Binding and dimensionality:
Consider a spherically symm pot. $U^{\prime}(r)=-U_{\theta} \theta(a-r)$. Are Here bound states?

Cleary yes if U_{0} is large!
Consider a trial state localized with ξ inside potential well. If $k \cdot \in$ of state $>U_{0}$ state delocalizes. what happens when $v_{0}<T_{0}$? >1.
$\xi=\lambda a \quad$.

Variational energy

$$
\xi=\lambda a=\frac{\hbar^{2}}{\alpha m \xi^{2}}-u_{0}\left(\frac{a}{\xi}\right)^{d}
$$

$$
=\frac{\hbar^{2}}{2 m a^{2}} \cdot \lambda^{-2}-u_{0} \lambda^{-d}
$$

$$
\begin{aligned}
& \text { af w. } \cdot \text {.t. } \lambda \quad \frac{2 m}{T_{0}} \quad \lambda^{-(a+1)}=0 \\
& -2 \text { To } \\
& \Rightarrow \lambda=\left(\frac{2 T_{0}}{d u_{0}}\right)^{\frac{1}{2}} \\
& \therefore E=\left(\frac{2}{d}\right)^{2 /(d-2)}\left(1-\frac{2}{d}\right)^{T_{0}} \begin{array}{l}
d / d-2 \\
u_{0}
\end{array} \\
& d=1 \\
& E<0 \\
& =\frac{U_{0}{ }^{2}}{4 T_{0}} . \\
& \lambda=\frac{2 T_{0}}{2 U} .
\end{aligned}
$$

+ $E=0$. Chocalizel states with $d>2 \quad \Leftrightarrow>0$ no. bound slates" ballistic dip.

Instability of Fermi surbece to affractive $x^{n s}$. What is a fermi surfare?

Simple model of $2 e^{s} \quad \vec{r}_{1}+\vec{r}_{2}$ (ether e^{-s} are like tree parbich's
sssume the 2 chosen e^{-s} do not $x^{c t}$ with othere Other i^{-s} farbid them from occupying lenels with $k<t_{f}$. Berariour of relativice cood: $\left(\vec{r}_{1}-\vec{r}_{2}\right)$

$$
\begin{align*}
& \text { of relative cood: }\left(\vec{r}_{1}-\vec{r}_{2}\right) \\
& \psi\left(\vec{r}_{1}, \vec{r}_{2}\right)=\psi\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right)=\sum_{k} g(\bar{k}) e^{i \overrightarrow{i k} \cdot\left(\bar{r}_{1}-\overline{r_{2}}\right)}
\end{align*}
$$

n. preb caff of a plabik mave state.
where one ${ }_{e}$ is in $\hbar \vec{k}$ t the othen has momentien - $\hbar \stackrel{\rightharpoonup}{k}$.
$\frac{\text { Eflect of the other } N-2 \text { particls }}{\operatorname{Since} \text { all } k<R \text { pstates, are cecmpred, }}$

$$
g(\vec{k})=0 \text { for }|\vec{k}|<k F
$$

Sthodizer eqn.

$$
\begin{align*}
& \text { Sehrodiyer eqn. } \tag{2}\\
& -\frac{\hbar^{2}}{2 m}\left[\Delta_{1}+\Delta_{2}\right] \psi+V\left(r_{1}, r_{2}\right) \psi=\left(E+2 E_{f}\right) \psi . \\
& \text { Eermi ineyy. } 2 E_{f}
\end{align*}
$$

E is measweet parn the. Fermi creyy. $2 E_{f}=\frac{\hbar^{2} k_{f}^{2}}{\beta_{n}}$. $X^{n}, \quad V\left(\bar{r}_{1}, \bar{r}_{2}\right)=V\left(\bar{r}_{1}-\bar{r}_{2}\right)=\sum_{k} V_{k} e^{i \vec{k}\left(\gamma_{1}-\bar{\gamma}_{2}\right)}$ - 3 Using (1) (3) in (2), we attain for each plare mave component
$\frac{\hbar^{2} k^{2}}{m} g(\vec{n})+\sum_{\vec{k}^{\prime}} V_{R-k}, g\left(\vec{k}^{\prime}\right)=\left(2 E_{f}+\epsilon\right) g(\vec{k}), ~(r)$

* opin simplet stale \& centere of massat rost.

$$
g(R)=g(-k) \quad \sum_{k}\left|g_{k}\right|^{2}=1
$$

To get an analytical self. we assume a boy interāilun

$$
\begin{aligned}
& V_{R, R}^{-1}=-V \text { if } \\
& E_{f}<\frac{\hbar^{2} k^{2}}{2 m}<E_{f}+\hbar \omega_{D} \\
&+E_{F}<\frac{\hbar^{2} k^{2}}{2 m}<E_{f}+\hbar \omega_{D}
\end{aligned}
$$

$=$ otherwise $\quad \omega_{D} \rightarrow$ Debyefug.
$-V \sum g\left(\bar{k}^{-}\right)=C$.

$$
\begin{aligned}
& \Rightarrow \quad g(\bar{k})=\frac{c}{E+2 E_{f}}-\frac{\hbar^{2} k^{2}}{m m} .
\end{aligned}
$$

Self consistency demands that

$$
\begin{aligned}
& -V C \sum_{(k 175)} \frac{1}{E+2 \epsilon_{f}-\frac{\hbar^{2} k^{\prime}}{2 m}}=C \text {. } \\
& V=V \sum_{i l} \frac{1}{\frac{\hbar^{2} k^{\prime 2}}{2 m}-E-2 E F}
\end{aligned}
$$

sum is effector aver the onnulis of width $\omega_{D} \quad \varepsilon^{2}=\varepsilon^{2}=2 h+s$
 density of states $\left.N(\xi)=2 \frac{4 \pi k^{2}}{(2 \pi)^{3}} \frac{d k}{d \xi}\right]_{\frac{1}{k}}^{d \varepsilon=\operatorname{codn}}$ we have

$$
\frac{1}{V}=\int_{0}^{\hbar \infty_{D}} \frac{1}{2 \xi-E} N(\xi) d \xi \quad \rightarrow \frac{\varepsilon}{\sqrt{\varepsilon}}
$$

Assuming $\omega_{D} \ll E_{f}$,

$$
N(\xi)=\text { este } \equiv \begin{gathered}
\text { fermi verey } \\
\text { value. }
\end{gathered}
$$

$$
N(0)^{-}
$$

$$
1=\frac{N(0)}{2} V \ln \frac{E-2 \hbar \omega_{D}}{E}
$$

$$
\left.\right|_{2} \ln \xi-\left.\frac{E}{2}\right|_{0} ^{\hbar \varphi}
$$

If the interaction is very weak $N(0) V \ll 1$ then)

$$
\frac{1}{2} \ln -\frac{\hbar \omega_{D}+E / 2}{E / 2}
$$

$$
E=-2 \hbar \omega_{p} \exp -\frac{2}{N(0)} V
$$

\Longrightarrow weak bound state of $2 \mathrm{e}^{-s}$. for arkitranly weak attract. x !

Coot always true in $3 D \ldots{ }^{2}$ He moleunle is ubbeung
Pair state is in a zero momentum state.
If we take into account the spin, the solans. To thicars. are anjularmomention eifenstatis, so $g(k)$ should have definite parity. $g(k)=g(-k)$ or $g(k)=-g(-k)$ we consider $g(k)=g(-K)$ \& this conespands to symm spatial $f n$. of hence a spin simpletstate to restore antisymm nature of fermion wave fo.
\rightarrow Pair state having finite $q \rightarrow$ bound state only for expmentially small q.

$$
E \rightarrow E+v_{f} 19 / / 2
$$

Heat does the wane fro book like?
(s wave arkital state)

$$
\psi(r)=\frac{1}{r} \frac{\partial}{\partial r} \int_{k f}^{k D} \frac{\cos k r}{2 \varepsilon_{k}+|E|}
$$

$$
\begin{aligned}
\varepsilon_{k} & =\frac{k^{2}\left(k^{2}-k_{t}^{2}\right)}{2 m} \\
& =\frac{\hbar^{2} k^{2}}{2 m}-E_{f}
\end{aligned}
$$

$$
r=\left|\vec{r}_{1}-\vec{r}_{2}\right|
$$

General structure of $\psi \rightarrow \sum$ terms of $\left(\cos _{f}{ }^{2}, \sin k_{4}{ }^{r}\right) x$ decreasir frs of γ
$\frac{1}{r}$ for small r for layer. $\frac{1}{r}$ pres

$$
\psi_{f}=\frac{k k}{m}
$$

The bound state has a radius ξ_{c} in the sersi prob of finding particles at $r \gg \xi \rightarrow 0$ as $\frac{1}{\gamma}$ But or small $r \quad \psi(r) \sim \frac{\text { sunk f } r}{R_{f} r}$.

Generalize to finite T ! assume that pair can only occupy states $k \neq-k s$ if $N-2 e^{-s}$ do notoccupy them:

At finite T, probability for oce upation of this pair is

$$
\left.\frac{1}{\left(1+e^{+\beta} \varepsilon_{R}\right.}\right)^{2}
$$

Replanirg $p(\varepsilon)=N(0) \theta(\varepsilon) \rightarrow \frac{N(0)}{\left(1+e^{\beta \varepsilon}\right)^{2}}$

$$
\frac{1}{V}=N(0) \int_{-\infty}^{\infty} \frac{d \varepsilon}{(2 \varepsilon-E)\left(1+e^{+} \beta \varepsilon\right)^{2}}
$$

But $\&$ can have any sign of finite T.

Singularity at $\varepsilon=0$ is removed! equivalent to replaciry lamer limit by $k_{B} T$ (rot o!) (A) has no $E<0$ sols if cadition not satisfies

$$
\int_{L_{B} T}^{K\left(\otimes_{D}\right.} \frac{d \varepsilon}{2 \varepsilon}>\frac{1}{N(0) V}
$$

$$
\ln \frac{\hbar \omega_{D}}{k_{B} T}=\frac{2}{\frac{N(0) V}{2}}
$$

i e above a critical \bar{E}

$$
\frac{k_{B} T}{K \omega_{D}}=e^{-\frac{2}{N(O) V}}
$$

$$
T_{C} \sim \frac{\hbar \omega_{D}}{R_{B}} \exp -\frac{2}{N(0) \vee} \cdot 1 \text { adder of mes }
$$

3 features

- exponentially small energy of bound state - lane radius of pair
- critical temp.
reflected in many body BCS state.

Origin of attractive interactions
Repulsion energy between $V(q)=\frac{e^{2}}{4 \pi \varepsilon_{0}}|\vec{q}|^{2}$.

(in Naccuim)

But interactions also sven Coulomb. x^{n}.
\& interaction with the ions of system.
\Rightarrow Polarization \vec{P} of environment.
\Rightarrow electrical induction $\stackrel{\rightharpoonup}{\longrightarrow}=\varepsilon_{0}(\vec{E}+\vec{D})$

$$
D=\varepsilon_{0} \varepsilon_{\gamma} \vec{E}
$$

$$
V_{\vec{q}}=\frac{e^{2}}{4 \pi \varepsilon_{r}(\vec{q}, \omega) \varepsilon_{0}|\vec{q}|^{2}}
$$

$E_{r}(\vec{q}, \omega) \rightarrow$ dielectric response of systimwhen. we insect an ext. Charge whose density has move nectar q "ै of paries is time with fug.w. [$\stackrel{\rightharpoonup}{E}$ field wains

$$
\vec{E}(q, \omega)=\vec{E} q e^{i(\bar{q} \cdot \bar{\gamma}+\omega t)}
$$

Every tue ion is now displaced-

$$
\vec{\xi}(\vec{q}, \omega)=\vec{\xi} q e^{i(\vec{q} \cdot \gamma+\infty t)}
$$

Classical mechanics dictates

$$
\begin{aligned}
& \text { mechanics dictates } \\
& M \frac{d^{2} \vec{\xi}}{d t^{2}}=-\alpha_{\vec{\phi}} \vec{\xi}+e \vec{E} \rightarrow \text { electric drift. } \\
& \downarrow \text { plastic estonip tace. }
\end{aligned}
$$

\downarrow elastic restonip tace.
M - mass of ion. (monovalent with chare te)
In fourier space)

$$
-M \omega^{2} \vec{\xi}_{q}=-2 \vec{q} \vec{\xi} \vec{q}+e \vec{E} \vec{q}
$$

Polarisation correspond to $\vec{\xi}_{\vec{q}}$ is

$$
\vec{p}_{q}^{i m}=\frac{n_{i m}^{e}}{\varepsilon_{0}} \stackrel{\rightharpoonup}{\xi}_{\vec{q}}
$$

$\eta_{\text {ion }} \rightarrow$ density of ions.

$$
\vec{p}_{\vec{q}}^{\text {io }}=\frac{\text { nim }}{\varepsilon_{0}} \cdot \frac{2}{e \vec{E} \vec{q}} \frac{2 q-M \omega^{2}}{\text { per }}
$$

$w_{p} \rightarrow$ plasma fur.
$\Omega=\sqrt{\frac{\alpha \vec{g}}{M}} \rightarrow$ phononic frequency (elastic forces)

Electronic polarization
Tomas termin

$$
\vec{p}_{\vec{q}}^{\prime}=\frac{w_{p}^{2}}{w_{p}^{2} \lambda_{s}^{2} q^{2}-w_{q}^{2}}
$$

$\lambda_{s} \rightarrow$ swerip leyte for e^{-}
$\lambda_{S} \sim a$

$$
\lambda \lambda_{S} q \sim \frac{1}{9}
$$

$$
\begin{aligned}
& \text { neflecting } w^{2} \\
& \vec{P}_{\vec{q}}^{\mu}=\frac{\stackrel{E}{q}}{\lambda s^{2} q^{2}} . \\
& \text { (Thomas-fermi } \\
& \operatorname{app} 2 x) \\
& \vec{p}=\vec{p}^{i m}+\vec{p}^{e l} \\
& \varepsilon_{r}(q, \omega)-1=\frac{1}{q^{2} \lambda_{s}^{2}}+\frac{\omega p^{2}}{\Omega^{2}-\omega^{2}} \\
& \frac{1}{\varepsilon_{r}(\vec{q}, \omega)}=\frac{\Omega^{2}-\omega^{2}}{\omega_{p}^{2}+\varepsilon_{e l}\left(\Omega^{2}-\omega^{2}\right)} \\
& r_{e l}=1+\frac{1}{q^{2} \times s^{2}} \\
& \Omega_{p h}=\left[\Omega^{2}+\omega_{p}^{2} / \varepsilon_{e l}\right]^{1 / 2} \\
& \Omega<\omega<\Omega \text { ph }
\end{aligned}
$$

Athaction is stromper if $\Omega \rightarrow 0 . \quad \varepsilon_{\gamma}$, is <0
as a result $V(q$,$) can benegative.$

