We shall consider only the simplest class of differential non-integrable
constraints: the ones which depend linearly on the velocities rj of the N
particles,

N∑
j=1

lj · rj +D = 0 , (4.13)
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where the vectors lj and the scalar D are functions of the positions rj and
of time t, lj = lj(r1, . . . , rN , t) and D = D(r1, . . . , rN , t). In Cartesian coor-
dinates, eq. (4.13) reads,

N∑
j=1

(Ajxj +Bjyj + Cjzj) +D = 0 . (4.14)

As an example, consider an ice skate, which we represent by means of two
particles connected by a rod of length L, as in Figure 3. The rod moves on
the x−y plane (the ice skating rink). Any point on the rod, and in particular
the middle point, moves in the direction of the rod. So, in addition to the
fixed length of the rod, which yields the constraint,

(x1 − x2)2 + (y1 − y2)2 = L2 , (4.15)

we must require that the position vector of the rod and the velocity vector
of the middle point have the same direction, say at an angle α,

tanα =
y2 − y1

x2 − x1

=
ẏ1 + ẏ2

ẋ1 + ẋ2

. (4.16)

Eq. 4.16 yields the differential constraint,

ẋ1 + ẋ2

x1 − x2

=
ẏ1 + ẏ2

y1 − y2

, (4.17)

which is non-integrable. Thus, the system defined by the constraints (4.15)
and (4.17) is non-holonomic. Likewise, any rigid body whose velocity points
in the direction of motion (like a car which is moving or parking without
sliding) defines a non-holonomic system.

Figure 3: Ice skate represented as a rod of length L.
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4.2 Possible and virtual displacements

Let us take a system of N particles Pj, with j = 1, . . . , N , subject to d
manifestly holonomic constraints,

fi(r1, . . . , rN , t) = 0 , i = 1, . . . , d , (4.18)

and to g linear differential constraints,

N∑
j=1

lkj · rj +Dk = 0 , k = 1, . . . , g . (4.19)

By taking the total time derivative of the manifestly holonomic contraints,
like in Eq. 4.8,

N∑
j=1

∇jfi · rj +
∂fi
∂t

= 0 , i = 1, . . . , d , (4.20)

we replace them by linear differential constraints as well. We see that the
constraints of Eqs 4.19-4.20 limit the allowed velocities rj of the particles.
The velocities rj which are allowed by the constraints Eqs 4.19-4.20 are called
possible. At a given time t and positions rj of the particles Pj, there are
infinitely many sets of possible velocities, since we have not yet considered
the other forces (not responsible for constraints) which are acting on the
system. Once we do so, only one set of possible particle velocities is actually
realised in the motion of the system.

Multiplying eqs. (4.19) and (4.20) by the time interval dt,

N∑
j=1

∇jfi · drj +
∂fi
∂t
dt = 0 , i = 1, . . . , d ,

N∑
j=1

lkj · drj +Dkdt = 0 , k = 1, . . . , g , (4.21)

we write the linear differential constraints in terms of the possible displace-
ments, drj = rjdt.

For two possible displacements,

drj = rjdt , dr′j = r′jdt , (4.22)
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satisfying the constraints of Eq. 4.21, the difference

δrj = drj − dr′j , (4.23)

fulfils the constraints
N∑
j=1

∇jfi · δrj = 0 , i = 1, . . . , d ,

N∑
j=1

lkj · δrj = 0 , k = 1, . . . , g , (4.24)

In Cartesian coordinates the above can be written explicitly as:

N∑
j=1

(
∂fi
∂xj

δxj +
∂fi
∂yj

δyj +
∂fi
∂zj

δzj

)
= 0 , i = 1, . . . , d ,

N∑
j=1

(Akjxj +Bkjyj + Ckjzj) = 0 , k = 1, . . . , g . (4.25)

The displacements of Eq. 4.23 are called virtual. We can think of virtual
displacements as the ones which take a possible configuration of the system
at a time t to another one infinitely close to it, at the same time t. For
stationary constraints, which have a vanishing time derivative, the set of
virtual displacements coincides with the one of the possible displacements.

Figure 4: Particle in motion over a fixed surface S.

For an example of possible and virtual displacements consider a particle
P which is in motion over a fixed surface S, as in Figure 4. The constraint is
f(r) = 0. Any vector v tangent to S is a possible velocity and the differential
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elements dr = v dt are possible displacements. The difference δr = dr−dr′ of
two tangent vectors is also a tangent vector. In this case, the sets of virtual
and possible displacements coincide, as we expect since the constraint is
stationary.

Consider now a particle P which is in motion on a moving surface S with
velocity u, as in Figure 5. We denote with w the possible velocities of the
particle and we measure them with respect to the moving surface. Then the
velocity of the particle is v = w + u, where w is tangent to the surface S.
Note that in general the velocity v is not tangent to S. Likewise, the possible
displacement,

dr = v dt = w dt+ u dt , (4.26)

is a vector which is not necessarily tangent to S. Take, now, another possible
displacement,

dr′ = w′ dt+ u dt , (4.27)

and form a virtual the difference,

δr = dr − dr′ = (w − w′) dt , (4.28)

is a virtual displacement, and a vector tangent to S. Note that virtual and
possible displacements do not coincide, since, as we know from eq. (4.6), the
constraint of a moving surface is not stationary.

Figure 5: Particle in motion over a moving surface S.
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4.3 Smooth constraints

From eq. (4.25), we know that for a system of N particles Pj, with j =
1, . . . , N , we have 3N virtual displacements constrained by d geometric con-
straints (4.18) and g differential constraints (4.19). Thus there are 3N−d−g
independent virtual displacements. We can say that our system ofN particles
has 3N − d− g degrees of freedom. The constraints, imply some restrictions
in the acceleration of the particles. In fact, taking the total time derivative
of eq. (4.8) for d constraints, we obtain

N∑
j=1

∇jfi · rj +
N∑
j=1

(
d

dt
∇jfi

)
· rj +

d

dt

∂fi
∂t

= 0 , i = 1, . . . , d ,

N∑
j=1

lkj · rj +
N∑
j=1

dlkj
dt
· rj +

dDk

dt
= 0 , k = 1, . . . , g . (4.29)

Let us imagine for a moment the system without constraints. On the
system are applied forces,

Fj = Fj(ri, ri, t) , j = 1, . . . , N , (4.30)

which are known functions of the positions ri and the velocities ri of the
particles. Without constraints, the forces would induce accelerations:

Fj = mjrj j = 1, . . . , N , (4.31)

where mj are the masses of the particles. However, if the system is con-
strained, the accelerations rj are also due to additional forces Rj, called
reaction forces, which are responsible for the constraints. The accelerations
consistent with Eq. 4.29 should satisfy:

mjrj = Fj +Rj , j = 1, . . . , N . (4.32)

The general problem of the dynamics of a constrained system is as fol-
lows: given the forces Fj and the initial positions r0,i and velocities r0,i of
the particles, we need to determine the trajectories of the particles and the
reaction forces Rj of the constraints:

ri(t) , Rj , j = 1, . . . , N , (4.33)
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Often ( if d+ g < 3N), the known equations of motion and constraints

mjrj = Fj +Rj , j = 1, . . . , N ,

fi(rj, t) = 0 , i = 1, . . . , d , (4.34)
N∑
j=1

lkj · rj +Dk = 0 , k = 1, . . . , g .

do not suffice to determine all unknowns, leaving n = 3N − d− g degrees of
freedom undetermined. In order to determine the motion of the system, we
need additional n = 3N − d − g independent relations among the variables
(4.33). We will find the necessary additional equations by examining the
properties of the constraints and making an assumption for the reaction
forces which generate them.

There is a large class of constraints, called smooth, for which the work of
the reaction forces vanishes over the virtual displacements,

N∑
j=1

Rj · δrj = 0 , (4.35)

which in Cartesian coordinates is

N∑
j=1

(Rj,xδxj +Rj,yδyj +Rj,zδzj) = 0 . (4.36)

Consider the following examples:

Example 4.1. Consider a particle P which moves on a fixed smooth surface
S, as in Figure 6. As we have seen, the virtual and possible displacements
coincide in that case; they are vectors tangent to S. Because S is smooth
(there are no frictions), the reaction force R is orthogonal to S. Then R·dr =
0 and R · δr = 0. Therefore, the constraint is smooth.

Example 4.2. We now consider a pendulum, for which we have cast the
constraint, Eq. 4.11, in the differential form r · r = 0. Because the virtual
and possible displacements coincide, it is also true that r · δr = 0, where the
direction of the string r̂ identifies also the direction of the reaction force R.
Thus, we have that R · δr = 0 and the constraint is therefore smooth.
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Figure 6: Reaction R on a fixed surface S.

Example 4.3. A point P moves on a smooth surface S, which moves with
velocity u, as in Figure 7. Because S is smooth, the reaction force R is
orthogonal to S. As we have already seen, in this example the virtual dis-
placement δr is tangent to S, while the possible displacement dr is generally
not. Then R · δr = 0, while R · dr 6= 0. Albeit not stationary, this constraint
is smooth.

Figure 7: Reaction R on a moving surface S.

From Eq.(4.24) for the virtual displacements, we know that among the
3N virtual displacements there are n = 3N − d− g independent ones, which
define an n-dimensional vector space Rn. We can write any displacement as
a function of the n independent ones,

δrj =
n∑
k=1

δαkek,j , j = 1, . . . , N , (4.37)
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where δαk are the independent displacements and ek,j are unit vectors. Sub-
stituting it into Eq. (4.35) we obtain that

N∑
j=1

Rj ·
n∑
k=1

δαkek,j =
n∑
k=1

δαk

(
N∑
j=1

Rj · ek,j

)
= 0 , (4.38)

which must be true for any virtual displacements δαk which are independent.
This requirement gives n additional equations,

N∑
j=1

Rjek,j = 0 , k = 1, . . . , n , (4.39)

which are the missing n conditions which were needed in order to determine
completely the system.

4.4 The general equation of the dynamics

In the previous section, we have established the equations of motion of a
constrained system,

mjrj = Fj +Rj , j = 1, . . . , N , (4.40)

with mj the masses of the particles, Fj the forces applied on the system and
Rj the reactions due to the constraints. In addition, we require that the
constraints are smooth (4.35),

N∑
j=1

Rj · δrj = 0 , (4.41)

Substituting the reactions Rj as obtained from eq. (4.40) into eq. (4.41), we
obtain

N∑
j=1

(
Fj −mjrj

)
· δrj = 0 , (4.42)

which is the general equation of the dynamics, which states that the sum of
the work of the effective forces Fj and the inertial forces mjrj vanishes for
any virtual displacement.
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4.5 Independent generalised coordinates

In what follows, we will limit ourselves to a system of N particles, with d
constraints,

fi(rj, t) = 0 , i = 1, . . . , d . (4.43)

written in a manifestly holonomic form.
We know from eq.(4.24) that among the 3N virtual displacements there

are n = 3N − d independent ones. Thus we can express the d equations
(4.43) as functions of n independent coordinates, qi with i = 1, . . . , n, and of
the time t. Also the positions of the particles can be taken as functions of
the n independent coordinates,

rj = rj(q1(t), . . . , qn(t), t) , j = 1, . . . , N , (4.44)

In the specific case of stationary contraints (4.3), the positions of the particles
rj do not depend explicitly on the time t but only through qi(t).

The essential information about the degrees of freedom being reduced
from 3N to n is encoded into the n independent coordinates of eq. (4.44),
thus if we substitute eq. (4.44) into eq. (4.43), these become identities. The
n independent coordinates qi are called independent generalised coordinates.
Consider the following examples:

Example 4.4. A pendulum is moving on the x− z plane and it is attached
to a string of length R. the motion of the pendulum spans an angle φ:
the pendulum has only one degree of freedom. The stationary holonomic
constraint is given by the equation,

x2 + z2 −R2 = 0 . (4.45)

If we take φ as the independent coordinate, then Eqs. 4.44 become

x = R cosφ ,

z = R sinφ . (4.46)

If we substitute the Eqs. 4.46 into Eq. 4.45, we obtain the identity,

cos2 φ+ sin2 φ− 1 = 0 . (4.47)

Example 4.5. A particle is constrained to move on a sphere of radius R: it
can move with two degrees of freedom. As independent coordinates, we can
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take the longitude φ and the latitude θ. The holonomic stationary constraint
is given by the equation,

x2 + y2 + z2 −R2 = 0 . (4.48)

In terms of the φ and θ angles, Eqs. 4.44 become

x = R cosφ cos θ ,

y = R sinφ cos θ , (4.49)
z = R sin θ .

If we substitute the Eqs. (4.50) into the constraint of Eq. (4.48), we obtain
the identity,

(cos2 φ+ sin2 φ) cos2 θ + sin2 θ − 1 = 0 . (4.50)

4.6 Euler-Lagrange equations for systems with smooth
constraints and potential forces

We may now express the 3N virtual displacements as a function of the n =
3N − d independent coordinates Eq. 4.44,

δrj =
n∑
i=1

∂rj
∂qi

δqi , j = 1, . . . , N , (4.51)

and substitute it into the general equation of the dynamics (Eq. 4.42),

n∑
i=1

N∑
j=1

(
Fj −mjrj

)
· ∂rj
∂qi

δqi = 0 , (4.52)

where we have inverted the order of the sums. Because the coordinates qi are
independent, so are their virtual displacements δqi. Thus, their coefficients
must identically vanish, yielding:

N∑
j=1

(
Fj −mjrj

)
· ∂rj
∂qi

= 0 , i = 1, . . . , n . (4.53)

The first term of Eq. 4.53,
N∑
j=1

Fj ·
∂rj
∂qi
≡ Qi , i = 1, . . . , n . (4.54)
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is called the generalised force. The generalised force has the dimension of
a force only if the independent coordinates have the dimension of a length.
Now let us analyse the second term of Eqs. 4.53,

N∑
j=1

mjrj ·
∂rj
∂qi

, i = 1, . . . , n , (4.55)

which we rewrite as

N∑
j=1

mj
drj
dt
· ∂rj
∂qi

=
d

dt

(
N∑
j=1

mjrj ·
∂rj
∂qi

)
−

N∑
j=1

mjrj ·
d

dt

∂rj
∂qi

, (4.56)

Next, we derive a couple of useful identities. We start from the velocities in
terms of independent coordinates,

rj =
n∑
i=1

∂rj
∂qi

q̇i +
∂rj
∂t

, (4.57)

from which we immediately obtain that

∂rj
∂q̇i

=
∂rj
∂qi

. (4.58)

Then we derive eq. (4.57) with respect to the independent coordinates,

∂rj
∂qi

=
n∑
k=1

∂2rj
∂qi∂qk

q̇k +
∂2rj
∂qi∂t

=
d

dt

∂rj
∂qi

. (4.59)

We substitute the identities (4.58) and (4.59) into eq. (4.56) and we obtain,

N∑
j=1

mjrj ·
∂rj
∂qi

=
d

dt

(
N∑
j=1

mjrj ·
∂rj
∂q̇i

)
−

N∑
j=1

mjrj ·
∂rj
∂qi

. (4.60)

Considering that the kinetic energy of the holonomic system of N particles
is,

T =
1

2

N∑
j=1

mj ṙ
2
j , (4.61)
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we can rewrite eq. (4.60) as

N∑
j=1

mjrj ·
∂rj
∂qi

=
d

dt

∂T

∂q̇i
− ∂T

∂qi
, i = 1, . . . , n . (4.62)

Substituting it into eq. (4.53) and remembering the definition of generalised
force (4.54), we obtain:

d

dt

∂T

∂q̇i
− ∂T

∂qi
= Qi , i = 1, . . . , n . (4.63)

These equations form a system of n second order differential equations in n
unknown variables qi. Therefore, the motion of the holonomic system with
n degrees of freedom is determined fully if the values of qi and q̇i are given
at an initial time t0.

Note that the reaction forces Rj do not appear explicitly in Eqs. 4.63.
They can be obtained by solving Eqs. 4.63 first, and then using Eq. 4.40.

Now, let us suppose that some forces can be derived from a potential
energy U = U(qi, t),

Fj = −∂U
∂rj

, (4.64)

such that the generalised forces become

Qi =
N∑
j=1

Fj ·
∂rj
∂qi

= −
N∑
j=1

∂U

∂rj
· ∂rj
∂qi

= −∂U
∂qi

, i = 1, . . . , n , (4.65)

and that in addition there are non-potential generalised forces,

Q̃i = Q̃i(qk, q̇k, t) . (4.66)

Eqs. 4.63) become

d

dt

∂T

∂q̇i
− ∂T

∂qi
= −∂U

∂qi
+ Q̃i , i = 1, . . . , n . (4.67)

Recalling the defintion of the Lagrangian,

L = T − U , (4.68)
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we can cast Eq. 4.67 in the form:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= Q̃i , i = 1, . . . , n . (4.69)

In the absence of non-potential forces equations 4.67) give the Euler-Lagrange
equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , n . (4.70)

We have therefore proved that Hamilton’s principle of least action, which
yields the same Euler-Lagrange equations, should also hold for constrained
systems with smooth holonomic constraints and potential forces.
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5 Application of Euler-Lagrange equations: Sim-
ple pendulum

We have seen that we can obtain the equations of motion for a system with
holonomic constraints from a Lagrangian L by requiring that the action inte-
gral is ninimum. This gives rise to Euler-Lagrange equations (the equations
of motion):

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0 (5.1)

In the above, all generalised coordinates qi are independent, and we have
first used the holonomic constraints to eliminate additional variables which
are not independent.

Eqs. (5.1) are of course equivalent to (and have also been derived from)
Newton’s law. It is instructive to take a simple physics problem and use
it as a testbed to compare the two methods. Consider a simple pendulum:
According to Newton’s law,

x

z

FR

θ

W

WT
WR

R

Figure 8: A simple pendulum consists of a particle of mass m which is
attached via a (massless) rope of a certain length R to a fixed point.

mr = FR +W. (5.2)

where W is the weight force and FR is the reaction force from the rope. The
acceleration is:

r = ẍx̂+ ÿŷ + z̈ẑ (5.3)
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We will need to change to polar coordinates, with the following change of

θ

r̂
ẑ

x̂

τ̂

θ

Figure 9: The unit vectors definig the Cartesian and polar coordinates.

basis for the unit vectors:

(x̂, ŷ, ẑ) −→ (r̂, ŷ, τ̂) (5.4)

where r̂ is the radial unit vector and τ̂ the tangential unit vector to the
motion of the pendulum. We have:

ẑ = (ẑ · r̂)r̂ + (ẑ · τ̂)τ̂

x̂ = (x̂ · r̂)r̂ + (x̂ · ẑ)ẑ

}
=⇒

{
ẑ = cos θ r̂ − sin θ τ̂

x̂ = sin θ r̂ + cos θ ẑ
(5.5)

or, in matrix form: ẑx̂
ŷ

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

r̂τ̂
ŷ

 (5.6)

As expected, the change from Cartesian to polar coordinates is a rotation by
an angle θ around the ŷ-axis. Expressing the acceleration in the polar basis
and using that the length of the pendulum is fixed,

r = R

we have:
r = r̂(−Rθ̇2) + ẑ(Rθ̈). (5.7)
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The force acting on the pendulum is decomposed as:

F = W + FR = −(mg sin θ)ẑ + (mg cos θ − FR)r̂.

Newton’s law gives then two equations: The equation of motion determining
the evolution of the angle θ:

mRθ̈ = −mg sin θ ; θ̈ +
g

R
sin θ = 0 (5.8)

and an equation which determines the reaction force:

−mRθ̇2 = mg cos θ − FR ; FR = m(Rθ̇2 + g cos θ) (5.9)

Let us now use the Euler-Lagrange method. The Lagrangian is

L = T − V =
1

2
mr2 −mg(z0 − z).

We have:
r = ẑr cos θ + x̂r sin θ + ŷy

We can use the constraints

r = R = const., y = const..

Then,
r = R(ẑ sin θ + x̂ cos θ)θ̇ ; r2 = R2θ̇2

Thus,

L =
1

2
mR2θ̇2 +mgR cos θ −mgz0︸ ︷︷ ︸

unimportant constant

The equation of motion is:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 ; mR2θ̈ +mgR sin θ = 0 ; θ̈ +

g

R
sin θ = 0

which is the same result as with Newton’s law (Eqs. 5.8).
Notice that in neither of the two methods we said anything about how to

solve the equation of motion. In this sence, which of the two methods we use
in order to derive (Eq 5.8) is a matter of taste. Nevertheless, we can make a
few comparisons:
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x

z

r cos θ

r sin θ

r

θ

Figure 10: Visualization of the constraints.

• The Euler-Lagrange method requires scalar quantities. No need to
perform vector rotations.

• The Euler-Lagrange does not make an explicit reference to the reaction
forces. This is an advantage if we are not interested in them, but a
disadvantage if we care about them. For example, an engineer building
a pendulum would like to know how much the reaction force is, in order
to use a sufficiently strong rope.
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6 Minimization with Lagrange multipliers
The mathematical problem that we are facing in classical mechanics is one
of minimization of a functional (the action). This problem becomes more
complicated due to contstraints which make the variables of the functional
(generalized coordinates) not independent. We have seen that for simple con-
straints (holonomic) it may be possible to eliminate the dependent variables.
When this is not possible, we may consider the more sophisticated technique
of Lagrange multipliers. We will recall the salient features of this method for
the minimization of functions with constraints first and then we will see how
to apply it for functionals and the action specifically.

6.1 Minimization of a multivariate function with La-
grange multipliers

Consider a function
u = f(x1, . . . , xN)

where x1, . . . , xN are all independent variables. We are interested in finding
the extrema (minima or maxima) of the function. These are given by the
condition that the total differential of the function vanishes:

du = 0⇒
N∑
i=1

∂f

∂xi
dxi = 0.

Since we have taken the variables xi to be independent, the coefficients of
dxi must all vanish. Thus, we have that an extremum occurs if

∂f

∂xi
= 0 ∀i = 1, . . . , N.

Let us now assume that the variables xi are not all independent due to, for
example, a constraint:

φ(x1, . . . , xN) = 0.

The extrema of the function are given in this case too by the condition

du = 0,
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but unlike earlier one of the variables, let’s say xN , is not independent any
more. A straightforward way to find the minimum would be to solve the
constraint

φ(x1, . . . , xN) = 0 ; xN = xN(x1, . . . , xN−1)

and eliminate this variable from the function:

u = f(x1, . . . , xN(x1, . . . , xN−1)) = g(x1, . . . , xN−1)

Then, we can minimize g(x1, . . . , xN−1) as before, since the remaining vari-
ables are all independent. However, there is an alternative way where we do
not need to solve the constraint explicitly. We start from

du = 0 ;

N−1∑
i=1

(
∂f

∂xi
+

∂f

∂xN

∂xN
∂xi

)
dxi = 0

;

N−1∑
i=1

∂f

∂xi
dxi +

∂f

∂xN

N−1∑
i=1

∂xN
∂xi

dxi = 0. (6.1)

The sum in the last term is:
N−1∑
i=1

∂xN
∂xi

dxi = dxN .

We therefore find again the same condition

du = 0 ;
∂f

∂xi
dxi + · · ·+ ∂f

∂xN−1

dxN−1 +
∂f

∂xN
dxN = 0, (6.2)

although now the dxi’s are not all independent and we cannot demand that
their coefficients vanish independently. Consider now the constraint:

φ(x1, . . . , xN) = 0 ; dφ(x1, . . . , xN) = 0

⇒ ∂φ

∂x1

dx1 + · · ·+ ∂φ

∂xN
dxN = 0 (6.3)

We can multiply (6.3) with a constant λ, the so called Lagrange multiplier,
and subtract it from (6.2):

N∑
i=1

[
∂f

∂xi
− λ ∂f

∂xi

]
dxi = 0
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It can be proven (Analysis course) that we can use the extra parameter λ in
order to make all terms in the brackets to vanish,

∂f

∂xi
− λ ∂φ

∂xi
= 0 i = 1, . . . , N.

Solving the system of equations above will determine the minimum.
Therefore, the procedure to find the extremum in the presence of a con-

straint is identical to the one without contraints, replacing the original func-
tion

f(x1, . . . , xN)

with a function which includes the constraint

fλ(x1, . . . , xN) ≡ f(x1, . . . , xN)− λφ(x1, . . . , xN).

Let’s see how this works in a couple of examples.

Example 6.1. Find the minimum distance of a straight line from the origin.
We will solve this problem in two ways:

1. Eliminating dependent variables.
The square of the distance of a point (x, y) from the origin is:

f(x, y) ≡ d(x, y)2 = x2 + y2.

The constraint demands that the point belongs to a line

y = ax+ b a, b ∈ R.

Eliminating the y-variable, we have:

f(x, y) = f(x, y(x)) = x2 + (ax+ b)2 ≡ g(x).

We now have one independent variable x. We can minimize, by de-
manding:

∂g(x)

∂x
= 0 ; 2x+ 2a(ax+ b) = 0⇒ x =

−ab
1 + a2

Then
y = a

(
−ab

1 + a2

)
+ b =

b

1 + a2
.

The mininum distance of the line to the origin is therefore at the point

(x, y) =

(
−ab

1 + a2
,

b

1 + a2

)
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2. Using Lagrange multipliers.
We first define the function

fλ(x, y) = x2 + y2 − λ(y − ax− b)

which contains the square of the distance of the pont (x,y) as well as
a Lagrange multiplier with the constraint that the point must belong
to a line y− ax− b = 0. We require that the partial derivatives of this
function with respect to all variables must vanish:

∂

∂x
fλ(x, y) = 0

∂

∂y
fλ(x, y) = 0

⇒ 2x+ λa = 0

2y − λ = 0

⇒ x = −λ
2
a

y =
λ

2

We can now use the constraint:

y − ax− b = 0⇒ λ

2
(1 + a2) = b⇒ λ =

2b

1 + a2
.

Thus the minimum is at

(x, y) =

(
−a

1 + a2
b,

b

1 + a2

)
as expected.

You may wonder what is the advantage of Lagrange multipliers since
in our first example it was trivial to solve the problem by eliminating the
dependent variable. However, it occurs in other problems to be easier (or the
only possibility) to solve for a Lagrange multiplier instead. We demonstrate
this in the following more complicated example.

Example 6.2. Find the minimum and maximum distance from the origin
on an ellipse

x2

a2
+
y2

b2
= 1.

We introduce a Lagrange mutiplier for the constraint and minimize the func-
tion

fλ(x, y) = x2 + y2 − λ
(
x2

a2
+
y2

b2
− 1

)
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by demanding that

∂fλ
∂x

= 0 ; x

(
1− λ

a2

)
= 0

∂fλ
∂y

= 0 ; y

(
1− λ

b2

)
= 0

and
x2

a2
+
y2

b2
= 1.

The solutions of the three equation are:

x = 0, λ = b2, y = ±b
or

y = 0, λ = a2, x = ±a

The extrema are then

(x, y) = {(0,±b), (±a, 0)}.

x

y

(+a, 0)(−a, 0)

(0,+b)

(0,−b)

Figure 11: Ellipse with semimajor a and semiminor b.

6.2 Minimizing the action with Lagrange multipliers

We have seen that the principle of minimum action (Hamilton’s principle)
can be applied to physics problems with constraints. It is natural to use the
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method of Lagrange multipliers in order to impose these constraints. We can
achieve this as follows. Consider a system with {qi} independent coordinates
described by the action

S =

∫
dt L[qi, q̇i].

Minimizing the action gives

δS = 0 ;

∫
dt
∑
i

δqi

[
d

dt

∂L

∂q̇i
− ∂L

∂qi

]
= 0.

Since δqi’s are all independent of each other the coefficients must vanish,
yielding the familiar Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

In the presence of a constraint

f(qi, q̇i) = 0

the δqi’s are not independent independent anymore. From the constraint, we
deduce that the following integral vanishes∫

dt λf(qi, q̇i) = 0

and thus
δSλ = 0 with Sλ =

∫
dt Lλ(qi, q̇i)

and
Lλ(qi, q̇i) = L(qi, q̇i)︸ ︷︷ ︸

original
Lagrangian

− λx
Lagrange
multiplier

f(qi, q̇i)︸ ︷︷ ︸
constraint

gives us

δSλ = 0 ;

∫
dt
∑
i

δqi

[
d

dt

∂Lλ
∂q̇i
− ∂Lλ

∂qi

]
= 0.

The presence of the λ parameter allows us to take all the coefficients of δqi
to vanish

d

dt

∂Lλ
∂q̇i
− ∂L

∂qi
= 0

besides the fact that the δqi’s are not independent.
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Example 6.3. Let us solve the simple pendulum problem once again by using
Lagrange multipliers this time. The Lagrangian with a Lagrange multiplier
for the constraint is

Lλ = T − V − λ(r− Rx
constant

)

with
T =

1

2
mr2 =

1

2
mṙ2 +

1

2
mr2θ̇2 and V = mgr cos θ.

The corresponding Euler-Lagrange equations are:

d

dt

∂Lλ
∂ṙ
− ∂Lλ

∂r
= 0 ; mr̈ +mrθ̇2 +mg cos θ − λ = 0

d

dt

∂Lλ

∂θ̇
− ∂Lλ

∂θ
= 0 ; mr2θ̈ +mg sin θ = 0.

Using in addition the constraint

r = R = const.

we have

θ̈ +
g

L
sin θ = 0 (6.4)

mg cos θ +mRθ̇2 = λ (6.5)

(6.4) is the equation of motion for the pendulum.
(6.5) is very interesting. In the l.h.s. we recognize the reaction force FR
through the rope. We see then that the Lagrange multiplier has some physical
meaning in terms of the reaction force. This is not an accident. On one hand,
we have:

d

dt

∂Lλ
∂q̇i
− ∂Lλ

∂qi
= 0

;
d

dt

∂L

∂q̇i
− ∂L

∂qi
= λ

(
d

dt

∂f

∂q̇i
− ∂f

∂qi

)
.

On the other hand, we have proven in general that

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Q̃ix
generalized

forces

=
N∑
j=1

FR,jx
non-potential

forces

·∂rj
∂qi

.
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FRθ

θ

W
mg cos θ

Figure 12: The simple pendulum with reaction force FR.

Thus,

λ

(
d

dt

∂f

∂q̇i
− ∂f

∂qi

)
= Q̃i.

In our case f = r −R and the l.h.s. is

λ

(
d

dt

∂(r −R)

∂ṙ
− ∂(r −R)

∂r

)
= −λ = Q̃r.
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7 Conservation Laws
Observing the time evolution of many physical systems, we often find that
certain quantities remain invariant at all times. A classical example is the en-
ergy of mechanical systems without friction. The Lagrangian formalism will
allow us to gain a deeper understanding for the conservation of such quanti-
ties. We will realize that conservation and symmetry are interconnected.

7.1 Conservation of energy

Let us take a look at systems with a Lagrangian

L[qi(t), q̇i(t), t] = L[qi(t), q̇i(t)].

The lack of explicit time dependence of the Lagrangian means that there is
no special time. Whenever we let the system to evolve, it will be so in exactly
the same way irrespective of what is the starting time t0.

The total time derivative of the Lagrangian is:

d

dt
L =

∑
i

∂L
∂qi

∂qi
∂t

+
∂L

∂q̇i

∂q̇i
∂t

+
∂L

∂t︸︷︷︸
=0


=
∑
i

[
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

]
.

Let us now recall Euler-Lagrange equations

∂L

∂qi
=

d

dt

∂L

∂q̇i
.

Then we have:

dL

dt
=
∑
i

[(
d

dt

∂L

∂q̇i

)
q̇i +

∂L

∂q̇i
q̈i

]
=

d

dt

∑
i

∂L

∂q̇i
q̇i

This implies that
d

dt

[∑
i

∂L

∂q̇i
q̇i − L

]
= 0
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and therefore ∑
i

∂L

∂q̇i
q̇i − L ≡ E = const. . (7.1)

We have found a conserved quantity, which we call energy. The reason for
its invariance is the fact that the behaviour of the system does not change if
we let it evolve at a different starting time.

We will now justify why the expression (7.1) is the familiar energy. Con-
sider a particle with potential energy U(r). The Lagrangian is

L = T − U(r)

=
1

2
mr2 − U(r).

According to (7.1), the energy is

E =
∂L

∂ẋ
ẋ+

∂L

∂ẏ
ẏ +

∂L

∂ż
ż − L

= mẋ2 +mẏ2 +mż2 − 1

2
mr2 + U(r)

= mr2 − 1

2
mr2 + U(r)

=
1

2
r2 + U(r) = T︸︷︷︸

kinetic

+ U︸︷︷︸
potential

.

This is indeed the sum od the kinetic and potential energy.

7.2 Conservation of momentum

Let us now trace the origin of the conservation of momentum. We will
find that momentum is conserved for physical systems for which we can
shift the position of all of their constituents without changing their physical
behavior. For example, if a physical system can be studied in an experiment
in Zürich but also in an independent experiment in New York, where the two
experiments are anticipated to find the same results then the total momentum
of the system is conserved. Formally, we assume that performing a translation
for the positions of all particles

ri → ri + ε
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should leave the equations of motion invariant. Let us see how the Lagrangian
changes if ε is taken to be infinitesimal.

∆L = L[ri + ε, ri + ε, t]− L[ri, ri, t]

=
N∑
i=1

[
∂L

∂ri,x
εx +

∂L

∂ri,y
εy +

∂L

∂ri,z
εz

]

=
N∑
i=1

(
∇iL · ε

)
.

The equations of motion are invariant by this displacement if the change in
the Lagrangian is zero:

∆L = 0 ; ε ·
N∑
i=1

∇iL = 0 .

The direction of ε is arbitrary. Choosing for example

ε = (1, 0, 0) or ε = (0, 1, 0) or ε = (0, 0, 1),

we obtain
N∑
i=1

∂L

∂xi
= 0 and

N∑
i=1

∂L

∂yi
= 0 and

N∑
i=1

∂L

∂xi
= 0 (7.2)

where (xi, yi, zi) ≡ ri the position vector of the i-th particle. For the La-
grangian of the form L = T − U Eq. (7.2) gives

∇iU = 0.

However, Fi = −∇U is the force acting on the i-th particle. Thus we conclude
that

N∑
i=1

Fi = 0 ,

where N is the number of particles in the system. In the special case of two
only particles, N = 2, we have that

F1 = −F2
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which is Newton’s “action and reaction” law.
Let us now recall the Euler-Lagrange equations:

d

dt

∂L

∂ẋi
=
∂L

∂xi
d

dt

∂L

∂ẏi
=
∂L

∂yi
d

dt

∂L

∂żi
=
∂L

∂zi
.

Then, we conclude that

d

dt

(∑
i

∂L

∂ẋi

)
=

d

dt

(∑
i

∂L

∂ẏi

)
=

d

dt

(∑
i

∂L

∂żi

)
= 0.

Therefore the quantities

Px ≡
∑
i

∂L

∂ẋi
= const.

Py ≡
∑
i

∂L

∂ẏi
= const.

Pz ≡
∑
i

∂L

∂żi
= const..

are constant and the vector

P = (Px, Py, Pz)

is conserved. We can associate P with the total momentum of the system.

Exercise 7.1. For a Lagrangian

L =
∑
i

1

2
mir

2

i − V (r1, . . . , rn) (7.3)

verify that
∂L

∂ẋi
= miẋi,

∂L

∂ẏi
= miẏi,

∂L

∂żi
= miżi. (7.4)
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We have therefore found that

P =
N∑
i=1

miri =
N∑
i=1

Pi

is indeed the total momentum of all particles in the system and that it is
conserved.

7.3 Angular momentum

Consider a system of particles with masses mi which are at positions ri(t)
at a time t. Now assume that we can rotate all vectors ri by an angle δφ
around a certain axis n̂. Let us define the vector

n̂
δ~r

~r
δφ

Figure 13: Rotation of all position vectors ri in a system of particles around
an axis n̂ by an angle δφ.

δφ = n̂δφ.

A position vector r after a rotation becomes

r → r + δr +O(δφ2)
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with δr = δφ × r. For illustration, we can verify this for a rotation around
the ẑ-axis:

r → r′ = R · r

=

cos δφ − sin δφ 0
sin δφ cos δφ 0

0 0 1

xy
z


≈

 1 −δφ 0
δφ 1 0
0 0 1

xy
z

+O(δφ2)

=

xy
z

 + δφ

0 −1 0
1 0 0
0 0 0

xy
z


= r + δφ

−yx
0

 .

Consider

(n̂× r)i =
∑
j,k

εijkn̂jrk n̂ =

0
0
1


= εi3krk

Thus

(n̂× r)1 = ε132r2 = −1y = −y
(n̂× r)2 = ε231r1 = +1x = x

(n̂× r)3 = ε133rk = 0

and

r → r′ = r + δr

= r + δφ× r +O(δφ2).

Now we can find what are the conserved quantities associated with rota-
tion symmetry by repeating the same steps as for space translations in the
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previous section. Under a rotation transformation the Lagrangian changes
by

L→ L′ = L+ δL

with

δL ≡ L[r + δφ× r, r + δφ× r]− L[r, r]

=
∑
i

[
∂L

∂xi
(δri)x +

∂L

∂yi
(δri)y +

∂L

∂zi
(δri)z +

∂L

∂ẋi
(δṙi)x +

∂L

∂ẏi
(δṙi)y +

∂L

∂żi
(δṙi)z

]
=
∑
i

[
Ṗx,i(δri)x + Ṗy,i(δri)y + Ṗz,i(δri)z + Px,i(δṙi)x + Py,i(δṙi)y + Pz,i(δṙi)z

]
=

d

dt
δφ ·

[∑
i

ri × Pi

]

= δφ · d

dt

∑
i

ri × Pi.

If this change of the Lagrangian is zero, then the rotation has no effect on
the physical system. This implies that

δL = 0 ; δφ · d

dt

∑
i

ri × Pi = 0.

Since δφ is an arbitrary vector (we can choose the rotation axis at wish) we
must have:

d

dt

∑
i

ri × Pi = 0⇒ M =
∑
i

ri × Pi = const. .

We have therefore found that the total angular momentum is conserved.

7.4 Summary of conservation laws & symmetry

We have realized that symmetry plays an important role in conservation
laws. In the following table we summarize out findings, for typical conserved
quantities and their symmetry origin.
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Symmetry Conserved quantity

Time translation Energy: E = T + U

Space translation Momentum: P =
∑
i

∇iL = miri

Rotations Angular momentum: M =
∑
i

ri × Pi

These symmetries are profound and we expect them to hold for many sys-
tems.

7.5 Conservation of generalized momenta

In analogy to “Cartesian momenta” if the Lagrangian is expressed in terms
of generalized coordinates, we can define the generalized mometa as

Pi =
∂L

∂q̇i

and generalized force

Ṗi =
∂L

∂qi
.

For a Lagrangian which depends only on q̇i but not on qi, we have

Q̃i ≡ Ṗi ≡
∂L

∂qi
= 0

(the generalized force vanishes). Then, the generalized momentum Pi is
conserved:

0 =
∂L

∂qi
=

d

dt

∂L

∂q̇i
=

d

dt
Q̃i ; Pi = const. .

7.6 Noether’s Theorem

If the equations of motion are invariant under symmetry transformations,
then there are quantities which are conserved. This is a general statement
known as Noether’s theorem.

Assume that an infinitesimal transformation of the generalized coordi-
nates

qi(t)→ qi(t) + δqi(t)
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is a symmetry transformation, i.e. it let’s the equations of motion invariant.
The change that this transformation induces to the Lagrangian is

∆L =
∑
i

[
∂L

∂qi
∆qi +

∂L

∂q̇i
∆q̇i

]
.

Using the Euler-Lagrange equations we substitute

∂L

∂qi
=

d

dt

∂L

∂q̇i
.

Then

∆L =
∑
i

[(
d

dt

∂L

∂q̇i

)
∆qi +

∂L

∂q̇i

d

dt
(∆qi)

]
=

d

dt

∑
i

∂L

∂q̇i
∆qi

⇒ ∆L =
d

dt

∑
i

∂L

∂q̇i
∆qi .

If ∆L = 0, then the Lagrangian is invariant and the action is also invari-
ant, leading to the same equations of motion. But we should be more careful!
More generally, the action is invariant if the Lagrangian changes under the
symmetry transformation by a total time derivative:

∆L =
dF

dt
;

d

dt

∑
i

∂L

∂q̇i
∆qi =

dF

dt
;

d

dt

(∑
i

∂L

∂q̇i
∆qi − F

)
= 0.

Then we have that the quantity

J =
∑
i

∂L

∂qi
∆qi − F

is a conserved quantity.

Example 7.1. Consider a particle in a homogeneous gravitational field:

L =
1

2
m(ẋ2 + ẏ2 + ż2)−mgz.
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Since the field along the z−axis, we expect that translations

z → z + a

to be a symmetry. With this transformation, the Lagrangian changes by

L→ L−mga⇒ ∆L = −mga = −a d

dt
(mgt).

We have been able to cast the change as a total derivative. Then, according
to Noether’s theorem,

∂L

∂ż
∆z = ∆L

∂L

∂ż
∆z = −a d

dt
(mgt)

⇒ d

dt
(mża) = −a d

dt
(mgt)

⇒ d

dt
(ż + gt) = 0

⇒ ż + gt = const. .

We have then found that there is a conserved quantity. We can verify that
this is correct directly from the equation of motion:

d

dt

∂L

∂ż
− ∂L

∂z
= 0⇒ mz̈ +mg = 0

∫
dt⇒ ż + gt = const. .

For the other possible translations along the x and y directions induce no
change in the Lagrangian:

x→ x+ a⇒ ∆L = 0.

These are symmetry transformations. According to Noether’s theorem:

∂L

∂ẋ
∆x = const.⇒ mẋa = const.⇒ ẋ = const..

The equations of motion give

d

dt

∂L

∂x
− ∂L

∂ẋ
= 0 ; mẍ = 0 ; ẋ = const. .

and y → y + a; ẏ = const., confirming the result of Noether’s theorem.
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7.7 Noether’s theorem & time symmetries2

In the action integral,

S =

∫ tf

ti

dtL[qi(t), q̇i(t)] (7.5)

time is an integration variable, while the generalised coordinates qi and their
corresponding velocities q̇i are unintegrated parameters. In Eq. 7.6 we ex-
amined a symmetry transformation which acts on the coordinates (integral
parameters). However, as we have seen in Sec 7.1 a time symmetry (time
translation), which affects the integration variable t of the action integral,
leads to a conservation law. Our proof of Noether’s theorem in the previous
section does not cover this case. We will see here that Noether’s theorem can
be extended for symmetries of the integration variable as well. This proof
will be particularly useful in the future, when we study continuum systems
and fields. For convenience, in this Section we will use Einstein’s summation
convention: AiBi ≡

∑
iAiBi.

Consider a symmetry transformation

t→ t′ = t′(t) = t+ δt

which leaves the action invariant:∫ tf

ti

dtL[qi(t), q̇i(t)] =

∫ t′f

t′i

dt′ L[q′i(t
′), q̇′i(t

′)]

=

∫ tf

ti

dt

(
dt′

dt

)
L[q′(t′), q̇′i(t

′)]

=

∫ tf

ti

dt

[
1 +

d

dt
δt

]
L[qi(t) + ∆q′i(t

′), q̇i(t
′) + ∆q̇i(t

′)].

(7.6)

We have assumed that the coordinates also change by a certain amount when
we perform this transformation:

qi(t)→ q′i(t
′) = qi(t) + ∆q′i(t

′).

We can now write

L[q(t) + ∆q′i(t
′), q̇i(t) + ∆q̇′i(t

′)] = L[qi(t), q̇i(t)] +
∂L

∂qi
∆q′i(t

′) +
∂L

∂q̇i
∆q̇′i(t

′).

2This section can be ommitted in a first reading. It is not part of an exam
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Then, (7.6) gives that∫ tf

ti

dt

[
L

dδt

dt
+
∂L

∂qi
∆q′(t′) +

∂L

∂q̇i
∆q̇′i(t

′) +
∂L

∂t
δt

]
= 0. (7.7)

We decompose the change in the coordinates as follows:

∆q′i(t
′) ≡ q′i(t

′)− qi(t)
= q′i(t

′)− qi(t′)︸ ︷︷ ︸
δ∗qi

+qi(t
′)− qi(t)

= δ∗qi + qi(t) +
d

dt
qi(t)δt− qi(t)

= δ∗qi + q̇iδt

; ∆q′i(t
′) = q′i(t

′)− qi(t′) + q̇iδt

where we separate the change due to changing the argument of the coordinate
function from one time instant t to another t′ and an instantaneous change
of the function itself qi to q′i at the same time t′. Similarly,

∆q̇′i(t
′) = q̇′i(t

′)− q̇i(t′) + q̇i(t
′)− q̇i(t)

; ∆q̇′i =
d

dt
(δ∗qi) + q̈iδt.

Substituting into (7.7), we obtain:

0 =

∫ tf

ti

dt

[
L

d

dt
δt+

∂L

∂qi
(δ∗qi + q̇δt) +

∂L

∂q̇i

(
d

dt
δ∗qi + q̈iδt

)]
=

∫ tf

ti

dt

{[
L

d

dt
δt+

(
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈

)
δt

]
+

(
∂L

∂qi
δ∗qi +

∂L

∂q̇i

d

dt
δ∗qi

)}
.

The term in the square bracket is:

d

dt
[(δt)L[qi, q̇i]] = L

d

dt
(δt) + δt

(
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

)
.

Thus

0 =

∫
dt

[
d

dt
(Lδt) +

d

dt

∂L

∂q̇i
δ∗qi +

∂L

∂q̇i

d

dt
δ∗qi

]
=

∫
dt

d

dt

[
Lδt+

∂L

∂q̇i
δ∗qi

]
.
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The above should hold for arbitrary boundaries. Thus we must have that
the integrand must vanish:

⇒ Lδt+
∂L

∂q̇i
δ∗qi = const..

We can now write

δ∗qi = ∆qi − q̇iδt with ∆qi ≡ q′i(t
′)− qi(t).

We then have (
L− ∂L

∂q̇i
q̇i

)
δt+

∂L

∂q̇i
∆qi = const. .

For the special case (but also very common) of ∆q = 0, we recover the result
of Section 7.1 that the energy is conserved:(

L− ∂L

∂q̇i
q̇i

)
= E = constant. (7.8)

7.8 Continuous Symmetry Transformations

As we have seen, symmetry plays an important role for the conservation of
physical quantities. In this section, we will review some of the mathematical
properties of continuous symmetry transformations.

Consider a set of generalized coordinates q1
...
qN


describing a system with a Lagrangian

L[qi(t), q̇i(t), t].

Assume that the system is symmetric under a symmetry transformation

qi → q′i = Tij(θa)qj where a = 1, . . . , N and i, j = 1, . . . ,M.

We take the parameters θa to be continuous. For example, if a system is
described by two Cartesian coordinates on a plane(

x
y

)
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and is symmetric under rotations(
x
y

)
→
(
x
y

)′
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
the angle θ is a the continuous parameter which parameterizes the transfor-
mations. The symmetry transformations form a Lie group and the product

θ

Figure 14: Rotation symmetry.

of two such transformations is also a symmetry transformation belonging to
the group:

T (θa1)T (θa2) = T (θa3) where θa3 = fa(θa1 , θ
a
2). (7.9)

We arrange so that the unit element of the symmetry group corresponds
to all values of the parameters being zero:

T (θa = 0) = 1. (7.10)

Then,

T (fa(0, θa)) = T (0)T (θa)

= 1T (θa) = T (θa)

; fa(0, θa) = θa. (7.11)

Similarly
fa(θa, 0) = θa. (7.12)
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Let us now perform a Taylor expansion around θa = 0:

θa1 = fa(θa1 ,�
�7

0
θa2 ) =fa(0, 0) +

∂fa

∂θb2
θb1 +

�
�
��@

@
@@

∂fa

∂θb2
θb2

+
��

�
��

�
��*0

1

2

∂2fa

∂θb1∂θ
c
1

θb1θ
c
1 +

��
�
��

��H
HHH

HHH

1

2

∂2fa

∂θb2∂θ
c
2

θb2θ
c
2 +

�
��

�
��HH

HHHH

∂2fa

∂θb1∂θ
c
1

θb1θ
c
2 + . . .

Impressing (7.11) and (7.12), we have

fa(θa1 , θ
a
2) = θa1 + θa2 +

∑
b,c

fabcθ
b
1θ
c
2 + . . .

For small θa parameters, we can expand:

T (θa) = 1 + iθata +
1

2

∑
b,c

θbθctbc + . . .

where 1, ta, tbc are matrices of the same dimensionality as T (θa). In addition

tbc = tcb (symmetric).

Making a Taylor expansion of (7.9), we have:(
1 + iθa1ta +

1

2
θb1θ

c
2tbc

)(
1 + iθd2td +

1

2
θd1θ

e
2tde

)
=1 + i

(
θa1 + θa2 + fabcθ

b
1θ
c
2 + . . .

)
ta

+
1

2

(
θb1 + θb2 + . . .

)
(θc1 + θc2 + . . . ) tbc + . . .

Matching the terms of the expansion, we have:

tbc = −tbtc − ifabcta.

From the symmetry of tbc = tcb:

tbtc + ifabcta = tctb + ifabcta

; tbtc − tctb = i(facb − fabc)ta

For reasons to become clear later, the matrices ta are called the generators of
the symmetry transformations. We also define the commutator of two such
generators as:

[ta, tb] ≡ tatb − tbta.
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The combinations
Ca
bc ≡ facb − fabc

are called the structure constants and they are antisymmetric:

Ca
bc = −Ca

cb .

The equation
[ta, tb] = iCa

bcta (7.13)

defines the Lie algebra of the group. Notice that

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0. (7.14)

This is the so called Jacobi identity and it is satisfied by the generators. This
gives an identity for the structure constants. Using the Lie algebra, we have:

[ta, if
d
bctd] + [tb, if

d
catd] + [tc, if

d
abtd] = 0

; Ce
adC

d
bc + Ce

bdC
d
ca + Ce

cdC
d
ab = 0 .

Let us now define:
t̃bac = iCc

ab.

Then the above equation becomes:

[t̃a, t̃b] = iCd
abt̃

d, i.e.,

the structure constant furnish another representation of the Lie algebra. We
call this the adjoint representation.

It is now time to justify why we call the ta matrices generators. Using
the product rule of Eq. 7.9 an infinite amount of times, we can write for a
symmetry transformation with parameters θa

T (θa) = lim
N→∞

T

(
θa

N

)N
(product rule)

= lim
N→∞

(
1 + i

θa

N
ta

)N
= exp(iθata).
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In other words, the generators ta, together with the product rule are sufficient
to produce any ťťlarge” transformation from infinitesimal ones by means of
a simple exponentiation:

T (θa) = exp(iθata). (7.15)

Example 7.2. For rotations on a plane, we have:(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)
︸ ︷︷ ︸

T (θ)

.

For a small θ angle:

T (θ) ≈
(

1 0
0 1

)
+ θ

(
0 −1
1 0

)
+O(θ2)

=

(
1 0
0 1

)
+ iθ

(
0 i
−i 0

)
+O(θ2).

The generator is

t ≡
(

0 i
−i 0

)
(we have only one). Notice that

t2 =

(
0 i
−i 0

)(
0 i
−i 0

)
=

(
1 0
0 1

)
= 1.

Thus,

exp(iθt) =
∞∑
n=0

inθntn︸ ︷︷ ︸
n!

=
∞∑
n=0

i2nθ2n(t2)n

(2n)!
+
∞∑
n=0

i2n+1θ2n+1t2n+1

(2n+ 1)!

=
∞∑
n=0

(iθ)2n

(2n)!
+ i

∞∑
n=0

(iθ)2n+1

(2n+ 1)!
.
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But

eiθ = cos θ + i sin θ

=
∞∑
n=0

(iθ)2n

(2n)!
+
∞∑
n=0

(iθ)2n+1

(2n+ 1)!
.

Thus:

exp(iθt) = cos θ 1 + it sin θ

=

(
cos θ 0

0 cos θ

)
+

(
0 −1
1 0

)
sin θ

=

(
cos θ − sin θ
sin θ cos θ

)
.

Exercise 7.2. Find the generators and structure constants for rotations in
3 dimensions (SO(3) group).
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8 Motion in one dimension
The knowledge of conservation laws such as energy conservation can be help-
ful for solving the equations of motion of a system and determining the
trajectories of its particles. We can demonstrate this in the simplest possible
example, an one-particle system which is specified by one only generalized
coordinate.

Let’s consider a Lagrangian of the form

L =
1

2
a(q)q̇2 − V (q)

with q a generalized coordinate. This Lagrangian does not depend explicitly
on time. Thus, the energy of the system is conserved:

E =
∂L

∂q̇
q̇ − L =

1

2
a(q)q̇2 + V (q) = const..

It now becomes easier to solve the equations of motion, without even having
written the Euler-Lagrange equation down. From energy conservation, we
have (

dq

dt

)2

=
2(E − V (q))

a(q)

;

∫
dt =

∫
dq

a(q)
1
2√

2(E − V (q))

⇒ t =

∫
dq

√
a(q)

2(E − V (q))
+ const. .

For a particle moving in one dimension

q = x, a(q) = m, L =
1

2
mẋ2 − V (x)

we have

t− t0 =

√
m

2

∫
dx√

(E − V (x))
.

The kinetic energy of the particle must always be a positive definite quantity

1

2
mẋ2 = E − V (x) ≥ 0.

79



This condition may limit the allowed interval in which the particle can move.
The solution of the inequality determines the range of the motion. If the
motion is bounded by two points, as it happens for a potential as illustrated
in the figure,the motion is oscillatory. Then the period of the oscillation is

T = 2

√
m

2

∫ x2(t)

x1(t)

dx√
E − V (x)

.

x

V (x)

E

xa xb

Figure 15: Potential V (x) with E = V (xa) = V (xb).
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9 Two-body problem
In this chapter we will discuss the interaction of two particles with masses
m1 and m2, assuming that the force which exerts on each other depends only
on their relative distance. The Lagrangian which describes such a system is

L =
1

2
m1r

2
1 +

1

2
m2r

2
2 − V (|r1 − r2|).

We need to find the trajectories r1 = r1(t) and r2 = r2(t) of the two particles.
We shall see that the symmetry of the problem simplifies this task.
A first simplification we can make is to use a clever frame of reference. This
is the, so called, center of mass frame in which the total momentum of all
particles in a system is zero. To determine this frame, we first find the average
position of the masses:

R =

∑
imiri∑
imi

=
m1r1 +m2r2

m1 +m2

. (9.1)

We also define the distance vector of the two particles. Assuming that m2 >
m1, we define conventionally:

r = r1 − r2. (9.2)

We can express the position vectors of the two particles in terms of r and R.
After a little algebra, we find:

r1 = R +
m2

m1 +m2

r (9.3)

r2 = R− m1

m1 +m2

r. (9.4)

In terms of the (r, R) variables, the Lagrangian becomes:

L =
1

2
(m1 +m2)R2 +

1

2
µr2 − V (r), (9.5)

where r ≡ |r| and µ is the reduced mass

µ =
m1m2

m1 +m2

. (9.6)
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The nomenclature is more transparent if we cast (9.6) in the form

1

µ
=

1

m1

+
1

m2

(9.7)

from which we can easily see that

1

µ
>

1

m1

,
1

m2

; µ < m1,m2. (9.8)

As the name suggests, the reduced mass is smaller than any of the masses of
the two particles. In (16), we plot the vectors r, R, r1 and r2. An interesting

~r2

m2

m1

~r1
~R

~r

m1

m1+m2
r

m2

m1+m2
r

Figure 16: The position vectors of the two particles, their relative distance
and the position of the average of the mass (center of mass).

configuration is when the massm2 is much larger thanm1. This corresponds,
for example, to a typical star-planet system like the Sun and the Earth. For
m2 � m1 ;

m1

m2
→ 0, we have

r2 ≈ R r1 ≈ R + r (9.9)

while the reduced mass is:
µ ≈ m1 (9.10)

which is the mass of the small object.
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Let us now observe the structure of the Lagrangian of (9.8). We no-
tice that the coordinates of the center of mass vector R ≡ (Rx, Ry, Rz) do
not appear in the Lagrangian, but only the velocities R = (Ṙx, Ṙy, Ṙz) do.
Therefore, the velocity of the center of mass must be constant:

R = const.. (9.11)

Indeed, we recall that

∂L

∂Rx

= 0 ;
d

dt

∂L

∂Ṙx

= 0 ;
d

dt
[(m1+m2)Ṙx] = 0 ; Ṙx = const.. (similarly for Ṙy, Ṙz).

We can now exercise our freedom to choose our frame of reference such as
the center of mass is stationary:

R = 0. (9.12)

In this frame, the Lagrangian takes the form:

L =
1

2
µr2 − V (r). (9.13)

We have turned the two-body problem into a dual problem of a single particle
with “mass” equal to the reduced mass and a “position” the original distance
vector of the two particles.
The potential in (9.13) does not depend on the direction of r but only on
its magnitude. Therefore, we expect the Lagrangian to be symmetric under
rotations:

r → r′ = δφ× r. (9.14)

Then, the angular-momentum

M = r × P (9.15)

with
P =

(
∂L

∂ẋ
,
∂L

∂ẏ
,
∂L

∂ż

)
= µ(ẋ, ẏ, ż) = µr (9.16)

is conserved:

d

dt
M = 0 ; r × P = µ(r × r) = const.. (9.17)
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~M

~r
θ

~̇r

Figure 17: Directions.

The position r and the velocity r are always perpendicular to the angular
momentum. Since the latter is constant, pointing always to the same direc-
tion, the vector r lies always on the same plane.
We can therefore use polar coordinates, with the ẑ-axis in the direction of
the angular momentum:

M = Mẑ.

The Lagrangian takes then the form:

L =
1

2
µ(ṙ2 + r2θ̇2)− V (r). (9.18)

The conservation of angular momentum is manifest in the Lagrangian of
(9.18) since it does not depend explicitly on the angle θ, but only on the
angular velocity θ̇. The corresponding Euler-Lagrange equation gives indeed:

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ︸︷︷︸
=0

=
d

dt
(µr2θ̇) ; µr2θ̇ = M = const. . (9.19)

As usual, the total energy is also conserved:

E =
1

2
µ(ṙ2 + r2θ̇2) + V (r) = const.. (9.20)

Or, equivalently, eliminating the angle θ using (9.19) we write:

E =
1

2
µṙ2 + V (r) +

M2

2µr2
. (9.21)
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Exercise 9.1. Verify that by taking the time derivative of (9.20) or (9.21)

dE

dt
= 0

you can obtain the second equation of motion

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0. (9.22)

We can interpret (9.21) as the energy of a particle with mass µ moving
in one only dimension and a potential

Veff(r) = V (r) +
M2

2µr2︸ ︷︷ ︸
”centrifugal
energy”

. (9.23)

Let us rewrite (9.21) in the form:

1

2
µṙ2 = E − Veff(r) = E − M2

2µr2
− V (r). (9.24)

The kinetic energy on the l.h.s. must be positive:

1

2
µṙ2 ≥ 0 ; E − Veff(r) ≥ 0. (9.25)

The motion is therefore restricted to distances for which the total energy
exceeds the effective potential energy Veff . The extrema of the motion are
the solutions of the equation

E = Veff(r). (9.26)

This can yield different types of trajectories:

Example 9.1. In figure (18), the motion is restricted in a finite range of
distances in between [rmin, rmax].

Example 9.2. In figure (19), the energy is larger than Veff(r) up to infinite
distances.
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r

V (r)

Veff(r)

rmin rmax

E ≥ Veff

E
rmin

rmax

Figure 18: Trajectory 1.

Let us now look at the condition

E − Veff(r) ≥ 0

; E − V (r)− M2

2µr2
≥ 0

; 2µEr2 − 2µr2V (r)−M2 ≥ 0 .

Taking the limit r → 0, we have:

− lim
r→0

[r2V (r)] ≥M2 (9.27)

which is a condition on the potential so that the distance r becomes zero.
We clearly need an attractive potential (V (r) < 0) in order for (9.27) to
have a chance to be realized. But even then, this is not guaranteed if the
angular momentum is not zero. For example, for a gravity or an attractive
electromagnetic potential

V (r) = −a
r
, a > 0 (9.28)

(9.27) is not satisfied. This explains, for example, why the moon does not
fall on the earth. We may rush to conclude that this is also the reason for
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r

V (r)

Veff(r)
rmin

E ≥ Veff

E

rmin

Figure 19: Trajectory 2.

the stability of atoms, explaining the orbits of electrons in analogy to plan-
etary motions in a solar system. However, this analogy is not correct. In
classical electrodynamics electrons in orbit around a nucleus must emit elec-
tromagnetic radiation thus decreasing continuously their energy and angular
momentum. Eventually, electrons of classical physics should collapse on the
nucleus. To explain the stability of atoms we will need quantum mechanics.

Angular momentum and energy conservation are sufficient to determine
fully the trajectory r(t) from

E =
1

2
µṙ2 + Veff(r)

;
dr

dt
=

√
2

µ
(E − Veff(r))

1
2

; dt =

√
µ

2

dr√
E − Veff(r)

(9.29)

; t =

√
µ

2

∫
dr√

E − Veff(r)
+ const.. (9.30)
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For the angle θ(t), we have

M = µr2θ̇ ;

∫
dθ =

∫
dt
M

µr2
.

Using (9.29) to trade dt for dr, we have∫
dθ =

√
µ

2

∫
dr√

E − Veff(r)

M

µr2

⇒ θ =
M√
2µ

∫
dr

r2

1√
E − Veff

+ const.. (9.31)

9.1 1
r potential

Let us now consider a potential of the form

V (r) = −a
r
, a > 0. (9.32)

This potential corresponds to the gravitational potential due to a massive
object, or an attractive electrostatic potential due to a point charge. We will
study first the case a > 0, but our results can be easily used for repulsive
potentials with a < 0.

The effective potential which takes into account the centrifugal energy is:

Veff =
M2

2µr2
− a

r
. (9.33)

We notice that the centrifugal energy is positive and behaves as 1
r2

while
the potential energy V (r) is negative and behaves as 1

r
. At small distances,

r → 0, the centrifugal energy dominates and Veff tends asymptotically to
plus infinity. In this region Veff is attractive:

lim
r→0
−∂Veff

∂r
> 0.

At large distances, r →∞, the 1
r
term is larger than the 1

r2
and the effective

potential is dominated by V (r). In this limit the force is attractive:

lim
r→∞
−∂Veff

∂r
< 0.
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r

V (r)

M2

2µr2

−a
r

Veff(r)

r0

Figure 20: Effective potential.

In the intermediate region the potential develops a minimum:

∂Veff

∂r

∣∣∣∣
r=r0

; r0 =
M2

µa
. (9.34)

The shape of the potential is shown in Figure (20). To calculate the tra-
jectory, we need to calculate the integral of (9.31) for Veff given by (9.33):

θ(r) =
1√
2µ

∫
dr

r2

1√
E − M2

2µr2
+ a

r

+ const.. (9.35)

We can cast the above formula as

θ(r) =

∫
dr

r2

1√
−
(

1
r
− 1

p

)2

+ ε2

p2

+ const. (9.36)
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where
p ≡ M2

µa
(9.37)

and

ε ≡

√
1 +

2EM2

µa2
. (9.38)

With the change of variables,

1

r
=

1

p
+
e

p
cosω (9.39)

the integral of (9.36) becomes

θ =

∫
dω + const.

which leads to
θ = ω + θ0. (9.40)

Thus, from (9.39) we find the trajectory

1

r
=

1

p
+
e

p
cos(θ − θ0)

or, equivalently:
p

r
= 1 + e cos(θ − θ0) . (9.41)

(9.41) describes the trajectory r = r(θ) for the distance of the two particles.
As we can see, the trajectory depends on the value of the two parameters
(e, p) which in term depend on the energy E and angular momentumM . We
will find three types of trajectories, according to the following table. For the

e > 1 E > 0 hyperbola

e = 1 E = 0 parabola

e < 1 E < 0 ellipsis
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minimum value of the energy,

E = − µa2

2M2
,

we have ε = 0 and the trajectory is a perfect circle of radius p. Let us check
that (9.41) describes indeed these types of trajectories. Substituting in (9.41)

cos θ =
x

r
and r =

√
x2 + y2

we have:

p =
√
x2 + y2 + ex

; x2 + y2 = (p− ex)2

; x2(1− e2) + 2epx+ y2 = p2. (9.42)

For e 6= 1 we have:

x2 +
2epx

1− e2
+

y2

1− e2
=

p2

1− e2

;

(
x+

ep

1− e2

)2

+
y2

1− e2
=

p2

1− e2
+

e2p2

(1− e2)2

⇒
[
x+

ep

1− e2

]2

+
y2

1− e2
=

p2

(1− e2)2
.

For p 6= 0, we can write: [
x+ ep

1−e2
]2

p2

(1−e2)2

+
y2

p2

(1−e2)2

= 1. (9.43)

Let us now take e < 1. Then, (9.43) matches indeed the trajectory of an
ellipse

(x− x0)2

A2
+

(y − y0)2

B2
= 1

where
x0 = − ep

1− e2
, y0 = 0 (9.44)
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(x0, y0)

B

A

Figure 21: Ellipse with large semi-axis A and small semi-axis B.

and

A =
p

1− e2
(9.45)

B =
p√

1− e2
=
√

1− e2A ≤ A (9.46)

are the large and small semi-axis of the ellipse. We observe that

A =
p

1− e2
= − a

2E
,

the large semi-axis of the ellipse depends only on the energy E, while the
small semi-axis

B = A
√

1− e2 = A

√
−2EM2

µa2
=

√
− M2

2µE

depends on both energy and angular momentum.
Let us now return to (9.43) and consider the case E > 0, corresponding

to e > 1. Then we can map (9.43) to the equation of a hyperbola,

(x− x0)2

A2
− (y − y0)

B2
= 1 (9.47)

with
x0 =

ep

e2 − 1
, y0 = 0
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and

A =
p

e2 − 1
(9.48)

B =
p√
e2 − 1

=
√
e2 − 1A (9.49)

We let the reader as an exercise to investigate the special cases of ε = 1 and

C =
√
B2 + A2

2A

2C

Figure 22: Hyperbola.

E = 0.

9.2 Laplace-Runge-Lenz vector

Consider the Lagrangian of a particle in a central a
r
potential:

L =
1

2
mr2 +

a

r
. (9.50)
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The Euler-Lagrange equations yield Newton’s law:

mr = −a r
r3
. (9.51)

Now let’s consider the cross product of the momentum and the angular mo-
mentum

P ×M.

Differentiating with time, we have:

d

dt
(P ×M) =

dP

dt
×M

= − a

r3
(r ×M)

= − a

r3

[
r × (r × P )

]
= −ma

r3

[
r × (r × r)

]
. (9.52)

Exercise 9.2. Prove the identity:

r × (r × r) = r(r · r)− r2r,

where
2rṙ =

dr2

dt
=

d

dt
(r · r) = 2rr ; rr = rṙ.

Thus,

r × (r × r) = r3

(
rr

r2
− r ṙ

r3

)
= −r3 d

dt

(
r

r

)
.

Returning to (9.52), we find:

d

dt
P ×M = ma

d

dt

(
r

r

)
;

d

dt

[
P ×M − amr

r

]
= 0.

Thus, the vector

A ≡ P ×M − r

r
ma = const. (9.53)

is conserved. The vector is known as the Laplace-Runge-Lenz vector.
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It is easy to verify that the LRL vector is vertical to the angular momen-
tum

A ·M = 0 (9.54)

and, thus, it must lay on the plane of the motion. We will see in late lectures
that the LRL vector is conserved due to a special symmetry, owed to the
special form (1

r
) of the potential.

Exercise 9.3. Find the size and the orientation of the LRL vector for

(i) an elliptical orbit

(ii) a hyperbolic orbit.

It is important to note that any variations of the LRL vector indicate
possible deviations from Newton’s law of gravity. Thus, measurements of
A(t) as a function of time are stringent tests of Newton’s law. Such deviations
are expected, for example, in Einstein’s theory of General Relativity.

What is the symmetry giving use to the conservation law of LRL?

ri → ri + δkri

with
δkri = εµ

(
ṙirk −

1

2
riṙk − δik

(
1

2
r · r

))
(9.55)

where we change all three ri’s simultaneously. From (9.55), we obtain:

δkṙi =
εµ

2

[
ṙiṙk − δikṙ2 − a

µ

rirk
r3

+ δik
a

µ

1

r

]
. (9.56)

The Lagrangian changes by:

δL = µṙ · δṙ − ar · δr
r3

(9.55),(9.56)⇒ δkL = ε
d

dt

(
µa
rk
r

)
.

Then, we can use Noether’s theorem:

∂L

∂kri
δkri − F = const.

⇒ A = P ×M − µar
r

= const..

Exercise 9.4. Fill the gaps.
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9.3 Scattering

Consider a particle which scatters against a fixed target at the center of our
coordinate system. We will assume that the interaction of the particle and
the target is described by a central potential V (r). We will assume that the
particle comes from very far away (r →∞) and scatters at the target. The

0

target ∞
particle

Figure 23: Particle coming from very far away and target at center.

trajectory of the particle is as in Figure 24. Therefore the deflection angle

ρ

0

φ0

φ0
φ0χ

rmin

∞

Figure 24: Trajectory of scattered particle.

χ of the particle is
χ = |π − 2φ0|

where

φ0 =

∫ ∞
rmin

M
r2

dr√
2m[E − V (r)]− M2

r2

. (9.57)
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To compute rmin, we note that

1

2
mṙ2 = E − V (r)− M2

2mr2
(9.58)

and ṙ = 0 for r = rmin leads to

E − V (rmin) +
M2

2mr2
min

= 0. (9.59)

Let us now express the energy and the angular momentum in terms of the
velocity of the particle at infinity, v∞, and the impact parameter ρ. We have:

E =
1

2
mv2
∞ (9.60)

M = mρv∞. (9.61)

Thus:
φ0 =

∫ ∞
rmin

ρ
r2

dr√
1− ρ2

r2
− 2V

mv2∞

. (9.62)

Let us now consider a beam of particles with the same velocity at infin-
ity which scatter on the target. The beam particles have different impact
parameters. Thus they scatter at different angles. We denote with

dN ≡ # of scattered particles in between χ and χ+ dχ

unit time
. (9.63)

This rate depends on the flux of particles in the incoming beam. We define
the flux as

n ≡ # of incoming particles
time · area

.

We can measure experimentally the ratio

dσ =
dN

n
. (9.64)

This ratio is called the effective scattering cross-section. It has units of are
and it characterizes the physical properties of the scattering process and the
potential. Let’s assume that particles with impact factor ρ(χ) to ρ(χ) + dρ
scatter in between χ and dχ. Then
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ρ dρ

χ+ dχ

χ

Figure 25: Particles with impact factor ρ(χ) to ρ(χ) + dρ scattering in be-
tween χ and dχ.

dN = (2nρ dρ)︸ ︷︷ ︸
area

· n︸︷︷︸
particles
time·area

The cross-section is then

dσ =
dN

n
= 2πρ dρ, (9.65)

changing variables,

dσ = 2πρ

∣∣∣∣dρdχ

∣∣∣∣ dχ

= (2π sinχ dχ)︸ ︷︷ ︸
solid angle dΩ

ρ

sinx

∣∣∣∣dρdx

∣∣∣∣ .
9.3.1 Rutherford’s formula

For a V (r) = a
r
potential, we can compute

φ = · · · = arccos

a
mv2∞ρ√

1 + a
mv2∞ρ
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Exercise 9.5. Verify this result.

; ρ2 =
a2

m2v4
∞

cot2 χ

2

(
φ0 =

π − χ
2

)
.

Then dρ2 = 2ρ dρ is easy to compute. We then obtain

dσ = π
a

(2mv2
∞)2

dΩ

sin4 χ
2

.
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10 Virial Theorem
Consider N particles interacting via Newton’s law. If positions are bounded,

〈T 〉 = −〈V 〉
2
.

Consider

G =
∑
i

Pi · ri

;
dG

dt
=
∑
i

dPi
dt
· ri +

∑
i

Pi ·
dri
dt

=
∑
i

Fi · ri + 2T

;
d

dt

∑
i

Pi · ri = 2T +
∑
i

Fi · ri.

The time average is

〈F 〉 =
1

τ

∫ τ

0

F (t) dt.

Thus

1

τ

∫ τ

0

dt
d

dt

∑
i

Pi · ri = 2 〈T 〉+

〈∑
i

Fi · ri

〉

⇒ 2 〈T 〉+

〈∑
i

Fi · ri

〉
= G(τ)−G(0).

Assume that the motions are bounded. Then G(τ) is bounded as well. If we
then take τ →∞, we have

G(τ)−G(0)

τ

τ→∞−→ 0.

Then

〈T 〉 = −1

2

〈∑
i

Fi · ri

〉
.
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This is known as the virial theorem.

For a single particle,

〈T 〉 = −1

2

〈
1∑
i=1

Fi · ri

〉
= −1

2

〈
(−∇V ) · r

〉
.

For a central potential, we get

〈T 〉 =
1

2

〈
∂V

∂r
r

〉
.

If V = arn, we have
∂V

∂r
= narn = nV , thus:

〈T 〉 =
n

2
〈V 〉 .

For a gravity or electrostatic potential, we have:

n = −1 ; 〈T 〉 = −〈V 〉
2

.
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For many particles and a 1
r
potential:

−
∑
i

(∇iV ) · ri = −
∑
i

ri∇
1

2

∑
k 6=l

a

|rk − rl|

= +2
1

2

∑
i

ri∇
∑
l 6=i

a(ri − rl)
|ri − rl|3

= +
∑
l<i

a(ri − rl) · ri
|ri − rl|3

+
∑
i<l

a(ri − rl) · ri
|ri − rl|3

= +
∑
l<i

a(ri − rl) · ri
|ri − rl|3

+
∑
l<i

a(rl − ri) · rl
|ri − rl|3

= +
∑
l<i

a [(ri − rl) · ri − (ri − rl) · rl]
|ri − rl|3

= +
∑
l<i

a(ri − rl)2

|ri − rl|3

= +
∑
l<i

a

|ri − rl|
= V

Thus we have proven that

〈T 〉 = −1

2
〈V 〉 .

Application in astrophysics

Velocities

measured 〈T 〉 = 1
2
〈V 〉

Distances

“measured”
+

geometrical
symmetries

Estimate of
mass. Dark matter!
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11 Oscillations

11.1 Small Oscillations

ROUGH DRAFT

Oscillations can occur in potentials with stable points of equilibrium. For
systems with one degree of freedom, this means that for a potential V (q) it
exists a q0 with

∂V

∂q0

> 0 and − ∂V

∂q0

< 0.

This returns the particle to q0. The Taylor expansion for this potential is

V (q) = V (q0) +���
�:0

V ′(q0) (q − q0) +
1

2
V ′′(q0)(q − q0)2 +O

[
(q − q0)3

]
.

If we set V (q0) = 0, which is the shifting value of the potential by a constant,
we need to find

V (k) ≈ 1

2
k(q − q0)2 with k > 0.

For a simple particle, we have

L ≈ 1

2
mẋ2 − 1

2
kx2

which gives us the following Euler-Lagrange equations:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0

; mẍ+ kx = 0

; ẍ+
k

m
x = 0

ẍ+ ω2x = 0 with ω =

√
k

m
.

Then the solution is
x = c1 cosωt+ c2 sinωt.

Indeed,

ẋ = ω [−c1 sinωt+ c2 cosωt]

ẍ = ω2 [−c1 cosωt− c2 sinωt] = −ω2x .
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We can rewrite

x =
√
c2

1 + c2
2

[
c1√
c2

1 + c2
2

cosωt+
c2√
c2

1 + c2
2

sinωt

]
.

Set
c1√
c2

1 + c2
2

≡ cos θ0 − c2√
c2

1 + c2
2

≡ sin θ0 A ≡
√
c2

1 + c2
2

to obtain

x = A (cos θ0 cosωt− sin θ0 sinωt)

; x = A cos(ωt+ θ0) .

The frequency depends on the characteristics of the system (m, k) and on

t

x

A cos(ωt+ θ0)A

Figure 26: Harmonic oscillation with amplitude A.

initial conditions (for small oscillations only).

The energy of the system is

E =
1

2
mẋ2 +

1

2
kx2

=
1

2
m [−Aω sin(ωt+ θ − 0)]2 +

m

2
ω2 [A cos(ωt+ θ0)]2

; E =
1

2
mω2A2 .
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Thus,

x =

√
2E

mω
cos(ωt+ θ0).

The amplitude A of the oscillation depends on the energy, as expected.

It is often convenient to “complexify” the amplitude:

A = |A|eiθ0 .

Then,
x = Re

(
Aeiωt

)
.

Indeed,

x = Re
(
|A|ei(ωt+θ0)

)
= |A| cos(ωt+ θ0).

11.2 Forced Oscillations

Exert an external time-dependent force on an oscillatory system, then

V ≈ 1

2
kx2 + Vex(x, t)

≈ 1

2
kx2 +

[
∂Vex

∂x

]
x=0

+ Vex(0, t)︸ ︷︷ ︸
can be written

as a time derivative

.

Thus,

V (x, t) ≈ 1

2
kx2 − xF (t)

L =
1

2
mẋ2 − 1

2
kx2 + xF (t) (11.1)

which yields the following equation of motion:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0

; mẍ = −kx+ F (t)

; ẍ+ ω2x =
F (t)

m
. (11.2)

106



For the general solution, we set

ζ = ẋ+ iωx (11.3)

ζ̇ = ẍ+ iωẋ

−iωζ = −iωẋ+ ω2x

which gives us
d

dt
ζ − iωζ =

F (t)

m
. (11.4)

Set now ζ = eiωty, then

eiωtẏ + iωζ − iωζ =
F (t)

m

⇒ ẏ =
e−iωtF (t)

m

⇒ y =

∫
dte−iωtF (t)

m
+ y0

⇒ ζ = eiωt

[
y0 +

∫
dte−iωtF (t)

m

]
. (11.5)

The energy of the system is

E =
1

2
mẋ2 +

1

2
kx2

=
1

2
m(ẋ2 + ω2x2) =

1

2
mζ2

=
1

2
m(ẋ− iωx)(ẋ+ iωx)

⇒ E =
1

2
m |ζ(t)|2 (11.6)

The energy is not conserved. Assuming that we “pump” all energy in via
F (t), we have for the energy of the system after infinite time,

E =
1

2
m |ζ(+∞)|2

=
1

2
m

∣∣∣∣∫ ∞
−∞

dt
F (t)

m
e−iωt + y0

∣∣∣∣2 . (11.7)
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where the last integral can be recognized as the Fourier transform of the force.

Let us now work out explicitly the trajectory for

F (t) = f cos(γt+ β). (11.8)

Then

ζ(t) = e+iωt

[∫
dt e−iωt cos(γt+ β)

f

m
+ y0

]
⇒ ζ(t) = eiωty0 +

fγ

m(γ2 − ω2)
sin(γt+ β)− i

fω

m(γ2 − ω2)
cos(γt+ β)

(11.9)

But

ζ(t) = ẋ+ iωx

⇒ e+iωtζ(t) =
d

dt
(eiωtx)

⇒ x = e−iωt

(
c+

∫
dt e+iωtζ(t)

)
. (11.10)

Performing the integrations, we have

x(t) = − f/m

γ2 − ω2
cos(γt+ β) + Ae−iωt.

The real part of the solution is

x(t) = |A| cos(ωt+ θ0) +
f/m

ω2 − γ2
cos(γt+ β) . (11.11)

The first term is the solution of the homogeneous equation and it is the same
as when the external force is absent. The second term is new. It is also an
oscillatory function of time, but with the frequency of the external force.

The amplitude of the oscillation increases as the frequency of the external
force γ approaches the value of the characteristic frequency of the system ω.
This phenomenon is called resonance. To calculate the motion at exactly
ω = γ, we write:

x(t) = |B| cos(ωt+ θ0) +
f

m(ω2 − γ2)
[cos(γt+ β)− cos(ωt+ beta)] (11.12)
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At γ → ω, we have

x(t) = |B| cos(ωt+ θ0) +
f

2mω
t sin(ωt+ β) (11.13)

Notice that the amplitude increases with time. The above formula is not
valid if our Lagrangian of (11.1) is only valid for small x, since after some
time the amplitude of the oscillation becomes large.

Let us now complexify (11.11):

x = A1eiωt + A2eiγt

=
[
A1 + A2ei(γ−ω)t

]
eiωt. (11.14)

For γ = ω + ε, close the resonance with ε being small, we can write

x(t) =
[
A1 + A2eiεt

]
eiωt

= C(t)eiωt (11.15)

where the “amplitude” C(t) varies very slowly in time. Setting

A1 = |A1|eiθ1 and A2 = |A2|eiθ2 ,

we obtain:

|C(t)|2 = |A1|2 + |A2|2 + 2|A1||A2| cos(θ2 − θ1 + εt)

⇒ (|A1||A2|)2 ≤ |C(t)|2 ≤ (|A1||A2|)2

⇒ ||A1| − |A2|| ≤ C(t) ≤ |A1|+ |A2|. (11.16)

The amplitude varies periodically in between two values. This phenomenon
is known as beats.

11.3 Oscillations of systems with many degrees of free-
dom

We will now study oscillatory behaviour in systems with many degrees of
freedom. A Lagrangian describing such a system is of the form

L =
1

2

∑
i,j

(mijẋiẋj − kijxixj) (11.17)
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where

mij = mji (11.18)
kij = kji. (11.19)

To compute the equations of motion, we need first

∂L

∂ẋi
=
∑
j

mijẋj (11.20)

∂L

∂xi
=
∑
j

kijxj. (11.21)

The Euler-Lagrange equations give then:∑
j

(mijẍj + kijxj) = 0, i = 1, . . . , N. (11.22)

This is a system of N differential equations with N unknowns. We can set

xj = Aje
iωt (11.23)

(and only need to remember to keep the real part of this expression at the
end of the calculation).
Substituting into (11.22), we obtain:∑

j

(kij − ω2mij)Aj = 0 (11.24)

or, in a matrix formk11 − ω2m11 k12 − ω2m12 . . .
k21 − ω2m21 k22 − ω2m22 . . .

...
... . . .


A1

A2
...

 =

0
...
0

 . (11.25)

The condition for the system to have oscillatory solutions of the form of
(11.23) is then

det(kij − ω2mij) = 0 (11.26)
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The solutions of (11.26), if they exist, are real and positive. Indeed:∑
j

(kij −mijω
2)Aj = 0

;
∑
i,j

(kij −mijω
2)A?iAj = 0

⇒ ω2 =

∑
i,j kijA

?
iAj∑

i,jmijA?iAj

=

∑
i,j kjiA

?
iAj∑

i,jmjiA?iAj

=

∑
i,j kijAiA

?
j∑

i,jmijAiA?j
=
(
ω2
)?

; ω2 is real.

Notice also that∑
i,j

AiA
?
j =

∑
i,j

kij(ai + ibi)(aj − ibj)

=
∑
i,j

kij(aiaj + bibj) + i

���
���

���
���

�:0∑
i,j

kij︸︷︷︸
symmetric

(biaj − aibj)

=
∑
i,j

kij(aiaj + bibj) ≥ 0.

The roots of ω2
a of (11.26) give the characteristic frequencies (eigenfrequen-

cies) of the system. To construct solutions xj(t) after this step becomes a
simple exercise in Linear Algebra to find the eigenvectors corresponding to
each ωa. Let us assume, for simplicity, that there is no degeneracy. Then the
solutions are

xj(t) =
∑
a

∆jaθa(t) (11.27)

with ∆ja the minors of the determinant and

θa(t) = Re [Caexp(iωat)] . (11.28)

We can regard the equation

xj =
∑
a

∆jaθa
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as a change from one set of generalized coordinates to another. The θa
coordinates satisfy the differential equations

θ̈a + ω2
aθa = 0 (11.29)

and are called normal coordinates. They describe independent oscillators. In
normal coordinates, the Lagrangian takes the form

L =
∑
a

1

2
ma(θ̇

2
a − ω2

aω
2
a).

Exercise 11.1. Consider the Lagrangian

L =
1

2

[
ẋ2

1 + 2ẋ1ẋ2 + ẋ2
2 − 3x2

1 − 4x2
2 + 2x1x2

]
.

Find the eigenfrequencies and normal coordinates.

11.4 Damped Oscillations

We now consider oscillatory systems with some friction losses. The equation
fo motion for the simplest one-dimensional oscillator is

mẍ+ kx+ αẋ = 0

or, equivalently,
ẍ+ ω2

0x+ 2λx = 0

with
ω2

0 =
k

m
and 2λ =

a

m
.

The solution is of the form
x(t) = ekt,

then

k2 + ω2
0 + 2λk = 0

; (k + λ)2 = λ2 − ω2
0

⇒ k = −λ±
√
λ2 − ω2

0
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Case 1 λ < ω0

Then, we have two complex solutions

k± = −λ± i
√
ω2

0 − λ2

and the general solution is

x = Re
[
Ae−λt+i

√
ω2
0−λ2t

]
= |A|e−λt︸ ︷︷ ︸

C(t)

cos(ωt+ θ0)

t

x(t)

C(t)

Figure 27: Damped oscillation with time-varying amplitude C(t).

Case 2 λ > ω0

We have two real solutions and no oscillation, which is called aperiodic
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damping :
x = e−λt

[
c1e−
√
λ2−ω2

0t + c2e+
√
λ2−ω2

0t
]
.

For many degrees of freedom, the frictional forces take the form:

fi = −
∑
j

αijẋj.

Then, we can write

fi = −∂F
∂xi

with F =
1

2

∑
i,j

αijẋiẋj.

Then, the equations of motion can originate from

d

dt

∂L

∂ẋi
− ∂L

∂xi
= −∂F

∂ẋi
.

The function F is known as the dissipative function.
Let us now compute the energy change vote:

dE

dt
=

d

dt

(∑
i

ẋi
∂L

∂ẋi
− L

)

= ẍ
∂L

∂ẋi
− dL

dt
+ ẋi

d

dt

∂L

∂ẋi

= ẍ
∂L

∂ẋi
− ∂L

∂xi
ẋi −

∂L

∂ẋi
ẍi + ẋi

d

dt

∂L

∂xi

= ẋi

[
d

dt

∂L

∂ẋi
− ∂L

∂xi

]
= −ẋi

∂F

∂ẋi
= −2F.

For the system to lose energy, we require that

F > 0.
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12 Rigid Body
So far, we have studied the motion of point-like particles. We will now move
to study the motion of macroscopic objects which do not change shape dur-
ing their motion. We call these object rigid bodies. A rigid body is a special
case of a system of many point-like particles with the constraint that the
distances among the constituent particles is fixed.

Consider a reference point O on the rigid body. We can determine the
position of every other point A of the rigid body with respect to the reference
point O with a vector

OA = la.

The magnitude of la is fixed, since it connects two points of the rigid body.

O

A

Figure 28: Rigid body with origin O and point A.

As the object moves only the orientation of OA can change, while the length
of the vector stays fixed. The motion of la is therefore a rotation. The
reference point O is of course also moving. The position of the point A in
the body with respect to a fixed point F outside the body is

FA = FO +OA

or, equivalently
ra(t) = R(t) + la(t). (12.1)

For small times dt, the displacement of the point A is

dra = dR + dla. (12.2)
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O

A
~la(t1)

O

A
~la(t2)

F

~R(t1)

~r(t1) ~R(t2)

~r(t2)

Figure 29: Same body with different orientation.

We can write the change dla as an infinitesimal rotation

dla = dφ× la. (12.3)

Thus, we have that
dra
dt

=
dR

dt
+

dφ

dt
× la . (12.4)

This is an equation which relates the velocity of a particle A in the rigid
body to the velocity of a reference point O and the angular velocity

ω =
dφ

dt
(12.5)

of a point A with respect to the fixed point O. All points in a rigid body ro-
tate simultaneously, as they are required to have fixed distances. Therefore,
the angular velocity ω is common to all particles.

Let us call

V ≡ dR

dt
(12.6)

the velocity of the reference point O.
We will assume that a body is composed of a = 1, . . . , N particles with
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masses ma. The kinetic energy of the body is then

T =
∑
a

1

2
mar

2
a

=
∑
a

1

2
ma

(
V + ω × la

)2

=
1

2

(∑
a

ma

)
V 2 +

1

2

∑
a

ma

(
ω × la

)2

+ V ·

(
ω ×

∑
a

mala

)
. (12.7)

We will now choose our reference point O to be the center of mass

O :
∑
a

mala = 0. (12.8)

In this frame, the last term of (12.7) vanishes. Therefore, in the center of
mass frame the kinetic energy is

T =
1

2
mV 2 +

1

2

∑
a

ma

(
la × ω

)2

(12.9)

with
m ≡

∑
a

ma. (12.10)

We not that the center of mass frame is not necessarily an inertial system of
reference.
We will now prove the identity(

a× b
)2

= a2b2 −
(
a · b

)2

. (12.11)

Proof. (
a× b

)2

= (εijkajbk)
2

= (εijkajbk) (εilmalbm)

= εijkεilmajbkalbm

=

∣∣∣∣ δjl δjm
δkl δkm

∣∣∣∣ ajbkalbm
= (δjlδkm − δklδjm) ajbkalbm

= a2
jb

2
k − (ajbj) (akbk)

= a2b2 −
(
a · b

)2
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Therefore, the “rotational” term of the kinetic energy in (12.9) becomes

1

2

∑
a

ma

(
ω × la

)2

=
1

2

∑
a

ma

(
ω2l2a −

(
ω · la

)2
)
. (12.12)

Let us now write the above in terms of the Cartesian components of the
position vectors

la ≡ (la1, la2, la3) ≡ (lai) .

We have

ω2l2a −
(
ω · la

)2

= (ωiωi) l
2
a − (ωilai)

2

= ωiωjδijl
2
a − ωiωjlailaj

=
(
δijl

2
a − lailaj

)
ωiωj (12.13)

Therefore, the kinetic energy takes the form

T =
1

2
mV 2 +

1

2
Iijωiωj (12.14)

where m ≡
∑

ama is the total mass of the rigid body and Iij is the so called
tensor of inertia.

12.1 Tensor of inertia

The tensor of inertia is characteristic of the geometry and mass distribution
of the rigid body. From its definition,

Iij ≡
∑
a

ma

(
l2i δij − lailaj

)
(12.15)

we see that it is a symmetric tensor:

Ijk = Ikj.

It therefore consists of six components. In a matrix notation, the tensor of
inertia is

Ijk =
∑
a

l2a2 + l2a3 −la1la2 −la1la3

−la1la2 l2a1 + l2a3 −la2la3

−la1la3 −la2la3 l2a1 + l2a2

ma. (12.16)
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Using standard linear algebra methods, we can diagonalize this matrix. The
diagonalization corresponds to a change of axes for the vectors la. The axes
for which the tensor of inertia is diagonal are called principal axes.I11 I12 I13

I21 I22 I23

I31 I32 I33

 Rotation−→
of axes

I1 0 0
0 I2 0
0 0 I3

 . (12.17)

The eigenvalues I1, I2, I3 are called the principal moments of inertia.

Exercise 12.1. Demonstrate that principal axes always exist.

We can prove the following inequalities:

I1 + I2 ≥ I3

I2 + I3 ≥ I1

I3 + I1 ≥ I2. (12.18)

Indeed,

I1 + I2 =
∑
a

(
l2a2 + l2a3 + l2a1 + l2a3

)
≥
∑
a

ma

(
l2a1 + l2a2

)
= I3.

In the definition of the tensor of inertia of (12.16), the position vectors of the
rigid body points la are measured with respect to the center of mass. Let us
now consider an analogous expression

I ′ij ≡
∑
a

ma

(
r2
aδij − rairaj

)
(12.19)

where the vectors ra ≡ la + c are measured with respect to a different point.
Then,

I ′ij =
∑
a

ma

((
la + c

)2

δij − (lai + ci) (laj + cj)

)

=
∑
a

ma

(
l2aδij − lailaj

)
+

(∑
a

ma

)(
c2δij − cicj

)
+ 2

(∑
a

mala

)
· cδij

(∑
a

malai

)
cj −

(∑
a

malaj

)
ci.
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However,
∑

amala = 0. Therefore, we obtain

I ′ij = Iij +m
(
c2δij − cicj

)
. (12.20)

(12.20) is a convenient formula to use if the summation over all particles is
performed easier in I ′ij for position vectors with a different origin than the
center of mass.

Finally, we remark that in the case of a continuous solid body, the sum
over all particles must be replaces with an integral over a continuous density:

Iij =

∫
d3lρ(l)

[
l2δij − lilj

]
. (12.21)

We can classify rigid objects according to their moments of inertia.

I1 6= I2 6= I3 asymmetric top

I1 = I2 6= I3 symmetric top

I1 = I2 = I3 spherical top

Figure 30: Classification of rigid objects.

12.1.1 Examples of moments of inertia

Example 12.1. Consider a system of particles in the same line.
The tensor of inertia is

x

y

z
m1 m2 m3 m4 m5

Figure 31: System of particles in the same line.

Ijk =
∑
a

ma

(
r2
aδjk − rakraj

)
,
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but rai = raδix, thus

Ijk =
∑
a

ma

(
r2
aδjk − r2

aδkxδjx
)

=
∑
a

mar
2
a (δjk − δjxδkx) .

This gives us

Ixx = 0

Iyy =
∑
a

mar
2
a

Izz =
∑
a

mar
2
a

Ixy =
∑
a

mar
2
a

(
�
�>

0
δxy − r2

aδxx�
�>

0
δyx

)
= 0

Ixz =
∑
a

mar
2
a

(
�
�>

0
δxz − r2

aδxx�
�>

0
δzx

)
= 0

Iyz =
∑
a

mar
2
a

(
�
��

0
δyz − r2

a�
�>

0
δxy �

�>
0

δzx

)
= 0.

For two atoms,
I2 = I3 = m1r

2
1 +m2r

2
2.

We want to express this in terms of the distance d of the atoms. We start

m2m1

~R

~r1 ~r2

d

Figure 32: Two atoms with mass m1 and m2 and distance d.
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with the center of mass equation:

0 = m1r1 +m2r2

⇒ r2 = −m1

m2

r1.

We obtain for the distance:

d = r1 − r2

= r1

(
1 +

m1

m2

)
= r1

m1 +m2

m2

and thus

r1 =
m2

m1 +m2

d

r2 = − m1

m1 +m2

d .

Then, the moments of inertia are

I2,3 = m1r
2
1 +m2r

2
2

=

[
m1

(
m2

m1 +m2

)2

+m2

(
m1

m1 +m2

)2
]
d2

=
m1 +m2

(m1 +m2)2
·m1m2

⇒ Iyy = Izz =
m1m2

m1 +m2

d2

Now, recall
Ijk =

∑
a

ma

(
r2
aδjk − rajrak

)
and let us shift

ra → ra + c,

then
I ′jk =

∑
a

[(ra + c)− (raj + cj)(rak + ck)] .
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The linear term is ∑
a

ma [(2ra · c) δjk − (rajck − rakcj)] ,

but it disappears since ∑
a

mara = 0

and therefore

I ′jk =
∑
a

ma

[
(ra + c)2 δjk − (ra + c)j (ra + c)k

]
= Ijk +

(∑
a

ma

)[
c2δjk − cjck

]
.

Example 12.2. Consider two points with same mass m1 and distance a
from each other shifted by λ from the x-axis and another point with mass
m2 according to figure 33. Then, the center of mass equation gives us a

x

y

m1 m1

m2

a

h

λ

Figure 33: Two masses m1 with the same distance from the center of mass
and one mass m2 with y-distance h.

relation for λ and h:

(h− λ)m2 = 2m1λ

⇒ λ =
m2

2m1 +m2

h.
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The moments of inertia are

Ixx =
∑
a

ma

(
r2
aδxx − r2

ax

)
=
∑
a

mar
2
ax

= 2m1

(a
2

)2

=
1

2
m1a

2

Iyy =
∑
a

mar
2
ay

= m2 (h− λ)2 + 2m1λ
2

=

[
2m1

(m2

m

)2

+m2

(
2m1

m

)2
]
h2

=
2m1m2

m
h2(m2 + 2m1)

=
2m1m2

m
h2

Izz =
∑
a

ma

(
r2
aδzz − r2

az

)
=
∑
a

ma

(
r2
ax + r2

ay

)
= Iyy + Ixx.

Exercise 12.2. What are the moments of inertia for a cone?

Example 12.3. What is a frequency of a compound pendulum?
Let α, β, γ be the angles between the principal axes and the axis rotation.
The velocity of the center of mass is v = lφ̇. Then, the Lagrangian is

L =
1

2
mv2 +

1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
− V

=
1

2
ml2φ̇2 +

1

2

(
I1 cos2 α + I2 cos2 β + I3 cos2 γ

)
φ̇2 − V (φ)
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l
φ

Fixed axis

Center of mass

Figure 34: Compound pendulum.

where

V (φ) =

∫
d3xρ(x)gz

= mgz

= −mgl cosφ

≈ −mgl +
1

2
mglφ2 + . . .

and thus

L =
1

2

[
ml2 + I1 cos2 α + I2 cos2 β + I3 cos2 γ

]
φ̇2 − 1

2
mglφ2 + . . . .

The frequency of the pendulum is

ω =

√
k

m

=

√
mgl

ml2 + I1 cos2 α + I2 cos2 β + I3 cos2 γ
.

12.2 Angular momentum

The angular momentum of a rigid body is

M =
∑
a

ma

(
ra × ra

)
=
∑
a

ma

((
R + la

)
×
(
R + ω × la

))
.
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In the center of mass frame,

~la

~R

~r

Figure 35: Rigid body.

∑
a

mala = 0,

the angular momentum is

M =
∑
a

mala ×
(
ω × la

)
. (12.22)

We have [
a×

(
b× a

)]
i

= εijkajεklmblam

= εkijεklmajambl

=

∣∣∣∣ δil δin
δjl δjn

∣∣∣∣ ajblam
= bia

2 − ai
(
a · b

)
⇒ a×

(
b× a

)
= ba2 − a

(
a · b

)
. (12.23)
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Thus,

M =
∑
a

ma

[
l2aω − la

(
ω · la

)]
Mi =

∑
a

ma

[
l2aωi − lai (lajωj)

]
=

(∑
a

ma

[
l2aδij − lailaj

])
ωj

⇒Mi = Iijωj . (12.24)

Changing our axes to the principal axes of inertia, we have

Mi = Iiωi. (12.25)

We observe that the angular momentum is not necessarily aligned to the
direction of the angular velocity. This happens for a spherical top,

I1 = I2 = I3 = I,

for which
M = Iω. (12.26)

12.2.1 Precession

We now examine the motion of a symmetrical top,

I1 = I2 6= I3,

which moves freely, without the influence of external forces. In the center of
mass frame, the motion to the symmetrical top is purely rotational. We can
determine it completely by using angular momentum conservation.
One principal axis is the axis of symmetry x̂3, as shown in Figure 37.

The other two principal axes are perpendicular to it. Due to the symmetry,
we have the freedom to choose their orientation. We choose x̂2-axis to be
perpendicular to the plane defined by x̂3 and the angular momentum M .
Then,

M ⊥ x̂2 ⇒M2 ≡M · x̂2 = 0,

but
M2 = I2ω2 ⇒ ω2 = 0 ,
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Figure 36: A symmetrical top.

thus M , ω, x̂3 are all on the same plane.
Consider now the points of the top along the symmetry axis x̂3. Their velocity
is

V = ω × r r ‖ x̂3

⇒ V ⊥
(
ω,M, x̂3

)
.

The velocity of the points of the x̂3-axis is perpendicular to the plan of
(ω,M, x̂3). We have

V = (ω × x̂3)x3

=
[(
ω1x̂1 +��*

0ω2 x̂2 + ω3x̂3

)
× x̂3

]
x3

= [ω1 (x̂1 × x̂3)]x3

=
M1

I1

x3x̂2.

Since M is conserved, then
M1

I1

≡ ω1

is constant. Therefore, the axis of the top rotates uniformly around the
direction of M , describing a circular cone. We have therefore identified two
rotations:

1. Rotation around M . This is called regular precession. The frequency
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~M

x̂3

x̂1

~ω

~ω3

~ωpr

θ

x̂2

Figure 37: Rigid body with angular momentumM perpendicular to the prin-
ciple axis x̂2 and angle θ between the angular momentum and the symmetry
axis x̂3 of the body.

of this rotation is

ωpr = ω1 sin θ

=
M1

I1

sin θ

=
M

sin θ
sin θ

I1

⇒ ωpr =
M

I1

.

2. Rotation around symmetry axis. The frequency of this rotation is

ω3 =
M3

I3

=
M cos θ

I3

.

129



12.3 Equations of motion of rigid body

We need to determine R(t) and ω(t). Then geometry of the rigid body will
give us the positions la(t) relative to a reference point at the rigid body.
We have

fa =
dPa
dt

∀particle a

⇒
∑
a

fa =
d

dt

∑
a

Pa

=
d

dt

∑
a

ma

(
R + ω × la

)

=
d

dt

[(∑
a

ma

)
V

]
+

d

dt


��

�
��

��*
0(∑

a

mala

)
× ω


= m

d

dt
V.

The sum of the forces
F =

∑
a

fa

includes only external forces, because internal forces cancel out. Indeed, in
the absence of external forces, internal forces cannot give a momentum to
the body, thus ∑

a

f (int)
a = 0.

Notice that the Lagrangian describing a rigid body is

L =
1

2
mV 2 +

1

2
Iijωiωj − V (R, φ).

Then, the Euler-Lagrange equations are

d

dt

∂L

∂V
− ∂L

∂R
= 0

⇒ mV = −∂V
∂R
≡ F
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where we have used the shorthand notation
∂

∂x
= ∇

x
≡
(

∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
.

Now let us look at the rate of change of the total angular momentum. Let us
specify the reference frame to be so that the center of mass does not move:

V = 0.

This is not necessarily an inertial frame.
Then,

dM

dt
=

d

dt

(∑
a

la × Pa

)

=
∑
a

d

dt
la × Pa +

∑
a

la ×
dPa
dt

=
∑
a
��

���
���

��:0
d

dt
la ×

(
ma

dla
dt

)
+
∑
a

la ×
dPa
dt

=
∑
a

la × fa.

The sum
K ≡

∑
a

la × fa

is the total torque. The above sum includes only external forces, since the
internal forces alone cannot produce angular momentum.

dM

dt
= K

can be derived from the Lagrangian:
d

dt

∂L

∂ω
− ∂L

∂φ
= 0,

where

∂L

∂ωi
=

∂

∂ωi

(
1

2
ωi
∑
j

Iijωj

)
=
∑
j

Iijωj = Mi

∂L

∂φi
= −∂V

∂φi
.
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For

∂V = −
∑
a

fa · ∂la︸ ︷︷ ︸
work

= −
∑
a

fa ·
(
∂φ× la

)
= −∂φ ·

∑
a

(
la × fa

)
︸ ︷︷ ︸

=K

= −∂φ ·K,
we obtain

−∂V
∂φ

= K.

The equations of motion

dP

dt
= F (total force)

dM

dt
= K (total torque)

have been derived for a reference frame where the axes have a fixed orienta-
tion.
However, it is often convenient to use a reference frame with rotating axes.
Typically, these are the principal axes of inertia. Consider two coordinate
systems where (x̂1, x̂2, x̂3) are fixed and (ŷ1(t), ŷ2(t), ŷ3(t)) are rotating.
If we express a vector A in terms of the rotating system, we have

A =
∑
i

Aiŷi(t).

The total derivative is
dA

dt
=
∑
i

dAi
dt

ŷi(t) +
∑
i

Ai(t)
dŷi(t)

dt

=
∑
i

dAi
dt

ŷi(t) +
∑
i

Ai(t)ω × ŷi(t)

⇒ dA

dt
=

(
dA

dt

)
rot

+ ω × A . (12.27)
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In (12.27),

(
dA

dt

)
rot

is the rate of change of the vector A as it is perceived

in the rotating frame.

Therefore, in a rotating reference frame with a fixed (or freely moving)
center the equations of motion take the form(

dP

dt

)
rot

+ ω × P = F(
dM

dt

)
rot

+ ω ×M = K

where ω is the angular velocity vector for the rotation of the rotating frame.
In terms of components, we have

m

(
dV1

dt
+ ω2v3 − ω3v2

)
= F1

m

(
dV2

dt
+ ω3v1 − ω1v3

)
= F2

m

(
dV3

dt
+ ω1v2 − ω2v1

)
= F3.

We can choose the axes of the rotating system to be the principal axes of
inertia. Then, using

M1 = I1ω1 M2 = I2ω2 M3 = I3ω3

and substituting into (
dM

dt

)
rot

+ ω ×M = K,

we have

I1
dω1

dt
+ (I3 − I1)ω2ω3 = K1

I1
dω2

dt
+ (I1 − I3)ω3ω1 = K2

I1
dω3

dt
+ (I2 − I1)ω1ω2 = K3.

Euler’s equations
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12.3.1 Applications: Free rotational motion

Example 12.4 (Symmetrical top). In this case, we have

I1 = I2 6= I3 K = 0

and for
dω3

dt
= 0 ⇒ ω3 = const,

we obtain

dω1

dt
+ Ωω2 = 0 (12.28)

dω2

dt
− Ωω1 = 0 (12.29)

with
Ω ≡ ω3

I3 − I1

I1

.

This leads to

ω̇1 = −Ωω2

ω̇2 = Ωω1

and we can decouple this system of differential equations:

d

dt
(ω1 + iω2) = Ω(−ω2 + iω1)

= iΩ(ω1 + iω2)

⇒ ω1 + iω2 = AeiΩt

= A(cosωt+ i sinωt)

⇒ ω1 = A cosωt ω2 = A sinωt .

Notice that

ω2
1 + ω2

2 + ω2
3 = A2 + ω2

3 = const. ⇒ |ω| = const.,

i.e. the magnitude of the angular velocity is constant.
Since ω3 is constant too, then ω rotates around the symmetry axis of the top
with angular velocity Ω.
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Example 12.5 (Asymmetrical top). Let us now consider the general case of
an asymmetric top:

I3 > I2 > I1.

Energy and angular momentum conservation give

1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 = E

⇒ M2
1

I1

+
M2

2

I2

+
M2

3

I3

= 2E

and
M2

1 +M2
2 +M2

3 = M2.

This is the intersection of a sphere and an ellipsoid.
We can prove easily the inequalities

2EI1 ≤M2 ≤ 2EI3 .

If M2 = 2EI1 (smallest value),

M2 = M3 = 0.

For M2 = 2EI3,

M2
1

I1

+
M2

2

I2

+
M2

3

I3

= 2E

M2
1 +M2

2 +M2
3 = M2.

For M2 = 2EI2,

M2
1

I1

+
M2

2

I2

+
M2

3

I3

= 2E

M2
1

I2

+
M2

2

I2

+
M2

3

I2

= 2E

⇒M2
1

(
1

I1

− 1

I2

)
+M2

3

(
1

I3

− 1

I2

)
= 0

⇒M2
1 = M2

3 .
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12.3.2 Euler angles

Euler equations give the angular velocity ω(t) in a rotating system with axes
the principal axes of inertia. What is then the motion of this rotating system
as we observe it from a fixed-axes system?
To relate a fixed and a rotating system with a common center, we can use
what is called Euler angles.

x̂

ŷ

ẑ

x̂1

x̂2

x̂3

ξ̂

φ

ψ

θ

Figure 38: Rotation of the coordinate system (x̂, ŷ, ẑ) by the Euler angles φ,
θ, ψ to the system (x̂1, x̂2, x̂3).

(x, y, z) is a fixed axes system and (x1, x2, x3) is a rotating one. To go
from (x, y, z) to (x1, x2, x3) we perform a series of rotations.

1. Consider the intersection ON of the (x1, x2)-plane and the (x, y)-plane.
Align the x-axis to ON by rotating counter-clockwise by an angle φ.
We then go to coordinates

(x, y, z)→ (ξ, η, z)ξη
z

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

xy
z

 .
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2. Then we rotate around the ξ(≡ ON)-axis counter-clockwise: ξ
η′

z′

 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

ξη
z

 .

3. Finally, we rotate around the z′-axis by ψ:x1

x2

x3

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 ξ
η′

z′

 .

Collectively, we can write:x1

x2

x3

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

xy
z

 .

We can now relate the angular velocity

ω = (θ̇1, θ̇2, θ̇3)

as seen in the (x1, x2, x3)-frame in terms of the Euler angles and angular
velocities.
For the Euler angular velocities we have:

φ = φ̇ẑ

θ = θ̇ξ̂

ψ = ψ̇ẑ′.

We want to express these rotation axes in terms of x̂1, x̂2 and x̂3:

ξ̂ = (ξ̂ · x̂1) · x̂1 + (ξ̂ · x̂2) · x̂2 +��
��*

0
(ξ̂ · x̂3) · x̂3

= cosψx̂1 + cos
(
ψ +

π

2

)
x̂2

= cosψx̂1 − sinψx̂2
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ẑ = cos θx̂3 + sin θ cos
(π

2
− ψ

)
x̂1 + sin θ cosψx̂2

= cos θx̂3 + sin θ sinψx̂1 + sin θ cosψx̂2

ẑ′ = x̂3,

then

ω = θ + φ+ ψ

= (φ̇ sin θ sinψ + θ̇ cosψ)x̂1 + (ψ̇ sin θ cosψ − θ̇ sinψ)x̂2 + (φ̇ cos θ + ψ̇)x̂3.
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13 Hamiltonian mechanics
As we established in Sect. 4.6, the motion of a holonomic system with n
degrees of freedom is determined by the Lagrange equations, that is a set
of n second order differential equations in n unknown variables qi, where we
specify the initial conditions given by qi and q̇i at a given time t.

It has been known since Lagrange’s times that higher order differential
equations can be reduced to systems of first order differential equations.
Thus, we expect that a system of n second order differential equations can
be reduced to a system of 2n first order differential equations. In general, it
is more convenient to deal with a system of first order differential equations,
because an approximate solution may be found even when an exact solution
is not known. To illustrate this point, let us consider a point whose motion
is described by the first order differential equation,

r(t) = f (r(t); t) . (13.1)

Given an initial condition at a time t0, eq. (13.1) can be integrated to,

r(t) = r(t0) +

∫ t

t0

f (r(τ); τ) dτ . (13.2)

The integral equation (13.2) is more convenient than the differential one
(13.1) because it can be approximated. In fact, given the initial condition
r(t0), we can build a series of successive approximations through the iterative
formula,

rk+1(t) = r(t0) +

∫ t

t0

f (rk(τ); τ) dτ , k = 0, 1, 2, . . . . (13.3)

For example, let us take the non-linear differential equation in one dimension,

ẋ(t) = x2 + t2 , (13.4)

with t0 = 0 and initial condition x(t0) = x0(t) = 0. Then,

x1(t) =

∫ t

0

[
x2

0(τ) + τ 2
]

dτ =

∫ t

0

τ 2dτ =
t3

3
,

x2(t) =

∫ t

0

[
x2

1(τ) + τ 2
]

dτ =

∫ t

0

(
τ 6

9
+ τ 2

)
dτ =

t3

3
+
t7

63
, (13.5)
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and so on. One can continue like this until one gets eq. (13.2) to the desired
accuracy. Thus, a first order differential equation can be transformed into
an integral equation which can be solved to the desired accuracy.

Another reason to go to first order differential equations is that they have
a straightforward geometric interpretation. To see this, let us consider the
motion of a particle on the x − y plane, described by a set of first order
differential equations,

r(t) = v(x, y; t) , (13.6)
which can be written in Cartesian coordinates as,

ẋ = f(x, y; t) ,

ẏ = g(x, y; t) . (13.7)

Then to find r means to look for the curve which at every point has r as its
tangent vector, as in Fig. 39.

Figure 39: A curve in the x− y plane and the vectors tangent to it.

Conversely, if we have a system of second order differential equations,

ẍ = f(x, y, ẋ, ẏ; t) ,

ÿ = g(x, y, ẋ, ẏ; t) , (13.8)

in order to associate a point r = a(r, r; t) to any point r, we must introduce
a four-dimensional space with coordinates (x, y, ẋ, ẏ) whose tangent vector is
(ẋ, ẏ, ẍ, ÿ). Thus a geometrical interpretation is much less obvious.

13.1 Hamilton equations

In 1834, William Rowan Hamilton transformed the Lagrange equations,
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , n , (13.9)
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into a system of 2n first order differential equations. To do so, he introduced
the conjugate momenta pi to the generalized coordinates qi,

pi =
∂L

∂q̇i
, i = 1, . . . , n , (13.10)

and proposed to use qi, pi and t as the canonical variables, rather than the
variables qi, q̇i and t used by Lagrange. If the Jacobian of pi in eq. (13.10) is
non-vanishing, ∣∣∣∣∂pi∂q̇j

∣∣∣∣ =

∣∣∣∣ ∂2L

∂q̇i∂q̇j

∣∣∣∣ 6= 0 , (13.11)

then we can invert eq. (13.10), and write that

q̇i = q̇i(qk, pk, t) , (13.12)

that is, we can express the Lagrange variables in terms of Hamilton variables
and viceversa. In particular, for natural systems, for which the Lagrangian
is a quadratic function of the generalized velocities, eq. (13.10) expresses a
linear relation between conjugate momenta and generalized velocities.

Hamilton introduced a functionH(qk, pk, t), called theHamiltonian, which
is defined through the Legendre transformation,

H =
n∑
i=1

piq̇i − L , (13.13)

and showed that one can transform the Lagrange equations into a system of
first order differential equations,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n , (13.14)

which are called the Hamilton equations.
In order to prove Hamilton equations, we shall use Donkin’s theorem,

which states that given a function of n variables, X(x1, . . . , xn), with a non-
vanishing Hessian, ∣∣∣∣ ∂2X

∂xi∂xj

∣∣∣∣ 6= 0 , (13.15)

and given a set of auxiliary variables,

yi =
∂X

∂xi
, i = 1, . . . , n , (13.16)

141



there is a transformation which is the inverse of eq. (13.16) and is generated
by a function Y (y1, . . . , yn), such that,

xi =
∂Y

∂yi
, i = 1, . . . , n . (13.17)

The function Y generating the inverse transformation is related to the func-
tion X by the Legendre transformation,

Y =
n∑
i=1

xiyi −X . (13.18)

Furthermore, ifX depends onmmore variables,X = X(x1, . . . , xn;α1, . . . , αm),
then also Y depends on m more variables, Y = Y (y1, . . . , yn;α1, . . . , αm),
with the relation,

∂X

∂αk
= − ∂Y

∂αk
, k = 1, . . . ,m . (13.19)

Proof of Donkin’s theorem. Because the Hessian of X, which is the Jaco-
bian of yi is non-vanishing,∣∣∣∣ ∂2X

∂xi∂xj

∣∣∣∣ =

∣∣∣∣ ∂yi∂xj

∣∣∣∣ 6= 0 , (13.20)

eq. (13.16) can be inverted, and we can write xi = xi(y1, . . . , yn). Let us take
a function Y (y1, . . . , yn) to be given by a Legendre transformation (13.18).
Then,

∂Y

∂yi
=

∂

∂yi

(
n∑
k=1

xkyk −X

)

=
∂xk
∂yi

yk + xi −
∂X

∂yi

=
∂xk
∂yi

yk + xi −
∑
k

∂X

∂xk

∂xk
∂yi

= xi , (13.21)

where in the last step above we used the chain rule and eq. (13.16).

142



If X depends on m more variables, X = X(x1, . . . , xn;α1, . . . , αm), those
variables appear in eq. (13.16) and in the inverse transformation as well,

xi = xi(y1, . . . , yn;α1, . . . , αm) . (13.22)

The function Y is given by the Legendre transformation (13.18) with the
variables xi given by the inverse transformation (13.22),

∂Y

∂αi

∣∣∣∣
yj

=
∂

∂αi

(
n∑
k=1

xkyk −X

)

=
∑
k

∂xk
∂αi

yk −
∑
k

∂X

∂xk

∂xk
∂αi
− ∂X

∂αi

= −∂X
∂αi

, (13.23)

which completes the proof of Donkin’s theorem.
In order to obtain Hamilton equations, we identify,

X ≡ L ,

xi ≡ q̇i ,

yi ≡ pi ,

αi ≡ qi, t , (13.24)

with i = 1, . . . , n. Then Donkin’s theorem implies that given a function
L(q1, . . . , qn; q̇1, . . . , q̇n; t), and a set of auxiliary variables (13.10), there is a
function H(q1, . . . , qn; p1, . . . , pn; t) which generates the inverse transforma-
tion of eq. (13.10),

q̇i =
∂H

∂pi
, i = 1, . . . , n . (13.25)

The Hamiltonian H is related to the Lagrangian L by the Legendre trans-
formation (13.18),

H =
n∑
i=1

piq̇i − L , (13.26)

with
∂L

∂qi
= −∂H

∂qi
,

∂L

∂t
= −∂H

∂t
. (13.27)
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Lagrange equations (13.9) and eq. (13.10) imply that,

ṗi =
∂L

∂qi
, (13.28)

and using eq. (13.27), we get that,

ṗi = −∂H
∂qi

. (13.29)

Eqs. (13.25) and (13.29) form a system of 2n first order differential equations,
the Hamilton equations (13.14).

Hamilton equations imply that the total time derivative of the Hamilto-
nian H equals the partial time derivative,

dH

dt
=
∑
i

(
∂H

∂pi
ṗi +

∂H

∂qi
q̇i

)
+
∂H

∂t
=
∂H

∂t
. (13.30)

From eq. (7.1) and from the Legendre transformation (13.13), we realize
that for a conservative system the Hamiltonian is the total energy of the
system. But for a conservative system the total energy is conserved, so

dH

dt
=
∂H

∂t
= 0 , (13.31)

that is, the HamiltonianH = H(q1, . . . , qn; p1, . . . , pn) is a constant of motion.
For elementary systems, solving a system of Hamilton equations is not

usually simpler than solving the analogous system of Lagrange equations.
However, the strength of the Hamilton equations may be appreciated when
dealing with complex dynamic systems, like the planetary orbits in celestial
mechanics, which can be treated through approximate methods of perturba-
tion theory using Hamiltonian mechanics. Furthermore, Hamilton equations
naturally incorporate the concept of symmetry: if a coordinate q is associated
to a symmetry, its conjugate momentum p is conserved and the Hamiltonian
does not depend on q, effectively reducing the system to n−1 variables. That
is not apparent with Lagrange equations, which in that case will still depend
on n velocities q̇i. Also, although Hamilton equations cannot be used as such
in quantum mechanics, their structure inspires the equations of quantum me-
chanics. Finally, Hamiltonian mechanics has a natural geometric structure in
terms of simplectic manifolds (to be defined later). In the following lectures,
we will briefly explore some of the benefits of Hamiltonian mechanics listed
above.
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13.2 The Hamiltonian as a conserved quantity and/or
the total energy

The simplest Hamiltonian we can consider is for a particle moving on a plane
xy under the action of a central potential. The Lagrangian is

L =
m

2

(
ẋ2 + ẏ2

)
− V (x, y).

The conjugate momenta are

px =
∂L

∂ẋ
= mẋ

py =
∂L

∂ẏ
= mẏ

which we invert to
ẋ =

px
m

ẏ =
py
m

such that the Lagrangian becomes

L =
1

2m

(
p2
x + p2

y

)
− V (x, y).

The Hamiltonian is

H = pxẋ+ pyẏ − L

=
1

m

(
p2
x + p2

y

)
− 1

2m

(
p2
x + p2

y

)
+ V (x, y)

=
1

2m

(
p2
x + p2

y

)
+ V (x, y).

Note that the Hamiltonian is the total energy of the particle, and it is also a
conserved quantity, since

∂L

∂t
= −∂H

∂t
= 0.

Let us examine these concept more in detail. We said that for a conserva-
tive system, the kinetic and potential energies do not depend on time. Then
the Lagrangian does not either,

∂L

∂t
= 0,
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and thus ∑
i

∂L

∂q̇i
q̇i − L

is a conserved quantity which we identify with the Hamiltonian

H =
∑
i

piq̇i − L.

We just saw that for a particle in central potential, H is also the total energy
E, and that is true in fact for any conservative system.

In the tutorials, we showed that for a conservative system, defined as a
holonomic system with:

• only stationary contraints,

• the potential energy which does not depend explicitly on time,

• no non-potential forces

the total energy is conserved:

dE

dt
= 0.

Let us examine the concepts of total energy and conserved quantity in the
Hamiltonian language. We know that if

∂L

∂t
= −∂H

∂t
= 0,

H is a conserved quantity. Under what conditions is H the total energy of
the system?

In the Lagrangian formalism, we established that for a holonomic system,
the Euler-Lagrange equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Q̃i

with L = T − V and the non-potential force Q̃i(qj, q̇j, t).
Let us suppose that the non-potential force Q̃i (called so because it does not
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come from an ordinary potential V (qi, t)) comes actually from a generalized
potential V (qi, q̇i, t), through the equation

Q̃i =
d

dt

∂V

∂q̇i
− ∂V

∂qi
(13.32)

then we can still write the Euler-Lagrange equations as

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0

if we require that L = T − V . Then (13.32) implies that

Q̃i =
∑
n

∂2V

∂q̇i∂q̇n
q̈n + . . . .

However, in the generalized force there is no explicit dependence on acceler-
ations q̈n, since

Q̃i = Q̃i(qn, q̇n, t).

Thus
∂2V

∂q̇i∂q̇n
= 0,

so the potential V can be at most linear in the velocities:

V =
∑
i

aiq̇i + U

= V1 + U

where U is the ordinary potential.
We have already seen an example of such a potential: a particle in an elec-
tromagnetic field has potential

V = eφ− e

c
r · A.

Next, we restrict ourselves to “natural” systems, i.e. systems for which
the kinetic energy, and thus the Lagrangian, are at most quadratic in the
velocities (so far we have only met “natural” systems, but there is an im-
portant “non-natural” system: a relativistic particle). However, apart from
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this restriction, the following discussion is general. The kinetic energy of a
natural system is

T = T2 + T1 + T0

with
T2 =

∑
i,n

ainq̇iq̇n T1 =
∑
i

biq̇i

and the Lagrangian is

L = T − V = L2 + L1 + L0

with
L2 = T2 L1 = T1 − V1 L0 = T0 − U.

The Hamiltonian is

H =
∑
i

piq̇i − L =
∑
i

∂L

∂q̇i
q̇i − L.

Then we use Euler’s theorem on homogeneous functions,∑
i

∂L2

∂q̇i
q̇i = 2L2

∑
i

∂L1

∂q̇i
q̇i = L1,

thus

H = 2L2 + L1 − (L2 + L1 + L0)

= L2 − L0

which is independent of whether a potential dependent on velocities is present
or not. In particular,

H = T2 − T0 + U .

As we saw on the tutorial on the energy of a holonomic system, for a system
with constraints which do not depend explicitly on time, T0 = 0, T = T2,
then

H = T + U .

Thus we have established that the most general condition for a natural system
to have the Hamiltonian as the total energy is that the constraints do not
depend explicitly on time.
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Example 13.1. For a particle in an electromagnetic field, the Lagrangian is

L =
mṙ2

2
− eφ+

e

c
r · A.

The conjugate momenta are

px =
∂L

∂ẋ
= mẋ+

e

c
Ax and likewise for y,z.

The Hamiltonian is

H = pxẋ+ pyẏ + pz ż − L

=
mṙ2

2
+ eφ

=
1

2m

(
p− e

c
A
)2

+ eφ

i.e. the total energy of the particle.

Now, the difference between the Hamiltonian being a conserved quantity
or the total energy is clear:
A system might have the Hamiltonian

H = H(qi, pi)

which does not depend explicitly on time, then

∂H

∂t
= 0

and H is a conserved quantity. However, the constraints might be non-
stationary,

rm = rm(q1, . . . , qm, t),

then
H = T2 − T0 + U

is not the total energy.
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13.3 Cyclic coordinates

When studying conservation laws, we saw that if a coordinate qn is cyclic,
i.e. such that

∂L

∂qn
= 0

the Euler-Lagrange equations imply that

d

dt

∂L

∂q̇n
= 0.

Becuase the conjugate momentum is

pn =
∂L

∂q̇n

that means that pn is conserved pn = cn.

In the Hamiltonian formalism, this means that H depends on 2(n − 1)
variables and a constant cn, to be fixed by the initial conditions

H = H(q1, . . . , qn−1; p1, . . . , pn−1; cn; t)

since qn does not occur in the Legendre transform

H =
∑
i

piq̇i − L(q1, . . . , qn−1; q̇1, . . . , q̇n; t)

and
ṗn = −∂H

∂qn
= 0 ⇒ pn = cn.

Effectively, the system has gone from n to n− 1 degrees of freedom (DOF).
In contrast, in the Lagrangian formalism the system still depends on n DOF:

L = L(q1, . . . , qn−1; q̇1, . . . , q̇n; t).

So a Hamiltonian formulation is particularly convenient when cyclic coordi-
nates are present.

Example 13.2. The motion of a particle in a central potential V (r) in polar
coordinates r, θ.
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The Lagrangian is

L =
m

2

(
ṙ2 + r2θ̇2

)
− V (r).

Because the system is conservative, the Hamiltonian is

H = T + V (r).

The conjugate momenta are

pr =
∂L

∂ṙ
= mṙ

pθ =
∂L

∂θ̇
= mr2θ̇

which can be inverted,
ṙ =

pr
m

θ̇ =
pθ
mr2

.

Thus, the Hamiltonian is

H =
1

2m

(
p2
r +

p2
θ

r2

)
+ V (r).

The Hamiltonian equations are

ṙ =
∂H

∂pr
=
pr
m

θ̇ =
∂H

∂pθ
=

pθ
mr2

ṗr = −∂H
∂r

=
p2
θ

mr3
− ∂V

∂r
i.e. the equation of the force in a central potential

ṗθ = −∂H
∂θ

= 0 angular momentum conservation.

Note that θ is cyclic and pθ = M is is conserved. The Hamiltonian depends
on one DOF and one constant, the angular momentum M :

H = H(r; pr;M).
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13.4 Hamilton’s equations and Hamilton’s principle

Hamilton’s principle was to require the action

S =

∫ tf

ti

dt L [{qj(t)} , {q̇j(t)} ; t]

to be minimal:
δS = 0

where {qi} is a short-hand for q1, . . . , qn.
In the Hamiltonian formulation, we require that

δS = δ

∫ tf

ti

dt

(∑
i

piq̇i −H [{pj} , {qj} , t]

)
= 0

is minimal on the 4n-dimensional phase space which depends on the coordi-
nates q and p, and their time derivatives q̇ and ṗ.
It is like in variational calculus: we must minimize the integral

I [{q} , {p}] =

∫ tf

ti

dt f ({q} , {p} , {q̇} , {ṗ} , t)

where f =
∑
i

piq̇i −H.

Then δI = 0 leads to the Euler-Lagrange equations

d

dt

∂f

∂q̇i
− ∂f

∂qi
= 0 (13.33)

d

dt

∂f

∂ṗi
− ∂f

∂pi
= 0 (13.34)

which, for f as given above, yield:

(13.33) ⇒ ṗi +
∂H

∂qi
= 0

(13.34) ⇒ −q̇i +
∂H

∂pi
= 0.

So, in a very concise way, we obtained Hamilton’s equations!
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13.5 Canonical transformations

The motion of a particle in a plane under the action of a central potential can
be described using Cartesian coordinates x, y or polar coordinates r, θ as gen-
eralized coordinates. The advantage with polar coordinates is that θ is cyclic.

In general, given a Hamiltonian

H(q1, . . . , qn; p1, . . . , pn; t)

the coordinates q1, . . . , qn might not be cyclic, but there might be another
set of coordinates Q1, . . . , Qn for which some or all of them are cyclic.
It is important then to have a procedure to go from one set ({q} , {p})in the
2n-dimensional space to another:

Qi = Qi ({q} ; {p} ; t)

Pi = Pi ({q} ; {p} ; t) .

The coordinates Qi, Pi must also be canonical, i.e. there must be a function

K(Q1, . . . , Qn;P1, . . . , Pn; t)

such that
Q̇i =

∂K

∂Pi
Ṗi = − ∂K

∂Qi

.

So they must satisfy Hamilton’s principle

δ

∫ tf

ti

dt

(∑
i

PiQ̇i −K ({Q} ; {P} ; t)

)
= 0

just like for the old coordinates

δ

∫ tf

ti

dt

(∑
i

piq̇i −H ({q} ; {p} ; t)

)
= 0.

Then the two integrands must be the same, up to a variation on the end
points, whose integral vanishes:∑

i

piq̇i −H =
∑
i

PiQ̇i −K +
dF

dt
(13.35)
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where F cannot be a function of the phase space coordinates ({q} , {p})
or ({Q} , {P}) since they have null variation on the end points, but it can
be a function of a mixture of old and new variables, for example F =
F ({q} , {Q} ; t). Then (13.35) implies that∑

i

piq̇i −H =
∑
i

PiQ̇i −K +
∑
i

(
∂F

∂qi
q̇i +

∂F

∂Qi

Q̇i

)
+
∂F

∂t
.

Since qi andQi are independent, so are their time derivatives q̇i and Q̇i, whose
coefficients must vanish. Thus, we obtain the transformation equations:

pi =
∂F

∂qi
Pi = − ∂F

∂Qi

and
K = H +

∂F

∂t
.

The function F is called the generating function of the canonical transfor-
mation above. If we set in particular,

F ({q} , {Q}) =
n∑
k=1

qkQk,

then the transformation equations are

pi =
∂F

∂qi
= Qi

Pi = − ∂F
∂Qi

= −qi

i.e. this canonical transformation interchanges momenta and coordinates. In
the Hamiltonian formalism momenta and space coordinates are coordinates
on an equal footing of the 2n-dimensional phase space. There is no memory
of q being a space coordinate and p a mass times a velocity.

If pi cannot be taken as a function of qj and Qj, it is suitable to take a
function of the type F = F ({q} , {P} ; t) as a generating function. But since
in eq. (13.35), Ṗi does not occur, it is more convenient to set

F = G ({q} , {P} ; t)−
∑
k

QkPk
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such that eq. (13.35) becomes∑
i

piq̇i −H = −
∑
i

QiṖi −K +
dG

dt
(13.36)

Making the total derivative explicit,∑
i

piq̇i −H = −
∑
i

QiṖi −K +
∑
i

(
∂G

∂qi
q̇i +

∂G

∂Pi
Ṗi

)
+
∂G

∂t
,

and considering that qi and Pi are independent, we obtain the transformation
equations:

pi =
∂G

∂qi
Qi =

∂G

∂Pi
and

K = H +
∂G

∂t
.

Note that if we take in particular,

G ({q} , {P}) =
n∑
k=1

qkPk, (13.37)

then the transformation equations are

pi =
∂G

∂qi
= Pi

Qi =
∂G

∂Pi
= qi

and
K = H,

i.e. the new coordinated equal the old ones: the function (13.37) generates
the identity transformation.

One can also consider

F = F ({p} , {Q} , t)
F = F ({p} , {P} , t)

as generating functions (a classification of, and relations among, the F ’s is
given in Goldstein’s book), and any combinations of them. The classifica-
tion above is not exhaustive: there might be generating functions which do
not conform to any of the types given above.
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13.6 A canonical transformation for the harmonic oscil-
lator

Consider a harmonic oscillator in one dimension, with force constant k. The
Hamiltonian is

H =
p2

2m
+
kq2

2
=

1

2m

(
p2 +m2ω2q2

)
where one can set k = mω2 with ω the angular frequency of the oscillation.
Because H is a sum of two squares, if we find a canonical transformation

p = f(P ) cosQ

q =
f(P )

mω
sinQ

(13.38)

then

K = H =
f 2(P )

2m

(
cos2Q+ sin2Q

)
=
f 2(P )

2m

so that Q is cyclic. We must find a function f(P ) which makes the transfor-
mation canonical.
As a generating function, we try

F =
mωq2

2
cotQ,

then the transformation equations are

p =
∂F

∂q
= mωq cotQ

P = −∂F
∂Q

= −mωq
2

2

(
−1− cos2Q

sin2Q

)
=

mωq2

2 sin2Q

which we can solve for q and p:

p =
√

2mωP cosQ

q =

√
2P

mω
sinQ.
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Comparing to (13.38), we see that the transformation is canonical if we choose

f(P ) =
√

2mωP.

Then the Hamiltonian is

H =
2mωP

2m
= ωP.

The harmonic oscillator is a conservative system, thus the Hamiltonian is
the total energy. Since the Hamiltonian is cyclic in Q, the momentum P is
constant:

P =
E

ω
.

Hamilton’s equation for Q̇ is

Q̇ =
∂H

∂P
= ω

which is trivially integrated:

Q(t) = ωt+ α.

Returning then to the original variables gives us

q(t) =

√
2E

mω2
sin(ωt+ α)

p(t) =
√

2mE cos(ωt+ α).

Accordingly, also the phase space plots look different for the old q, p and the
new Q,P variables. Since

q2

2E
mω2

+
p2

2mE
= 1

the (q, p) plot is an ellipse with

major semi-axis A =

√
2E

mω2

minor semi-axis B =
√

2mE

and the (Q,P ) plot is a straight line.
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Figure 40: Plots in the phase space of (q, p) (ellipse) and (Q,P ) (straight
line).

13.7 Canonical transformations in symplectic notation

For a system of n degrees of freedom, we can cast Hamilton’s equations in a
compact and useful notation with a deep mathematical meaning.

Let us write the coordinates qi and the momenta pi as a vector with 2n
elements:

ωi = qi ωi+n = pi i = 1, . . . , n.

Likewise, we define(
∂H

∂ω

)
i

=
∂H

∂qi

(
∂H

∂ω

)
i+n

=
∂H

∂pi
.

Then we introduce the 2n× 2n symplectic matrix

J =

 0 1n

−1n 0

 with 1n the n× n identity matrix.

Note that the transpose matrix equals the inverse

JT = J−1 =

 0 −1n
1n 0

 = −J

thus

JJT = JTJ =

 1n 0

0 1n

 = 12n
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and
J2 = −12n.

Then Hamilton’s equations can be written as

ω = J
∂H

∂ω

or in components: q̇i

ṗi

 =

 0 1n

−1n 0




∂H

∂qi
∂H

∂pi

 ⇒


q̇i =

∂H

∂pi

ṗi = −∂H
∂qi

.

Now let us consider a restricted canonical transformation (i.e. one with
no explicit dependence on time):

Qi = Qi ({q} , {p})
Pi = Pi ({q} , {p}) .

(13.39)

Because there is no dependence on time, the new Hamiltonian will equal the
old one,

K = H.

The time derivative of Qi is

Q̇i =
∑
j

(
∂Qi

∂qj
q̇j +

∂Qi

∂pj
ṗj

)
=
∑
j

(
∂Qi

∂qj

∂H

∂pj
− ∂Qi

∂pj

∂H

∂qj

)
. (13.40)

We can also invert (13.39),

qi = qi ({Q} , {P})
pi = pi ({Q} , {P})

and write the Hamiltonian as a function of Q and P . Thus, we can write

∂H

∂Pi
=
∑
j

[
∂H

∂qj

∂qj
∂Pi

+
∂H

∂pj

∂pj
∂Pi

]
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and equating it to (13.40), we obtain(
∂Qi

∂qj

)
q,p

=

(
∂pj
∂Pi

)
Q,P

(
∂Qi

∂pj

)
q,p

= −
(
∂qj
∂Pi

)
Q,P

(13.41)

where the indices remind us that on the l.h.s. of the equations Qi is a function
of q, p and on the r.h.s. pj is a function of Q,P .

A comparison of Ṗi with
∂H

∂Qi

yields

(
∂Pi
∂qj

)
q,p

= −
(
∂pj
∂Qi

)
Q,P

(
∂Pi
∂pj

)
q,p

=

(
∂qj
∂Qi

)
Q,P

. (13.42)

Eqs. (13.41) and (13.42) characterize a (restricted) canonical transformation,
and are equivalent to the method of the generating function introduced be-
fore. Thus, a canonical transformation can be obtained finding a suitable
generating function or through eqs. (13.41) and (13.42). Although the pro-
cedure above has been displayed for restricted canonical transformations it
is not less general, because it can be extended to canonical transformations
in general.

Remembering that in symplectic notation, Hamilton’s equations are

ω = J
∂H

∂ω
with J =

 0 1

−1 0

 .

The restricted canonical transformation can be written as

Ω = Ω(ω).

Then, taking the time derivative

Ω = Mω

or, in components,

Ω̇i =
∂Ωi

∂ωj
ω̇j with Mij =

∂Ωi

∂ωj
.
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Using Hamilton’s equations, we write

Ω = MJ
∂H

∂ω
.

By the inverse transformation, we can see H as a function of Ωi and write

∂H

∂ωi
=
∂H

∂Ωj

∂Ωj

∂ωi
or

∂H

∂ω
= MT ∂H

∂Ω
,

then
Ω = MJMT ∂H

∂Ω
. (13.43)

But the Hamiltonian is the same in the old and the new variables, and
Hamilton’s equations do not change form, so

Ω = J
∂H

∂Ω

and equating with (13.43), we obtain the condition

MJMT = J

which defines the symplectic matrices, and is called the symplectic condition
for a canonical transformation.

13.8 Infinitesimal canonical transformations

The canonical transformation

Ω = Ω (ω, t)

with
ωi = qi ωi+n = pi Ωi = Qi Ωi+n = Pi

changes continuously with time.
If the transformation ω → Ω (t) is canonical, so is the transformation ω →
Ω (t0), thus Ω (t0)→ Ω (t) should be canonical as well.
To show that, let us consider an infinitesimal canonical transformation (ICT)

Ω = ω + δω,
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or in components,
Qi = qi + δqi Pi = pi + δpi.

Let us take a generating function of type

G ({q} , {P} , t)

as a continuous deformation of the identity transformation:

G =
∑
k

qkPk + εG̃ ({q} , {P} , t) with ε� 1.

Then, the transformation equations are

pi =
∂G

∂qi
= Pi + ε

∂G̃

∂qi

Qi =
∂G

∂Pi
= qi + ε

∂G̃

∂Pi

so the deformations of the canonical variables are

δpi = Pi − pi = −ε∂G̃
∂qi

δqi = Qi − qi = ε
∂G̃

∂Pi
= ε

∂G̃

∂pi

where in the equation for δqi we replaced Pi with pi because the difference is
O(ε). Likewise, the generating function of the ICT, G̃ ({q} , {P} , t), can be
replaced by G̃ ({q} , {p} , t).
In symplectic notation,

δω = εJ
∂G̃

∂ω
. (13.44)

Now, as an ICT consider

Ω(t) = Ω (t0 + δt) .

The symplectic matrix is

Mij =
∂Ωi

∂ωj
= δij +

∂δωi
∂ωj
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or using (13.44)

M = 1 +
∂δω

∂ω

= 1 + εJ
∂2G̃

∂ω∂ω

or in components

Mij = δij + εJik
∂2G̃

∂ωk∂ωj

with
∂2G̃

∂ωk∂ωj
=

∂2G̃

∂ωjωk
.

But
JT = −J ⇒ Jik = −Jki

then

(Mji)
T = Mij = δij − ε

∂2G̃

∂ωj∂ωk
Jki

i.e.

MT = 1− ε ∂
2G̃

∂ω∂ω
J

so

MJMT =

(
1 + εJ

∂2G̃

∂ω∂ω

)
J

(
1− ε ∂

2G̃

∂ω∂ω
J

)
= J +O

(
ε2
)

which is the symplectic condition, so the ICT Ω(t) = Ω (t0 + δt) is indeed
canonical, thus we conclude that any canonical transformation, with or with-
out time dependence, fulfills the symplectic condition.

We have seen that:

• we can continuously transform the canonical variables through a canon-
ical transformation,

• the identity transformation is canonical.

163



Now, the inverse of a canonical transformation is also a canonical transfor-
mation; the composition of two canonical transformations is also a canonical
transformation, and that composition is associative:

a(bc) = (ab)c.

Therefore, the canonical transformations form a (continuous) group.

13.9 Integrals of the equations of motion, Poisson brack-
ets and canonical invariants

The primary goal of a canonical transformation is to find a set of canonical
variables with as many cyclic coordinates as possible.

More in general, suppose that f ({q} , {p} , t) is an integral of the equa-
tions of motion (IEM),

df

dt
= 0,

i.e. f is a conserved quantity:

f ({q} , {p} , t) = c.

For example, we know that for a conservative system the Hamiltonian is a
conserved quantity, or IEM, and that for a system with cyclic coordinates qi,
the conjugate momenta pi are conserved quantities, or IEM.

Suppose that we have k IEM f1, . . . , fk with k < 2n, then any arbitrary
combination of those k IEM is also an IEM. Thus, it is clear that it suffices
to consider only the independent IEM.

If we know 2n independent IEM,

fk ({q} , {p} , t) = ck k = 1, . . . , 2n,

then the equations of motion can be written as

qi = qi (c1, . . . , c2n, t)

pi = pi (c1, . . . , c2n, t)

i.e. the system is completely integrable. Then the broader goal is to find as
many independent IEM as possible.
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If f ({q} , {p} , t) is an IEM, then

df

dt
= 0 ⇒

∑
i

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
+
∂f

∂t
= 0,

using Hamilton’s equations

∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= 0

or
∂f

∂t
+ [f,H]q,p = 0,

where we have introduced the Poisson bracket

[φ, ψ]q,p =
∑
i

(
∂φ

∂qi

∂ψ

∂pi
− ∂φ

∂pi

∂ψ

∂qi

)
.

Thus, to say that f is an IEM is equivalent to require that

∂f

∂t
+ [f,H]q,p = 0.

This offers a criterion to test candidate IEM: In order for f to be an IEM, it
must fulfill

∂f

∂t
= [H, f ]q,p

and if a particular f does not depend explicitly on time, it must fulfill

[H, f ]q,p = 0.

The Poisson bracket [φ, ψ]q,p has a symplectic structure. In fact,

[φ, ψ]
ω

=

(
∂φ

∂ω

)T
J
∂ψ

∂ω
for ωi = qi ωi+n = pi

as can be seen by writing [φ, ψ]
ω
in components (please check!).

If φ, ψ are taken among the variables qi, pi themselves, then from the defini-
tion of the Poisson bracket

[qj, qk]q,p = [pj, pk]q,p = 0

[qj, pk]q,p = δjk,
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thus we can write the antisymmetric matrix J as the Poisson bracket matrix

[ω, ω]
ω

= J with
(
[ω, ω]

ω

)
jk

= [ωj, ωk]

(again, write it explicitly in components).
Now, take a set of new canonical variables,

Ωi = Qi Ωi+n = Pi,

then by definition [
Ω,Ω

]
ω

=

(
∂Ω

∂ω

)T

J
∂Ω

∂ω
,

but
∂Ω

∂ω
is the transformation matrix M, in components

∂Ωi

∂ωj
= Mij,

then [
Ω,Ω

]
ω

= MTJM.

If the transformation is canonical,

MTJM = J ⇒
[
Ω,Ω

]
ω

= J,

i.e. the fundamental Poisson brackets (i.e. those made out of canonical
variables) are invariant under canonical transformations, i.e. are canonical
invariants.

Now, we show that any Poisson bracket is a canonical invariant.
Consider the Poisson bracket

[φ, ψ]
ω
.

We know that
∂H

∂ω
= MT ∂H

∂Ω
.

Likewise, we can write
∂ψ

∂ω
= MT ∂ψ

∂Ω
,
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analogously (
∂φ

∂ω

)T
=

(
MT ∂φ

∂Ω

)T
=

(
∂φ

∂Ω

)T
M,

so

[φ, ψ]
ω

=

(
∂φ

∂ω

)T
J
∂ψ

∂ω

=

(
∂ψ

∂Ω

)T
MJMT ∂ψ

∂Ω

=

(
∂ψ

∂Ω

)T
J
∂ψ

∂Ω

= [φ, ψ]
Ω
,

thus any Poisson bracket is a canonical invariant. Then it does not matter
which set of canonical variables we use to compute it, and we can drop the
index to the right of the [·, ·] symbol.
The poisson brackets sport the properties:

(i) [φ, ψ] = − [ψ, φ] antisymmetry

(ii) [aφ+ bψ, χ] = a [φ, χ] + b [ψ, χ] with a, b constants linearity

(iii) [φψ, χ] = [φ, χ]ψ + φ [ψ, χ]

(iv)
∂

∂t
[φ, ψ] =

[
∂φ

∂t
, ψ

]
+

[
φ,
∂ψ

∂t

]
(v) [[φ, ψ] , χ] + [[ψ, χ] , φ] + [[χ, φ] , ψ] = 0.

All, but (v), stem directly from the definition of Poisson bracket. (v) is called
Jacobi identity. To prove it, let us write

[φ, ψ] =
∂φ

∂ωi
Jij

∂ψ

∂ωi
with Jij = −Jji,

where sums are understood over repeated indices, usually called dummy in-
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dices. Then

[[φ, ψ] , χ] =
∂ [φ, ψ]

∂ωi
Jij

∂χ

∂ωj

=
∂

∂ωi

[
∂φ

∂ωk
Jkl

∂ψ

∂ωl

]
Jij

∂χ

∂ωj

=

(
∂2φ

∂ωi∂ωk
Jkl

∂ψ

∂ωl
+

∂φ

∂ωk
Jkl

∂2ψ

∂ωi∂ωl

)
Jij

∂χ

∂ωj
.

Likewise, we can write [[ψ, χ] , φ] and [[χ, φ] , ψ]. In total, we will have six
terms, each with a fourfold sum over i, j, k, l.
In particular,

[[χ, φ] , ψ] =

(
∂2χ

∂ωk∂ωj
Jji

∂φ

∂ωi
+
∂χ

∂ωj
Jji

∂2φ

∂ωk∂ωi

)
Jkl

∂ψ

∂ωl
.

Let us collect the second derivatives of φ:

Jkl (Jij + Jji)
∂2φ

∂ωi∂ωk

∂ψ

∂ωl

∂χ

∂ωj
= 0

where we used that ∂2φ is symmetric in its indices and Jij is antisymmetric.
Likewise, one shows that the coefficients of ∂2ψ and ∂2χ vanish, which proves
Jacobi identity.

Note that the Jacobi identity is not an associative composition rule. In
fact

[φ, [ψ, χ]] = − [[ψ, χ] , φ]

= [[φ, ψ] , χ] + [[χ, φ] , ψ]

6= [[φ, ψ] , χ] .

In fact, the Poisson brackets form a non-associative algebra. In particular,
the properties of the Poisson brackets (antisymmetry, linearity, Jacobi iden-
tity) define a Lie algebra.

We have studied in some depth the properties of the Poisson brackets.
We can now prove Jacobi-Poisson Theorem, which states that if f and g are
IEM then also [f, g] is an IEM.
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Proof. Since f and g are IEM, we can write

∂f

∂t
+ [f,H] = 0

∂g

∂t
+ [g,H] = 0,

then

∂ [f, g]

∂t
=

[
∂f

∂t
, g

]
+

[
f,
∂g

∂t

]
= − [[f,H] , g]− [f, [g,H]]

= [[H, f ] , g] + [[g,H] , f ] ,

so thanks to Jacobi identity,

∂ [f, g]

∂t
+ [[f, g] , H] = 0,

so also [f, g] is an IEM.

If we have k independent IEM, with k < 2n, the repeated application
of Poisson brackets between independent IEM may in principle generate the
missing IEM.

13.10 Conservation theorems & canonical transforma-
tions through the Poisson bracket

In the Lagrangian formalism, we established through Noether’s theorem that
if the equations of motion are invariant under symmetry transformations
there are corresponding conserved quantities. We saw that if the symmetry
transformation is a time shift the conserved quantity is the energy; if it is
a space shift the conserved quantity is the momentum; if it is a rotation,
angular momentum is conserved.

We also saw that continuous symmetry transformations form a group,
and that the generators of the transformation form a Lie algebra.

Now we look at the conservation laws through the Hamiltonian formalism
and the Poisson brackets.

Recall that a continuous deformation of the identity transformation is
generated by the function

G =
∑
k

qkPk + εG̃ ({q} , {p} , t) .
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The ICT is

Ω = ω + δω with δω = εJ
∂G̃

∂ω
.

Recall that the Poisson bracket is defined as

[φ, ψ] =

(
∂φ

∂ω

)T
J
∂ψ

∂ω
.

Then in particular,

[ω, ψ] = J
∂ψ

∂ω

so we can write the ICT as

δω = ε
[
ω, G̃

]
.

Now, suppose that the continuous parameter of the ICT is the time t, such
that ε = dt, then the change in the Hamiltonian under the ICT is

K = H +
∂G

∂t
= H + ε

∂G̃

∂t
⇒ δH = dt

∂G̃

∂t

and we can take the Hamiltonian as the generator G̃. then

δω = dt [ω,H] = dtω = dω

i.e. the motion from a time t to t+ dt is described by an ICT generated by
the Hamiltonian. So the Hamiltonian is the generator of the time shifts.

If G̃ is a constant of motion, it generates an ICT which does not change
the Hamiltonian. Thus, the constants of motion are the generators of the
canonical transformations which leave the Hamiltonian invariant.

We know that if a coordinate qi is cyclic, the Hamiltonian is independent
of qi, so H will be invariant under an ICT that changes qi only.
Now, take

G̃ ({q} , {p} , t) = pi,

then the transformation equations are

δqj = εδij

δpj = 0,
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so only qi changes as required, and the conjugate momentum pi is a constant
of motion.
In symplectic notation, we can write the generator G̃ as

G̃i = (Jω)i = Jikωk,

then δω = εJ
∂G̃

∂ω
implies

δωj = εJjl
∂G̃i

∂ωl
= εJjlJikJkl

= εJjkJik = εJjkJ
T
ki

= εδij.

So a shift of any canonical variable ωi is generated by the conjugate variable
through G̃ as above. In particular, if ωi = qi, G̃i = pi; if ωi = pi, G̃i = −qi.
Thus we can say that the momentum is the generator of the space shifts,
or in full generality the conjugate variable is the generator of a phase space
variable shifts.

Now, consider the ICT which yields a rotation of θ about the z-axis.
Through the rotation, the changes in coordinates are

δx = −yδθ δy = xδθ δz = 0.

Also the conjugate momentum rotates in the same way, so

δpx = −pyδθ δpy = pxδθ δpz = 0.

The transformation equations are

δp = −ε∂G̃
∂q

δq = ε
∂G̃

∂p

and it’s easy to check that the rotations above are generated by

G̃ = xpy − ypx,
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which is the z-component of angular momentum:

G̃ = Mz = (r × p)z .

So the generating function of an infinitesimal rotation is in general

G̃ = M · n

about some axis n.
Let us consider now finite canonical transformations. Let us take the

ICT of a function φ ({q} , {p} , t) where the trajectory in phase space is
parametrized by α:

δφ = φ (ω + δω)− φ(ω) =

(
∂φ

∂ω

)T
δω

but δω = dαJ
∂G̃

∂ω
so

δφ = dα

(
∂φ

∂ω

)T
J
∂G̃

∂ω
.

Recalling the definition of Poisson bracket, we can write

δφ = dα
[
ψ, G̃

]
or

∂φ

∂α
=
[
φ, G̃

]
.

We can take the variation of
[
φ, G̃

]
and likewise we find that

∂2φ

∂α2
=
∂
[
φ, G̃

]
∂α

=
[[
φ, G̃

]
, G̃
]
.

Then, if we Taylor expand the function φ about some initial value for which
α = 0, we get

φ(α) = φ(0) +
∂φ

∂α

∣∣∣∣
α=0

+
∂2φ

∂α2

∣∣∣∣
α=0

α2

2
+ . . .

= φ(0) +
[
φ, G̃

]
α +

[[
φ, G̃

]
, G̃
] α2

2
+ . . .

which can be formally exponentiated

φ(α) = φ(0) eĜα
∣∣∣
α=0

where the exponential is just a short-hand for the power series of nested
Poisson brackets above. The power series can be operatively used, though.
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Example 13.3. Take the ICT of a rotation about the z-axis. Then

δω = dθ [ω,Mz]

and we set

δx = −y dθ δy = x dθ Mz = xPy − yPx

and it’s immediate to check that

[x,Mz] = −y [y,Mz] = x.

Then we can build the nested Poisson brackets

[[x,Mz] ,Mz] = − [y,Mz] = −x
[[[x,Mz] ,Mz] ,Mz] = − [x,Mz] = y

[[[[x,Mz] ,Mz] ,Mz] ,Mz] = [y,Mz] = x and so on

and the power series for a rotated variable is

X = x− yθ − xθ
2

2
+ y

θ3

3!
+ x

θ4

4!
+ . . .

= x

(
1− θ2

2
+
θ4

4!
+ . . .

)
− y

(
θ − θ3

3!
+ . . .

)
= x cos θ − y sin θ

which corresponds to a finite rotation about the z-axis.
Finally, if the generator of the ICT is the Hamiltonian and the parameter

is the time t, the formal power series becomes

φ(t) = φ(0) + [φ,H] t+ [[φ,H] , H]
t2

2
+ [[[φ,H] , H] , H]

t3

3!
+ . . .

which is formally exponentiated as

φ(t) = φ(0) eĤt
∣∣∣
t=0

which has formal analogies with the Heisenberg picture of quantum mechan-
ics.
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13.11 More on angular momentum and Poisson brack-
ets

Let us take the ICT of a rotation of an angle θ about an axis n. We can
write

δω = dθ
[
ω,M · n

]
where M is the angular momentum.
However, we know that under a rotation θ about n, a generic vector v changes
as

δv = dθ n× v,

then taking the change in v as the ICT, we obtain[
v,M · n

]
= n× v,

writing it in components,

[vi,Mjnj] = εijknjvk

i.e. [vi,Mj] = εijkvk.

In particular, if we take v = M we have the relations[
M,M · n

]
= n×M (13.45)

or in components
[Mi,Mj] = εijkMk (13.46)

Eq. (13.45) implies that [
M2,M · n

]
= 0

and eq. (13.46) is formally equivalent to the relation for the generators of the
Lie algebra of SO(3), the group of rotations in 3 dimensions (recall that for
the Lie algebra generators, [·, ·] is a commutator of matrices which represent
the generators, while here [·, ·] is a Poisson bracket, but they share the same
formal properties). More on this later.

Note that if Mx and My are constants of motion, Jacobi-Poisson theorem
says that also Mz is a constant of motion, since

[Mx,My] = Mz.
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In addition, if we take the generic vector v to be the momentum p, then[
p,M · n

]
= n× p,

or in components
[pi,Mj] = εijkpk,

so if pz is conserved, then

[pz,Mx] = py

[pz,My] = −px

and we see that also px and py are conserved.
So if we started from Mx, My, pz as constants of motion, or IEM, then
Jacobi-Poisson theorem says that also Mz, px, py are IEM, thus M and p are
IEM.

However, note that had we started from px, py, Mz as IEM, we would
have found no new IEM through Jacobi-Poisson theorem, so one must rely
on the kindness of Nature, in what IEM are given to begin with!

Exercise 13.1. Check the statement above.

Also note that for two canonical momenta

[pi, pj] = 0.

But
[Mi,Mj] = εijkMk,

so two components of angular momentum cannot be canonical variables.
However, the total angular momentum

M =
∑
n

rn × pn

and one of the components can be, since[
M2,M · n

]
= 0.

This also has formal analogies in quantum mechanics, where Mi and Mj

cannot be quantized together (we say that they cannot be simultaneously
eigenvalues), but M2 and Mi can.
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13.12 Kepler problem in the Hamiltonian formalism

We saw that in an ICT as a rotation of angle θ about an axis n, angular
momentum M is conserved, and we have the relation

[Mi,Mj] = εijkMk.

We also saw previously that the generators of the Lie algebra of SO(3),
the group of rotations in 3 dimensions, are obtained from the rotation of a
vector

δv = δθn× v
and fulfill the relation

[Ji, Jj] = iεijkJk.

The generators have the matrix representation

(Ji)jk = −iεijk

J1 = i

0 0 0
0 0 −1
0 1 0

 J2 = i

 0 0 1
0 0 0
−1 0 0

 J3 = i

0 −1 0
1 0 0
0 0 0

 .

We noted the formal analogy between the Poisson bracket

[Mi,Mj] = εijkMk

on the angular momentum and the commutation of matrices in

[Ji, Jj] = iεijkJk.

Now, let us consider again Kepler problem in a central potential

V (r) = −a
r
.

The angular momentum M is conserved, but we know that also another
quantity, the Laplace-Runge-Lenz (LRL) vector,

A = p×M − mar

r

is conserved.
Because A is a vector, we can take the relation

[vi,Mj] = εijkvk
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and immediately establish that

[Ai,Mj] = εijkAk.

With some more work, it can be shown that

[A1, A2] = −
(
p2 − 2ma

r

)
M3.

Exercise 13.2. Check this relation.

Note that the energy E is

E = T + V =
p2

2m
− a

r
so

[A1, A2] = −2mEM3 where E < 0

for a bound orbit.
We can rescale the LRL vector,

D ≡ A√
−2mE

,

thus we have
[D1, D2] = M3.

Cyclically permuting the indices, we obtain

[Di, Dj] = εijkMk,

so the complete set of Poisson brackets for Kepler bound orbits is

[Mi,Mj] = εijkMk [Di, Dj] = εijkMk [Di,Mj] = εijkDk.

The same relations are fulfilled by the generators of the Lie algebra of SO(4),
the group of rotations in 4 dimensions:

[Ji, Jj] = iεijkJk [Ni, Nj] = iεijkJk [Ni, Jj] = iεijkNk.

To see it, let us add a zeroth row and column to Ji:

J1 = i


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 J2 = i


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 J3 = i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0
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The generators Ni of rotations in the x0 − x1-plane are

N1 = i


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 N2 = i


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 N3 = i


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 .

It is straightforward to check that they indeed satisfy the commutation rela-
tions above.
For unbound orbits, the energy E > 0 is positive and we rescale the LRL
vector as

C ≡ A√
2mE

and the complete set of Poisson brackets is

[Mi,Mj] = εijkMk [Ci,Mj] = εijkCk [Ci, Cj] = −εijkMk.

The same relations are fulfilled by the generators of the Lie algebra of the
restricted Lorentz group. However, the analogy is purely formal: Kepler
problem is non relativistic Newtonian mechanics, nothing to do with special
relativity.

13.13 Poincare (Cartan) integral invariants

Euler-Lagrange equations are necessary and sufficient condition for the vari-
ation of the action

δS =

∫ tf

ti

dt L ({qi} , {q̇i} , t) = 0

of a holonomic system to vanish. We also now that in the 4n-dimensional
space spanned by qi, pi and their derivatives q̇i, ṗi, Hamilton equations stem
from the variation of the action

δS =

∫ tf

ti

dt

(∑
i

piq̇i −H ({pi} , {qi} , t)

)
= 0.

In all those variational-calculus manipulations, we always require that the
initial and final times are fixed. Let us relax that conditions, and consider the
(2n+ 1)-dimensional space also called extended phase space with coordinates
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({q} , {p} , t) and suppose that we can parametrize them through a parameter
ζ:

qk = qk(ζ) pk = pk(ζ) t = t(ζ).

Then also the initial and final times depend on ζ:

ti = ti(ζ) tf = tf (ζ).

It can be shown that the variation of the action

S =

∫ tf (ζ)

ti(ζ)

dt L ({q} , {q̇} , t)

equals

δS =

∣∣∣∣∣∑
k

pkδqk −Hδt

∣∣∣∣∣
tf (ζ)

ti(ζ)

+

∫ tf (ζ)

ti(ζ)

dt

(∑
k

pkδqk −Hδt

)
.

On the trajectories of the extended phase space where Hamilton equations
are fulfilled, the integral term vanishes, and we have

δS =

∣∣∣∣∣∑
k

pkδqk −Hδt

∣∣∣∣∣
tf (ζ)

ti(ζ)

(if, in particular ti and tf are fixed, then δS = 0).
Now, let us take an arbitrary closed curve Ci given by the equations

qk = qik(ζ) pk = pik(ζ) ti = ti(ζ) with 0 ≤ ζ ≤ T

and
qik(0) = qik(T ) pik(0) = pik(T ) ti(0) = ti(T ).

For every point on the contour Ci, we can draw a line using Hamilton’s
equations. Thus we obtain a cylinder of lines. Let us take another arbitrary
closed curve Cf with

qfk (0) = qfk (T ) pfk(0) = pfk(T ) tf (0) = tf (T ).

Next, we integrate the variation of the action
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Figure 41: Cylinder of lines.

δS =
∂S

∂ζ
δζ =

∣∣∣∣∣∑
k

pkδqk −Hδt

∣∣∣∣∣
tf (ζ)

ti(ζ)

between 0 and T :

S(T )− S(0) =

∫ T

0

∣∣∣∣∣∑
k

pkδqk −Hδt

∣∣∣∣∣
tf (ζ)

ti(ζ)

=

∫ T

0

(∑
k

pfkδq
f
k −Hfδtf

)
−
∫ T

0

(∑
k

pikδq
i
k −Hiδti

)

=

∮
Cf

(∑
k

pkδqk −Hδt

)
−
∮
Ci

(∑
k

pkδqk −Hδt

)
,

but S(T ) = S(0)

⇒
∮
Cf

(∑
k

pkδqk −Hδt

)
=

∮
Ci

(∑
k

pkδqk −Hδt

)
.

Thus we have established that

I =

∮ (∑
k

pkδqk −Hδt

)
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is an integral invariant. It is Poincare-Cartan integral invariant (which in
some, more geometric, formulations, is considered as the fundamental ob-
ject of mechanics). It is possible to show that the canonical transformations
can be obtained from the invariance of the Poincare-Cartan integral. Sev-
eral theorems of flows in hydrodynamics also follow from Poincare-Cartan
integral.

If, in particular, we consider contours C of simultaneous states, i.e. we
take the hyperplane of constant time in the cylinder above, then δt = 0 and
we obtain

I1 =

∮ ∑
k

pkδqk

which is called Poincare integral invariant.
I1 is invariant with respect to any Hamiltonian system. In fact, if for any

system given by the equations

q̇k = Qk ({q} , {p} , t) ṗk = Pk ({q} , {p} , t)

I1 is invariant, it follows that the system is Hamiltonian. Indeed, using
d

dt
δq = δq̇:

d

dt
I1 = 0 =

∮ ∑
k

(
ṗkδqk + pk

d

dt
δqk

)
=

∮ ∑
k

(ṗkδqk + pkδq̇k)

=

∮ ∑
k

(ṗkδqk − q̇nδpk) ,

thus ∮ ∑
k

(Pkδqk −Qkδpk) = 0.

The integrand may be the total differential of some function. If we take that
function to be

−H ({q} , {p} , t) ,
then ∑

k

(pkδqk −Qkδpk) = −δH = −
∑
k

(
∂H

∂qk
δqk +

∂H

∂pk
δpk

)
.
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It follows that
Qk =

∂H

∂pk
Pk = −∂H

∂qk
which implies that the system is Hamiltonian.

Now, think of Stokes’ theorem in 3 dimensions:∮
∂S

A · dl =

∫∫
S

(
∇× A

)
· dS

where ∂S is a contour C which is the boundary of a surface S. In particular,
in 2 dimensions,∮

∂S

Ax dx+ Ay dy =

∫∫
S

(
∂Ay
∂x
− ∂Ax

∂y

)
dx dy

which is also called Green’s theorem.
Stokes’ and Green’s theorems (as well as Gauss’ theorem) are all par-

ticular cases of the generalized Stokes’ theorem for differential forms, which
states that ∫

C=∂S

ω =

∫∫
S

dω

i.e. the integral of a form ω on a closed contour C equals the integral of the
form dω over the surface S bounded by the contour C.
In a nutshell, consider the differential form in 2 dimensions:

ω = A · dl = Ax dx+ Ay dy,

then the derivative
dω = dA ∧ dl

is defined through the wedge product ∧, which is linear and antisymmetric,
just like the cross product:

a ∧ b = −b ∧ a.

Then

dA ∧ dl = dAx ∧ dx+ dAy ∧ dy

= ���
��

���:0∂Ax
∂x

dx ∧ dx +
∂Ax
∂y

dy ∧ dx+
∂Ay
∂x

dx ∧ dy +
��

�
��

�
��*0

∂Ay
∂y

dy ∧ dy

=

(
∂Ay
∂x
− ∂Ax

∂y

)
dx ∧ dy
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so ∫
A · dl =

∫∫ (
∂Ay
∂x
− ∂Ax

∂y

)
dx ∧ dy

where dx∧ dy is the (oriented) area element. For our purposes, we can just
take it to be dx dy. Thus, we got Green’s theorem.

Now, take the form

ω = p · dq = p1 dq1 + · · ·+ pn dqn

in the 2n-dimensional phase space, then

dω = dp ∧ dq = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

Then Stokes’ theorem implies∫
∂S=C

ω =

∫∫
S

dω

⇒ I1 =

∮
∂S=C

∑
i

pi dqi =

∫∫
S

∑
i

dpi ∧ dqi ≡ J2

where dpi ∧ dqi are area elements.
We have related Poincare integral invariant I1 to a 2-dimensional integral

invariant J2. In fact, this structure can be iterated, i.e. there is an invariant
integral

I3 =

∫∫∫ ∑
i,k

piδqiδpkδqk

which can be related to a

J4 =

∫∫∫∫ ∑
i,k

δpiδqiδpkδqk

and so on, until one gets to I2n−1 and

J2n =

∫
. . .

∫
dq1 . . . dqn dp1 . . . dpn

which is of particular interest, because it is the volume element of the phase
space.
It is particularly simple to see that J2n is an invariant. In fact, if

dω = dq1 . . . dqn dp1 . . . dpn
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through a canonical transformation the volume becomes

dΩ = dQ1 . . . dQn dP1 . . . dPn

but dω and dΩ are related by the Jacobian of M:

δΩ = | detM| dω with Mij =
dΩi

dωj

and we know that
MTJM = J⇒ (detM)2 = 1

so
| detM| = 1⇒ dΩ = dω.

The fact that a volume element is invariant under a canonical transfor-
mation immediately implies Liouville’s theorem in statistical mechanics, i.e.
that the density of systems around some given system in phase space remains
constant in time.
In fact, the number of systems in a closed neighbourhood of a given system
does not change with time; the closed shape just moves about in phase space.
Canonical variables at different times are related by a canonical transforma-
tion, but we know that the volume element J2n is a canonical invariant, so
the volume size cannot change with time. Therefore the density of systems
is a constant of motion.

Example 13.4. See fig. (42).
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q

p

q(t1), p(t1)

q(t2), p(t2)

Figure 42: A closed shape moves with time in a 2-dimensional phase space.
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14 Hamilton-Jacobi formalism

14.1 Hamilton-Jacobi equation

Canonical transformations help us to understand the dynamics of a mechan-
ical system, i.e. to solve its equations of motion.
They can do that in 2 ways:

(a) By transforming the HamiltonianH (q1, . . . , qn; p1, . . . , pn; t) to a Hamil-
tonian K (Q1, . . . , Qn;P1, . . . , Pn; t) where all the coordinates Qi are
cyclic.
In the new variables, Hamilton’s equations are

Q̇i =
∂K

∂Pi
Ṗi = − ∂K

∂Qi

.

Then, because
∂K

∂Qi

= 0, Pi = const. = ci, so the Hamiltonian becomes

K = K (c1, . . . , cn; t) .

Suppose that the Hamiltonian is conserved,

dK

dt
=
∂K

∂t
= 0,

then
Q̇i =

∂K

∂ci
= fi (c1, . . . , cn)

which can be trivially integrated to

Qi = fi ({c}) t+ γi

so the system is fully specified in terms of 2n constants of motion, ci
and γi.

(b) The second way is to transform to a set of 2n independent constants
of motion (IEM)

fk ({q} , {p} , t) = ck k = 1, . . . , 2n
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such that

qi = qi (c1, . . . , c2n, t)

pi = pi (c1, . . . , c2n, t)

so the system is completely integrable.
The 2n independent IEM might also be the initial conditions such that

qi = qi ({q0} , {p0} , t)
pi = pi ({q0} , {p0} , t) .

Then one looks for a canonical transformation that maps the set of
variables ({q} , {p}) to the set ({q0} , {p0}).

We shall follow the second avenue: Let us consider a canonical transformation
generated by the function F ({q} , {P} , t) (although the discussion is fully
general, and can be done with other generating functions).
The transformation equations are:

pi =
∂F

∂qi
Qi =

∂F

∂Pi
K = H +

∂F

∂t
.

Suppose that we have found a function F , such that the new Hamiltonian
vanishes:

K = 0 = H +
∂F ({q} , {P} , t)

∂t
.

Then the new equations of motions can be trivially solved:

Q̇i =
∂K

∂Pi
= 0 ⇒ Qi = const. = βi

Ṗi = − ∂K
∂Qi

= 0 ⇒ Pi = const. = αi.

The equation for K = 0 is called Hamilton-Jacobi-equation:

H

(
{q}

{
∂F

∂q

}
, t

)
+
∂F

∂t
= 0.

It is a 1st-order partial differential equation in (n+ 1) variables: q1, . . . , qn, t.
Its solution,

F ≡ S (q1, . . . , qn; t;α1, . . . , αn+1)
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must be given in terms of n + 1 independent IEM. S is called Hamilton’s
principal function.
Because S appears in the HJ-equation only through the derivatives of Q, if
S is a solution also S +α is a solution. So S is determined up to an additive
constant, which is irrelevant since the transformation equations are given
through derivatives of S,then

S = S (q1, . . . , qn;α1, . . . , αn; t) .

Because the generating function is F ({q} , {P} ; t) we may take the new
momenta Pi to be the constants αi

Pi = αi or any combination of them Pi = fi (α1, . . . , αn) .

Then the transformation equations are

pi =
∂S ({q} , {α} , t)

∂qi
(14.1)

Qi = βi =
∂S ({q} , {α} , t)

∂αi
(14.2)

At t = t0, eqs. (14.1) are n equations connecting αi to {q0}, {p0}. The βi from
eqs. (14.2) can also be obtained from the initial conditions, by computing
the r.h.s. at t = t0, so one gets

qi = qi ({α} , {β} , t)

and through eq. (14.1) also

pi = pi ({α} , {β} , t) ,

which solves the system.
To understand the physical meaning of S, let us take the time derivative:

dS

dt
=
∑
i

∂S

∂qi
q̇i +

∂S

∂t

=
∑
i

piq̇i −H = L.

So, up to a constant, S is the action:

S =

∫
L dt+ const..
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Finally, if the Hamiltonian is conserved,

dH

dt
=
∂H

∂t
= 0,

then the HJ-equation is

H

(
{q} ,

{
∂S

∂q

})
+
∂S

∂t
= 0

and one can separate the variable t from the others,

S ({q} , {α} , t) = W ({q} , {α})− αnt

where W is called Hamilton’s characteristic function.
Substituting it into HJ-equation, we get the reduced HJ-equation

H

(
{q} ,

{
∂W

∂q

})
= αn.

For conservative systems, α = E the energy.
The physical meaning ofW is understood again by taking the time derivative:

dW

dt
=
∑
i

∂W

∂qi
q̇i =

∑
i

piq̇i.

Integrating gives us

W =
∑
i

∫
dt piq̇i =

∑
i

∫
dqipi.

Note that also W generates a canonical transformation, different from the
one generated by S. The transformation is

pi =
∂W

∂qi
Qi =

∂W

∂Pi
=
∂W

∂αi
K = H = αn.

ThusW generates a canonical transformation where all coordinates are cyclic.
Hamilton’s equations are

Ṗi = − ∂K
∂Qi

= 0 ⇒ Pi = const. = αi

Q̇i =
∂K

∂αi
= 0 i = 1, . . . , n− 1 ⇒ Qi = const. = βi

Q̇n =
∂K

∂αn
= 1 ⇒ Qn = t+ βn.
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Note that W ({q} , {α}) depends on n constants, but one of them is additive
since in the reduced HJ-equation

H = H

(
{q} ,

{
∂W

∂q

})
= αn.

W appears only through derivatives.
So W depends on n − 1 independent constants, say α1, . . . , αn−1 which to-
gether with α, form a set of n constants, the new momenta, Pi.
To see the difference between the canonical transformations generated by S
and W , draw the prospect:

The Hamiltonian is

H = ({q} , {p} , t) an IEM: H = H ({q} , {p})

Look for canonical transformations to ({Q} , {P}) such that

{Q} , {P} are constants {P} are constants

Require that the new Hamiltonian

vanishes: K = 0 has K = H = αn, so Qi are cyclic

Hamilton’s equations in the new variables are

Q̇i =
∂K

∂Pi
= 0

Ṗi = − ∂K
∂Qi

= 0

Q̇i =
∂K

∂Pi
= vi (αi)

Ṗi = − ∂K
∂Qi

= 0

with solutions
Qi = βi

Pi = αi

Qi = βi + vi (αi) t

Pi = αi

The generating function is Hamilton’s

principal function S ({q} , {P} , t) characteristic func. W ({q} , {P})

HJ-equation is

H

(
{q} ,

{
∂S

∂q

}
, t

)
H

(
{q} ,

{
∂W

∂q

})
= αn

A complete solution has
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n non additive constants α1, . . . , αn n − 1 non-additive constants
α1, . . . , αn−1 which together with
αn make n independent constants

14.2 Simple harmonic oscillator

The Hamiltonian for the simple harmonic oscillator is

H =
1

2m

(
p2 +m2ω2q2

)
= E with ω =

√
k

m
.

The Hamilton-Jacobi equation is

1

2m

[(
∂S

∂q

)2

+m2ω2q2

]
+
∂S

∂t
= 0.

Since
dH

dt
= 0, we have the r.h.s. case of the table above, so

S = W − αt with α = E.

The reduced HJ-equation is

1

2m

[(
∂W

∂q

)2

+m2ω2q2

]
= α

which can be integrated easily to

W =
√

2mα

∫
dq

√
1− mω2q2

2α
⇒ S =

√
2mα

∫
dq

√
1− mω2q2

2α
−αt.

Also the transformation equation

β =
∂S

∂α
=

√
m

2α

∫
dq√

1− mω2q2

2α

− t

can be integrated easily to

β + t =
1

ω
arcsin q

√
mω2

2α
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that is

q =

√
2α

mω2
sin(ωt+ γ) with γ = βω

which is the usual solution for the harmonic oscillator.
The other transformation equation yields

p =
∂S

∂q
=
√

2mα cos(ωt+ γ).

α and β are related to the initial conditions at t = t0:

α =
1

2m

(
p2

0 +m2ω2q2
0

) q0

p0

=
1

mω
tan(βω)

so Hamilton’s principal function generates a canonical transformation to a
new momentum, i.e. the energy, and a new coordinate, i.e. the phase con-
stant of the oscillation.

14.3 2-dimensional harmonic oscillator

In two dimensions, the Hamiltonian for the harmonic oscillator is

H =
1

2m

(
p2
x + p2

y +m2ω2
xx

2 +m2ω2
yy

2
)

with ωx =

√
kx
m

ωy =

√
ky
m

and we have again

dH

dt
= 0 ⇒ S (x, y, αx, αy; t) = W (x, y, αx, αy)− αt with α = E.

The reduced HJ-equation is

1

2m

[(
∂W

∂x

)2

+

(
∂W

∂y

)2

+m2ω2
xx

2 +m2ω2
yy

2

]
= α

which can be separated into

1

2m

[(
∂W

∂x

)2

+m2ω2
xx

2

]
= αx

1

2m

[(
∂W

∂y

)2

+m2ω2
yy

2

]
= αy with α = αx + αy

that can be easily solved.
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14.4 Separation of variables

In sect. 14.1, we assumed (very wishfully!) that we know Hamilton’s princi-
pal function S. But in general it may be very difficult to solve HJ-equation:
partial differential equations of many variables are hard to deal with.
But with the harmonic oscillator, we saw that a solution can be found if
we can separate the variables. In fact, that is the case when HJ-equation
becomes a useful tool.
Suppose that in the HJ-equation, the coordinate q1 enters only through the

function H1

(
q1,

∂S

∂q1

)
, such that

H

(
H1

(
q1,

∂S

∂q1

)
; q2, . . . , qn;

∂S

∂q2

, . . . ,
∂S

∂qn
; t

)
+
∂S

∂t
= 0,

then q1 is called separable, and we look for a solution of the type

S = S1 (q1;α1, . . . , αn) + S (q2, . . . , qn;α1, . . . , αn; t) .

If we replace it into the HJ-equation, we get the identity

H

(
H1

(
q1,

∂S1

∂q1

)
; q2, . . . , qn;

∂S

∂q2

, . . . ,
∂S

∂qn
; t

)
+
∂S

∂t
= 0.

For this to be true for any q1, it’s necessary and enough to take

H1 = const. = α1.

So we get 2 equations:

H1

(
q1,

∂S1

∂q1

)
= α1

H

(
q2, . . . , qn;

∂S

∂q2

, . . . ,
∂S

∂qn
;α1; t

)
+
∂S

∂t
= 0.

The first equation is a first-order ordinary differential equation, which is easy
to solve. The second equation is still a partial differential equation, but with
one less variable. This procedure can be iterated if we have k separable
coordinates q1, . . . , qn.
Then the principal function can be written as

S (q1, . . . , qn;α1, . . . , αn; t) =
k∑
i=1

Si (qi;α1, . . . , αn)+S (qk+1, . . . , qn;α1, . . . , αn; t)
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and HJ-equation splits into k first order differential equations

Hi

(
qi,
∂Si
∂qi

)
= αi i = 1, . . . , k

and the partial differential equation

H

(
qk+1, . . . , qn;

∂S

∂qk+1

, . . .
∂S

∂qn
;α1, . . . , αk; t

)
+
∂S

∂t
= 0.

If all the variables qi and the time t are separable, the principal function can
be written as

S (q1, . . . , qn;α1, . . . , αn; t) =
n∑
i=1

Wi (qi;α1, . . . , αn)− αt.

The reduced HJ-equation is completely separable and can be written as

H

(
H1

(
q1,

∂W1

∂q1

)
; . . . ;Hn

(
qn,

∂Wn

∂qn

))
= α.

We get n first-order differential equations

Hi

(
qi,
∂Wi

∂qi

)
= αi i = 1, . . . , n

and the condition
H (α1, . . . , αn) = α

where αi are called separation constants.

Note that if q1 is separable and cyclic:
∂H

∂q1

= 0, then

H1

(
q1,

∂S1

∂q1

)
=
∂S1

∂q1

= α1 ⇒ S1 = α1q1.

So if k variables are cyclic, the principal function becomes

S =
k∑
i=1

αiqi + S (qk+1, . . . , qn;α1, . . . , αn; t) .
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14.5 Action-angle variables

Consider a conservative system with a periodic motion. For simplicity, let us
take it as a function of 2 variables (q, p). The Hamiltonian is

H (q, p) = const. = α.

As new (constant) momentum, let us take Poincare invariant integral

J =

∮
p dq.

J is called action variable.
Hamilton’s characteristic function is W = W (q, J). The coordinate conju-
gate to J is the angle variable w.
The transformation equation is

w =
∂W

∂J
and w is cyclic.

Hamilton’s equation of motion is

ẇ =
∂H(J)

∂J
= ν(J)

with ν a constant, and a function of J .
As expected, w integrates to

w = νt+ β.

Consider the change in w through a period

∆w =

∮
∂W

∂q
dq =

∮
∂2W

∂q∂J
dq.

Because J is a constant, we can take it out of the integral:

∆w =
d

dJ

∮
∂W

∂q
dq =

d

dJ

∮
p dq︸︷︷︸
=J

= 1.

So, as q goes through a cycle, w changes by 1. Then

∆w = ντ = 1
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where τ is the period. So

ν =
1

τ

is the frequency of the periodic motion which we have found without solving
the equations of motion of the system.
The discussion can be directly extended to a periodic motion in a 2n-dimensional
phase space, in terms of n action variables

Ji =

∮
pi dqi.
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15 Special Relativity
Special relativity is based on the assumption that the laws of nature are the
same for inertial observers where their co-ordinates are related via Lorentz
transformations:

xµ → xµ′ = Λµ
νx

ν + ρµ. (15.1)

where

xµ =


x0

x1

x2

x3

 (15.2)

a “four-vector” comprising space-time coordinates with x0 = ct, ρµ is a con-
stant four-vector and Λµ

ν satisfies:

Λµ
ρΛ

ν
σgµν = gρσ. (15.3)

The 4× 4 matrix gµν is the so-called metric, defined as:

gµν =


+1, µ = ν = 0,
−1, µ = ν = 1, 2, 3
0, µ 6= ν

(15.4)

In the above we have used Einstein’s summation convention. For example,
one would write explicitly

Λµ
νx

ν = Λµ
0x

0 + Λµ
1x

1 + Λµ
2x

2 + Λµ
3x

3. (15.5)

This is a convention that we will use extensively from now on.

15.1 Proper time

Lorentz transformations leave invariant “proper-time” intervals. These are
defined as:

dτ 2 ≡ c2 dt2 − dx2 = gµν dxµ dxν . (15.6)

Indeed, in a different reference frame we have from Eq. 15.1:

dxµ′ = Λµ
ν dxν . (15.7)
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A proper-time interval in the new frame is

dτ ′2 = gµν dx′µ dx′ν

= gµν
(
Λµ
ρ dxρ

)
(Λν

σ dxσ)

=
(
gµνΛ

µ
ρΛ

ν
σ

)
dxρ dxσ

= gρσ dxρ dxσ = dτ 2. (15.8)

As a consequence of the invariance of proper-time intervals, the speed of light
is the same in all inertial frames. Indeed, for light we have:∣∣∣∣dxdt

∣∣∣∣ = c; dτ 2 = c2 dt2 − dx2 = 0 (15.9)

In a new frame,

dτ 2′ = dτ 2 = 0 ;

∣∣∣∣dx′dt′

∣∣∣∣ = c (15.10)

Lorentz transformations are the only non-singular transformations which
preserve proper-time intervals:

dτ 2 = dτ
′2

; gρσ dxρ dxσ = gµν dx′µ dx′ν

; gρσ dxρ dxσ = gµν
∂xµ

∂xρ

∂xν

∂xσ
dxρ dxσ, (15.11)

concluding that:

gρσ = gµν
∂xµ

∂xρ

∂xν

∂xσ
. (15.12)

Differentiating with dxε, we obtain:

0 = gµν

[
∂2x′µ

∂xε∂xρ
∂x′ν

∂xσ
+

∂2x′µ

∂xε∂xσ
∂x′ν

∂xρ

]
. (15.13)

To this, we add the same equation with ε↔ ρ and subtract the same equation
with ε↔ σ. We obtain:

0 = 2gµν
∂2x′µ

∂xε∂xρ
∂x′ν

∂xσ
(15.14)

Assuming that the transformation xµ → x′µ is a well behaved differentiable
function and that the inverse of the transformation also exists,

∂x′µ

∂xσ
∂xσ

∂x′ν
= δµν , (15.15)
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we obtain that
∂2x′µ

∂xε∂xρ
= 0. (15.16)

Therefore, the transformation xµ → x′µ ought to be linear:

x′µ = Λµ ν + ρµ. (15.17)

15.2 Subgroups of Lorentz transformations

The set of all Lorentz transformations

x′µ = Λµ
νx

ν + ρµ. gµνΛ
µ
ρΛ

ν
σ = gρσ (15.18)

form a group (exercise: prove it), which is known as the group of inhomo-
geneous Lorentz group or the Poincare’ group. The subset of transformations
with ρµ = 0 is known as the homogeneous Lorentz group.

From
gµνΛ

µ
ρΛ

ν
σ = gρσ

and for ρ = σ = 0, we have:

(Λ0
0)2 −

3∑
i=1

(Λi
0)2 = 1 ; (Λ0

0)2 ≥ 1. (15.19)

Also, in matrix form the definition of the Lorentz transformation becomes:

g = ΛTgΛ ; det g = det(ΛTgΛ) ; (det Λ)2 = 1. (15.20)

The subgroup of transformations with

det Λ = 1, Λ0
0 ≥ 1,

which contains the unity 1 = δµν , is known as the proper group of Lorentz
transformations. All other transformations are known as improper Lorentz
transformations. It is impossible with a continuous change of parameters to
change

det Λ = 1→ det Λ = −1 or Λ0
0 ≥ 1→ Λ0

0 ≤ −1.

Improper Lorentz transformations involve either space-reflection (det Λ =
−1,Λ0

0 ≥ 1) or time-inversion (det Λ = 1,Λ0
0 ≤ −1) or both (det Λ =

−1,Λ0
0 ≤ −1).
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Proper homogeneous or inhomogeneous Lorentz transformations have a
further subgroup: the group of rotations,

Λ0
0 = 1, Λi

0 = Λ0
i = 0, Λi

j = Rij, (15.21)

with
detR = 1, RTR = 1. (15.22)

Thus, for rotations and translations (xµ → x′µ = xµ + ρµ) Lorentz transfor-
mations are no different than Galilei transformations.

A difference with Galilei transformations arises in boosts. Assume a ref-
erence frame O in which a certain particle appears at rest, and O′ a reference
frame where the particle appears to move with a velocity v. Space-time
intervals in the two frames are related via

dx′µ = Λµ
ν dxν = Λµ

0c dt, (15.23)

given that dx = 0 in the frame O. For µ = 0, this equation gives

dt′ = Λ0
0 dt. (15.24)

For µ = i = 1, 2, 3 we have:

dx′i = Λi
0c dt (15.25)

Dividing the two, we have

vi ≡ dx′i

dt′
= c

Λi
0

Λ0
0

; Λi
0 =

vi

c
Λ0

0. (15.26)

From
gµνΛ

µ
ρΛ

ν
σ = gρσ

and for ρ = σ = 0, we have:

(Λ0
0)2 − (Λi

0)2 = 1

; Λ0
0 = γ =

(
1− v2

c2

)− 1
2

. (15.27)

and thus
Λi

0 = γ
vi

c
. (15.28)
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The remaining components are not determined uniquely by knowing the ve-
locity v of the particle. Indeed, two Lorentz transformations

Λµ
ν and Λµ

ρR
ρ
ν

where R is a rotation, boost a particle to the same velocity. For coordinate
systems O and O′ with parallel axes we find that (exercise)

Λi
j = δij +

vivj

v2
(γ − 1) (15.29)

and
Λ0
j = γ

vj

c
. (15.30)

15.3 Time dilation

Consider an inertial observer O which looks as a clock at rest. Two ticks of
the clock correspond to a space-time interval

dx = 0, dt = ∆t. (15.31)

The proper time interval is

dτ = (c2 dt2 − dx2)
1
2 = c∆t. (15.32)

A second observer sees the clock with velocity v. Two ticks of the clock
define a space-time interval

dt′ = ∆t′, dx′ = v dt′. (15.33)

The proper-time interval in the new frame is:

dτ ′ = (c2 dt′2 − dx′2)
1
2 = c∆t′

√
1−

∣∣∣∣ dx′

cdt′

∣∣∣∣2 = c∆t′
√

1− v2

c2
. (15.34)

The proper-time is invariant under the change of inertial reference frames.
Thus we conclude that

∆t′ =
∆t√
1− v2

c2

= γ∆t (15.35)
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15.4 Doppler effect

Take our clock to be a source of light with a frequency

ω =
2π

∆t
.

For an observer where the light-source is moving with velocity v this time
interval is measured to be

dt′ = γ∆t.

In the same period, the distance of the observer from the light source increases
by

vr dt′

where vr is the component of the velocity of the light-source along the direc-
tion of sight of the observer. The time elapsing between the reception of two
successive light wave-fronts from the observer is

c dt0 = c dt′ + vr dt′. (15.36)

The frequency measured by the observer is

ω′ =
2π

dt0
=

√
1− v2

c2

1 + vr
c

ω. (15.37)

If the light-source is moving along the line of sight, vr = v, we have

ω′ =

√
1− v

c

1 + v
c

ω. (15.38)

If the light-source moves away from the observer, vr > 0, the frequency
decreases and the light appears to be more red (red shift). If the source
moves towards the observer, the frequency increases (violet shift).

Exercise 15.1. Calculate the angle of the direction of motion of the light-
source with respect to the line of sight of the observer for which there is no
shift in the frequency.

For an application of the Doppler effect in cosmology, read about Hubble’s law.
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15.5 Particle dynamics

How can we compute the force of a particle which moves with a relativistic
velocity v? We should expect that our classical formulae from Newtonian
mechanics need to be modified. On the other hand, Newtonian expressions
for the force should be valid if a particle is at rest. We can always change
reference frame with Lorentz transformations to bring a particle at rest and
calculate the change in its velocity for a small time interval using Newtonian
mechanics. However, we will need to perform these changes of reference frame
at every small increase of the velocity of the particle during its acceleration
due to the force.

In a more elegant solution to the problem, we define a relativistic force
acting on a particle as

fµ = mc2 d2xµ

dτ 2
, (15.39)

where m is the mass of a particle 3. If the particle is at rest, the proper-time
interval dτ coincides with the common time-interval dt

dτ = c dt.

Therefore, in the rest frame of the particle, the“space”-components of the
force four-vector become

f irest = m
d2xi

dt2
= F i

Newton, for i = 1, 23, (15.40)

where FNewton is the force-vector as we know it from Newtonian mechanics.
The “time” component of the force four-vector vanishes:

f 0
rest = mc

d2t

dt2
= 0. (15.41)

Under a Lorentz transformation, fµ transforms as

fµ = mc2 d2xµ

dτ 2
→ mc2 d2x′µ

dτ 2
= mc2 d2 (Λµ

νx
ν + ρµ)

dτ 2
= Λµ

νmc
2 d2xν

dτ 2
(15.42)

Therefore,
f ′µ = Λµ

νf
ν . (15.43)

3With mass, we mean the mass of a particle as it is measured in its rest-frame. We will
refrain from using the “relativistic”, velocity dependent, mass.
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The components of fµ transform under Lorentz transformations in exactly
the same way as the components of space-time coordinates. It is therefore a
four-vector as well.

For a specific transformation from the rest frame of a particle to a frame
where the particle moves with a velocity v, we have

fµ = Λµ
ν(v)f νrest. (15.44)

where, we have found that,

Λ0
0(v) = γ =

(
1− v2

c2

)− 1
2

, Λi
0(v) = Λ0

i(v) = γ
vi

c
.

Λi
j(v) = δij +

vivj

v2
(γ − 1) (15.45)

Therefore, the force on a moving particle is:

f = FNewton + (γ − 1)
v
(
FNewton · v

)
v2

, (15.46)

and

f 0 = γ
v · FNewton

c
=
v

c
· f. (15.47)

In Newtonian mechanics, if the force F is given, we can compute the
trajectory x(t) by solving the second order differential equation:

d2x

dt2
=
F (x, t)

m
. (15.48)

Similarly, in special relativity, when the relativistic force fµ is known, the
differential equation 15.39 can, in principle, be solved to give the space-time
coordinates as a function of the proper time τ :

xµ = xµ(τ). (15.49)

To calculate the trajectory, we then need to calculate the proper-time in
terms of the time coordinate by inverting

x0 = x0(τ) ; τ = τ(x0), (15.50)
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which we can use to cast the space components directly as functions of the
time-coordinate.

We should not forget a second constrain that must be satisfied for our
solutions xµ(τ), namely

Ω ≡ gµν
dxµ

dτ

dxν

dτ
= 1. (15.51)

We have for the derivative of Ω with respect to proper-time:

dΩ

dτ
= 2gµν

d2xµ

dτ 2

dxν

dτ
=

2

mc2
gµνf

µdxν

dτ
. (15.52)

The rhs is a Lorentz invariant quantity. In a new frame,

gµνf
′µdx′ν

dτ
= gµν

(
Λµ
ρf

ρ
) (Λν

σdxσ)

dτ
=
(
gµνΛ

µ
ρΛ

ν
σ

)
fρ

dxσ

dτ
= gρσf

ρdxσ

dτ
.

We are therefore allowed to compute
dΩ

dτ
in any reference frame we wish. Let

us choose the rest frame of the particle, where

xµ = (ct, 0), fµ = (0, FNewton).

We obtain:
dΩ

dτ
=

2

mc2

(
f 0 dx0

dτ
− f · x

)
= 0. (15.53)

Therefore, the quantity Ω is always a constant:

Ω(τ) = constant. (15.54)

If for some initial value τ0 we choose the constant to be one, we will have

Ω(τ) = Ω(τ0) = 1, ∀ τ. (15.55)

Exercise 15.2. Calculate the trajectory of a particle on which the four-
vector force exerted is fµ = 0.
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15.6 Energy and momentum

We can define a relativistic four-vector analogue of momentum as

pµ = mc
dxµ

dτ
(15.56)

We have that

dτ =
(
c2 dt2 − dx2

) 1
2 = c dt

[
1−

(
dx

c dt

)2
] 1

2

= c dt

[
1− v2

c2

] 1
2

=
c dt

γ
.

(15.57)
Thus, for the time-component (µ = 0) of the four-momentum we have

p0 = mc
dx0

dτ
= mγc. (15.58)

For the space-components (µ = i = 1, 2, 3) we have

pi = mc
dxi

dτ
= mγ

dxi

dt
= mγvi. (15.59)

For small velocities, we can expand the factor γ as

γ =

[
1− v2

c2

]− 1
2

≈ 1 +
1

2

v2

c2
+O

(
v4

c4

)
. (15.60)

Therefore, for small velocities the space-components of the four-momentum
become the classical momentum,

pi ≈ mvi + . . . , (15.61)

while the time-component becomes

p0 ≈ mc+
1

2c
mv2 + . . . (15.62)

In the second term of the above expansion we recognize the kinetic energy
1
2
mv2 of the particle. We then identify the relativistic energy of a particle

with
E = cp0 = mγc2. (15.63)

Eliminating the velocity v from Eqs 15.59-15.63, we obtain the relation:

E =
√
p2c2 +m2c4 (15.64)
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15.7 The inverse of a Lorentz transformation

Recall the metric matrix

gµν = diag(1,−1,−1,−1) (15.65)

We define an inverse
gµν : gµνgνρ = δµν , (15.66)

where δµν is the Kronecker delta. It is easy to verify that the inverse of the
metric is the metric itself:

gµν = gµν = diag(1,−1,−1,−1). (15.67)

Now consider a Lorentz transformation Λµ
ν , which satisfies the identity:

Λµ
ρΛ

ν
σgµν = gρσ. (15.68)

We can prove that the matrix

Λ ν
µ ≡ gµρg

νσΛρ
σ (15.69)

is the inverse of Λµ
ν . Indeed

Λµ
λΛ

ν
µ = gµρg

νσΛρ
σΛµ

λ = gσλg
νσ = δλν . (15.70)

If Λµ
ν is a velocity v boost transformation of Eq. 15.45, then

Λ 0
0 (v) = γ =

(
1− v2

c2

)− 1
2

, Λ 0
i (v) = Λ i

0 (v) = −γ v
i

c
.

Λ j
i (v) = δji +

vivj

v2
(γ − 1) (15.71)

We, therefore have that the inverse of a boost is

Λ ν
µ (v) = Λµ

ν(−v), (15.72)

as we also expect physically.
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15.8 Vectors and Tensors

It is now time to give officially a definition for vectors in special relativity.
We call any set of four components which transform according to the rule:

V µ → V ′µ = Λµ
νV

ν (15.73)

a contravariant vector. Contravariant vectors transform in the same way as
space-time coordinates xµ do under homogeneous Lorentz transformations.

Not all vectors transform as contravariant vectors. Consider the derivative
∂
∂xµ

. Under a Lorentz transformation, it transforms as:

∂

∂xµ
→ ∂

∂x′µ
=
∂xρ

∂x′µ
∂

∂xρ
. (15.74)

We have that (
∂xρ

∂x′µ

)(
∂x′µ

∂xν

)
= δρν ;

(
∂xρ

∂x′µ

)
Λµ
ν = δρν . (15.75)

Therefore,
(
∂xρ

∂x′µ

)
is the inverse of a Lorentz transformation Λµ

ν :

∂xν

∂x′µ
= Λ ν

µ . (15.76)

Substituting into Eq. 15.74, we find:

∂

∂xµ
→ ∂

∂x′µ
= Λ ρ

µ

∂

∂xρ
. (15.77)

We found that the derivative does not transform according to the Lorentz
transformation but according to its inverse. All vectors which transform with
the inverse Lorentz transformation:

Uµ = Λ ν
µ Uν , (15.78)

are called covariant vectors.
For every contravariant vector Uµ there is a dual vector

Uµ = gµνU
ν . (15.79)

We can invert the above equation multiplying with gρµ,

gρµUµ = gρµgµνU
ν = δρνU

ν = Uρ. (15.80)
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The dual vector Uµ is a covariant vector. Indeed, under a Lorentz transfor-
mation we have

Uµ → U ′µ = gµνU
′ν = gµνΛ

ν
ρU

ρ = gµνΛ
ν
ρg
ρσUσ = Λ σ

µ Uσ. (15.81)

The scalar product of a contravariant and a covariant vector

A ·B ≡ AµBµ = AµB
µ = gµνA

µBν = gµνAµBν (15.82)

is invariant under Lorentz transformations. Indeed,

A ·B → A′ ·B′ = A′µB′µ = Λµ
ρA

ρΛ σ
µ Bσ = δσρA

ρBσ = AρBρ = A ·B. (15.83)

Let us define for short:
∂µ ≡

∂

∂xµ
, (15.84)

and the dual contravariant vector:

∂µ =
∂

∂xµ
= gµν∂ν . (15.85)

The D’ Alembert operator is the scalar product:

2 ≡ ∂2 ≡ ∂µ∂
µ =

1

c2

∂2

∂t2
−∇2. (15.86)

Due to it being a scalar product, the D’Alembert operator is invariant under
Lorentz transformations.

Finally, we define a tensor with multiple “up” and/or “down” indices to
be an object

T µ1µ2...ν1ν2...
(15.87)

which transfroms as:

T µ1µ2...ν1ν2...
→ Λµ1

ρ1
Λµ2
ρ2
. . .Λ σ1

ν1
Λ σ2
ν2
. . . T ρ1ρ2...σ1σ2...

(15.88)
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